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ABSTRACT 

Short sediment cores were collected from ~1100 m water depth at the top of Hook 

Ridge, a submarine volcanic edifice in the Central Basin of the Bransfield Strait, Antarctica, 

to assess Fe and Mn supply to the water column. Low-temperature hydrothermal fluids 

advect through these sediments and, in places, subsurface H2S is present at high enough 

concentrations to support abundant Sclerolinum sp., an infaunal tubeworm that hosts 

symbiotic thiotrophic bacteria.  The water column is fully oxic, and oxygen penetration 

depths at all sites are 2-5 cmbsf.  Pore water Fe and Mn content is high within the subsurface 

ferruginous zone (max. 565 µmol Fe L
-1

, >3 to 7 cmbsf)—14-18 times higher than values 

measured at a nearby, background site of equivalent water depth. Diffision and advection of 

pore waters supply significant Fe and Mn to the surface sediment.  Sequential extraction of 

the sediment demonstrates that there is a significant enrichment in a suite of reactive, 

authigenic Fe minerals in the upper 0-5 cm of sediment at one site characterised by weathered 

crusts at the seafloor. At a site with only minor authigenic mineral surface enrichment we 

infer that leakage of pore water Fe and Mn from the sediment leads to enriched total 

dissolvable Fe and Mn in bottom waters.  The largest Eh anomaly observed from our 

Bransfield Strait survey is associated with the elevated total dissolvable metal content in the 
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water column above this coring site.. We hypothesize that the main mechanism for Fe and 

Mn efflux from the sediment is breach of the surface oxic layer by the abundant Sclerolinum 

sp., along with episodic enhancements by physical mixing and resuspension of sediment in 

this dynamic volcanic environment.  We propose that Hook Ridge sediments are an important 

source of Fe and Mn to the deep waters of the Central Basin in the Bransfield Strait, where 

concentrations are sustained by the benthic flux, and Fe is stabilised in the water column as 

either colloidal phases or ligand-bound dissolved species.  Entrainment of this water mass 

into the Drake Passage and thereby the Antarctic Circumpolar Current could provide a 

significant metal source to this HNLC region of the Southern Ocean if mixing and upwelling 

occurs before removal of this metal pool to underlying sediments.  Sediment-covered 

volcanic ridges are common within rifted margins and may play a previously overlooked role 

in the global Fe cycle.  

 

1. INTRODUCTION 

The surface waters of the Southern Ocean are generally characterized by low levels of 

primary productivity in spite of an abundant supply of macronutrients, but the distribution of 

phytoplankton biomass is highly variable, with some regions significantly more productive 

than others (Sullivan et al., 1993; Pollard et al., 2007). It is well established that the limited 

availability of Fe underpins restricted phytoplankton growth in the otherwise macronutrient-

rich regions (high nutrient, low chlorophyll [HNLC]) of the Southern Ocean, thereby 

controlling the efficiency of the carbon pump (e.g., Martin et al., 1990; Blain et al., 2007; 

Hopkinson et al., 2007). The productivity varies seasonally, when conditions permit, around 

or downstream of islands, along the continental shelf and in the Antarctic Polar Frontal Zone 

(Sullivan et al., 1993). In particular, a marked gradient in surface primary productivity occurs 

across the southern Drake Passage where a region of low-chlorophyll waters, which extends 

across the eastern South Pacific sector of the Southern Ocean, gives way to high chlorophyll 

waters that extend across the Scotia Sea to the South Sandwich Islands (Sullivan et al., 1993; 

Ardelan et al., 2010). This productivity ‘hot spot’ is inferred to be sourced by Fe-replete 

waters originating in the South Shetland Island-Antarctic Peninsula region (Dulaiova et al., 

2009), where Fe enrichment has been attributed to entrainment of inputs from diagenetically 

modified shelf sediments (Hatta et al., 2012; Measures et al., 2013).  
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The oxidation of organic matter in marine sediments can be redox-coupled to the 

reductive dissolution of manganese oxide and ferric minerals (Froelich et al., 1979) and can 

occur at rates sufficient to generate a flux of dissolved Mn (Heggie et al., 1987; Johnson et 

al., 1992; Slomp et al., 1997; McManus et al., 2012) and Fe (Berelson et al., 2003; Elrod et 

al., 2004; Pakhomova et al., 2007; Severmann et al., 2010; Homoky et al., 2012) to overlying 

waters. This benthic flux of Fe may vary by up to four orders of magnitude between shelf 

regions (Homoky et al., 2013), yet flux constraints from diverse ocean margin settings are 

very limited. The highest fluxes have been attributed to low oxygen bottom waters and high 

organic carbon oxidation rates (Severmann et al., 2010; Homoky et al., 2012; Noffke et al., 

2012), while bio-irrigation of ferruginous sediments may enhance the efficacy of benthic 

exchange (Elrod et al., 2004; Severmann et al., 2010). There is additional evidence for high 

rates of Fe and Mn dissolution during the alteration of volcanic minerals (Homoky et al., 

2011), which is suggested to result from inorganically driven mineral dissolution (Radic et 

al., 2011; Homoky et al., 2011; 2013). However the mechanisms, distribution and 

significance of these diagenetic settings are rarely examined, despite being a potentially 

important source of dissolved Fe and Mn to bottom waters across ocean basins.  

High temperature vents have recently been recognised as an important source of 

particulate and bioavailable Fe to the deep ocean (Toner et al., 2012). There is now also 

mounting evidence that high-temperature vents are a major contributor to the dissolved Fe 

inventory of the deep ocean (e.g., Chu et al., 2006; Bennett et al., 2008; Tagliabue et al., 

2010; Wu et al., 2011; Nishioka et al., 2013; Hawkes et al., 2013; Saito et al., 2013).  Iron 

stabilisation and dispersion occurs through Fe-ligand complex and aggregate formation  

(Sander and Koschinsky, 2011; Hawkes et al., 2013) and the dispersion of pyrite 

nanoparticles over large distances in the deep ocean (Yücel et al., 2011). Modelling studies 

indicate the importance of hydrothermalism for dissolved Fe budgets in the Southern Ocean, 

where inclusion of hydrothermal inputs in the model is necessary to reproduce the observed 

water column Fe inventory (Tagliabue et al., 2014). Vent proximal hydrothermal sediments 

represent a hitherto unrecognized source of dissolved Fe in the world ocean.   

The Bransfield Strait is a volcanically active marginal basin that is actively rifting the 

Antarctic Peninsula from the South Shetland Islands. Geologically recent volcanic activity in 

the region is recorded as geochemically distinct metalliferous layers in the sediments of the 

Central Basin (Fabrés et al., 2000; Fretzdorff and Smellie, 2002). Furthermore, submarine 
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volcanic edifices, such as Hook Ridge, in the Central Basin are hydrothermally active 

(Dählmann et al., 2001), producing a range of hydrothermal precipitates (Petersen et al., 

2004) and elevated total and dissolved Fe and Mn in the water column (Klinkhammer et al., 

2001). Sediments in the deeper basin comprise laminated siliceous oozes and massive 

siliceous muds with low carbonate content (<1 %) and relatively high organic carbon content 

(~1 %) (Yoon et al., 1994), whereas sediments on the volcanic edifices are influenced by 

local hydrothermal activity (Petersen et al., 2004).  

This manuscript presents the results of a study designed to investigate the distribution 

of Fe and Mn in hydrothermal sediments and bottom waters over the Hook Ridge, a volcanic 

edifice located on the central rift axis at the eastern end of the central Bransfield Strait, which 

is covered by a layer of sediment to a depth of at least several metres.   Low-temperature 

hydrothermal fluids advect through sediments at the top of Hook Ridge at rates up to 40 cm 

yr
-1

, and abundant infaunal tube worms (Sclerolinum sp.) are observed at sites with sufficient 

H2S supply to support chemosynthetic symbionts (Sahling et al., 2005; Aquilina et al., 2013).  

We demonstrate that biological breach of the surface oxic layer within metalliferous 

sediments from Hook Ridge is the most likely source of Fe and Mn to the metal-enriched 

bottom waters in the Central Basin of the Bransfield Strait and thus to the southern Drake 

Passage.   

2. METHODS 

2.1. Sediment and pore water sampling  

Sediment samples were collected from the Central Basin of the Bransfield Strait 

during RRS James Cook expedition JC55 in January-February 2011 using a Bowers & 

Connelly Megacorer equipped with multiple polycarbonate core tubes (10 cm diameter). All 

necessary permits (numbers S5-4/2010) were obtained from the South Sandwich Islands 

Government, in accordance with the Antarctic Act 1994 and the Antarctic Regulations 1995.  

Sediment cores were collected from two adjacent stations (~1.3 km apart) near the top of 

Hook Ridge: cores MC7 and MC16 (previously described by Aquilina et al., 2013) at water 

depths of 1040 and 1174 m, respectively (Figure 1).  Background cores (MC1, MC2 and 

MC3) were collected from a non-hydrothermally influenced station on the Antarctic 

Peninsula shelf, about 20 km south of the Hook Ridge stations at an equivalent water depth, 

to provide a control site for this study (Figure 1; Aquilina et al., 2013). Cores (23-36 cm 
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long) with an undisturbed sediment-seawater interface were immediately capped and 

transferred to a temperature-controlled laboratory (4°C) for further processing. 

Shipboard determinations of dissolved oxygen content in the upper sediment were 

carried out on a dedicated core from each site as described by Homoky et al. (2011; 2013). A 

Unisense OX50 micro-sensor was calibrated between O2-saturated and anoxic seawater 

solutions with temperature and salinity equivalent to bottom waters.  Unisense micro-

profiling apparatus and SensorTrace PRO software resolved oxygen content at 100 and 200 

µm intervals down-core. Profiles penetrated the surface 1.6 to 3.9 cm of sediment cores but 

did not always reach the maximum penetration depth of oxygen due to restrictions of the 

sensor mounting.  Oxygen profiles were later surface-normalised to bottom water values 

determined from CTD casts. High-resolution profiles are presented in Figure 2, and cm-

averaged data are reported in data Table 2.  

For pore water extraction, sediment cores were immediately transferred to a glove bag 

under oxygen-free N2. The cores were manually extruded (at depth intervals of 1 or 2 cm) 

into a polycarbonate ring and sectioned using a PTFE sheet that was cleaned with deionised 

water (MilliQ, Millipore) between samples. Pore water was separated from the sediment 

matrix by centrifugation at 12,000 G at 4°C for 10 minutes under N2; the supernatant fluids 

were filtered under N2 through disposable 0.2 µm cellulose nitrate membrane syringe filters 

(Whatman, UK). Filtered pore waters were divided for nutrient, H2S, and metal analyses. Cl
-
, 

Br
-
, H2S, and NH4

+
 concentrations were determined on board, and subsamples were frozen at  

-20°C for subsequent nutrient analysis at the National Oceanography Centre Southampton 

(NOCS). Samples for dissolved metal analysis were acidified (pH <2) by adding 2 µl of 

concentrated HCl (UpA, Romil) per 1 ml of sample. Acidified pore water samples were 

stored refrigerated, and conjugate sediments were freeze dried on board and stored at room 

temperature pending analysis at the NOCS. 

 

2.2. Solid phase analysis 

Sub-samples (~ 100 mg) of the bulk, homogenised sediment were completely 

dissolved using a four stage digestion protocol: (1) aqua regia attack with reflux overnight at 

90
o
C; (2) a combined hydrofluoric and perchloric acid attack (ratio of 2:1.5) where the 
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samples were refluxed at 150
o
C overnight and dried down at 170

o
C, increasing to 190

o
C on 

the observation of white fumes; (3) a perchloric acid attack with immediate dry down at 

190
o
C; and (4) dissolution in 6M HCl at 60

o
C overnight.  Samples were finally diluted in 0.6 

M HCl for analysis. The acid digests were analysed for major and minor constituents, 

including Fe, Mn, Ti, Al and S by Inductively Coupled Plasma-Optical Emission 

Spectroscopy (ICP-OES). Calibration standards were matrix matched; we corrected for blank 

and instrument drift by including calibration blanks and multi-element standards for each 

batch of ten analyses. Certified sediment standards MAG-1 (United States Geological 

Survey) and GSMS-2 (Chinese Academy of Geological Sciences; Wang et al., 1998) were 

used to assess the accuracy of the method (Table 1). 

Six sub-samples from core MC16 were treated using a sequential extraction scheme to 

assess the distribution of Fe among different authigenic mineral phases that are abundant at 

this site (Poulton and Canfield, 2005). According to this technique, iron bound to carbonates, 

adsorbed, or exchangeable (CAE) is extracted with Na acetate at pH 4.5 for 48 h at 50 °C 

(FeCAE).  Iron present as crystalline oxides such as goethite and hematite is extracted with 

dithionite at pH 4.8 for 2 h at room temperature (Feox), and Fe present as magnetite is 

extracted with oxalate at pH 3.2 for 6 h at room temperature (Femag). Iron present as pyrite 

(Fepy) was measured separately by a chromous chloride extraction, following the method of 

Canfield et al. (1986). The highly reactive iron pool (FeHR) is defined as FeCAE + Feox + Femag 

+ Fepy.  The residual refractory Fe pool is estimated by difference between FeHR and the total 

Fe content.  

2.3. Total and organic carbon analysis  

The total carbon concentration was determined by coulometry from the CO2 released 

upon total combustion of the sediment, and the inorganic carbon content was determined 

from the CO2 released upon sample acidification. The organic carbon concentration was 

derived from the difference between the total carbon and inorganic carbon concentrations. 

Repeat analyses and comparison with certified standards indicates that the precision of this 

technique was ±0.1 wt. % (1SD). 

2.4. Pore water analysis 

  Acidified pore water samples were analysed by ICP-OES for a number of elements 
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including Fe and Mn. Samples were diluted 50-fold in 0.6 M HCl, and concentrations were 

determined by external calibration against matrix-matched standard solutions. Instrument 

drift and blank were monitored and corrected for by measuring standard solutions and 

calibration blanks for every batch of ten analyses. Instrument limits of detection (3SD of 

blank) were 23 nM and 1.8 nM for Fe and Mn, respectively, corresponding to method 

detection limits of 1.1 µM and 0.09 µM for Fe and Mn, respectively.  Accuracy was assessed 

by comparison to data generated by Inductively Coupled Plasma - Mass spectrometry (ICP-

MS): Fe concentrations measured by ICP-OES were always within 10% of those measured 

by ICP-MS, and Mn concentrations were always within 5%. Due to the large sample 

requirements for ICP-OES, replicate pore water samples were not analysed. 

Duplicate photometric nutrient analyses were made on samples which had been 

defrosted at 4
o
C for 12 hours and 72 hours using an autoanalyser (QuAAtro; Seal Analytical).  

Data presented are for the 12 hour defrost period and data were excluded if the 72 hour 

defrost measurement was significantly lower (see Table 2). Instrument precision, determined 

from five replicate measurements of the same sample, was better than 2%, and measured 

concentrations of an artificial seawater standard (CRM-SW; High-Purity Standards) were 

within 1% of the recommended values.  Hydrogen sulfide was fixed with zinc acetate and 

determined using standard photometric methods (Cline, 1969); the limit of detection (LOD) 

for this technique was ~1 µM H2S.  Concentrations of Cl
−
 and SO4

2−
 were determined at sea 

by ion chromatography (Dionex ICS2500), and the reproducibility for both was better than 

2%, as determined by replicate analyses of samples and IAPSO standard seawater (Ocean 

Scientific International Ltd, UK).  

2.5 Water column chemistry, TDFe and TDMn determination 

Hydrothermal anomalies were detected using a Seabird +911 conductivity, 

temperature, and depth (CTD) profiler system that was equipped with a light scattering 

sensor (LSS) and a bespoke Eh detector (Nakamura et al., 2000).  The Eh detector is sensitive 

to oxidation of nanomolar concentrations of reduced species on a platinum electrode, the 

potential of which is compared with an Ag/AgCl reference electrode in situ. Due to hysteresis 

and temperature/pH effects, the reading is not absolute, and so it is a sensitive detector of 

change in Eh rather than generating absolute values (Nakamura et al., 2000).  Thus, all data 

are presented as the rate of change of Eh with time during tow yo CTD deployments (dEh/dt), 

and we only plot negative values where dEh/dt is decreasing for clarity.  dEh/dt anomalies 
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indicate where fresh reduced species are being oxidised on the electrode. The CTD system 

was mounted on a titanium frame with 24 trace-metal-clean 10 litre OTE (Ocean Test 

Equipment) bottles, which were used to take seawater samples within the detected 

hydrothermal anomalies.  Samples for total dissolvable metals (TDMn, TDFe) were collected 

after several rinses in 500 ml LDPE bottles that had been soaked in concentrated 

hydrochloric (1 week) and nitric (1 week) acid before being thoroughly rinsed with deionised 

water and stored in 0.1% sub-boiled nitric acid for bottle conditioning.  The seawater samples 

were acidified to pH 1.9 with sub-boiled nitric acid (Optima, Fisher Scientific) and stored at 

room temperature for several months before analysis on shore.  Metals were pre-concentrated 

from 100 ml of sample by mixed ligand extraction (Bruland et al., 1979) and dilution in 2% 

sub-boiled nitric acid.  They were analysed using ICP-MS (Thermo Scientific X-series).  

Deionised water was used to determine the procedural blank (Mn = 0.08 nM, Fe = 0.62 nM), 

and the LOD (3σ of blank, n = 27) for Mn and Fe was 0.14 and 0.70 nM, respectively.  

Accuracy was assessed using certified seawater (NASS-5) and was within error of certified 

values (see Table 1). 

3. RESULTS 

3.1 Sediment composition and biogeochemical zonation 

Sediments collected from Hook Ridge and the background site are homogenous 

siliceous muds that grade from brown at the surface through to grey at depth, and the total 

carbon content (mean 0.7 ± 0.2 wt. %, 0-35 cmbsf, n = 26) is almost entirely dominated by 

organic rather than inorganic carbon (Figure 2).  There is a small surface enrichment in 

inorganic carbon at site MC16 and at the background site, which is a common feature of 

sediments in this region (Howe et al., 2007).  No surface enrichment in inorganic carbon is 

seen at site MC7.  The surface sediment at site MC16 is bright orange/red in colour, which is 

not observed at MC7.  There is a distinct black layer near the base (33 cmbsf) of core MC7 

that is inferred to be due to the presence of iron monosulfides (total S content = 1.2 wt% c.f. 

0.2% through the rest of the core). The redox state, biogeochemical zonation, and upward 

advection of low-temperature hydrothermal fluids through these sediments have been 

described previously (Aquilina et al., 2013) and are summarised in Fig. 2.  The hydrothermal 

fluids are inferred to be derived from phase separation of heated, modified seawater at depth 



  

 

 

9 

 

within the volcanic edifice which drives the observed advection through the sediments on 

Hook Ridge (Dahlmann et al., 2001).   

The upper few cm of the sediment is oxic, and nitrate penetrates several cmbsf at each 

site.  The oxygen penetration depth is inferred to be between 2-5 cm at each site based on 

oxygen microsensor deployments within retrieved cores on board ship and the pore water 

nitrate content (Fig. 2).  The manganous and ferruginous zones extend through the remaining 

core depth, with some sulfate reduction at depth at all sites.   There is a good correlation 

between SO4
2-

 and Cl
-
 content in the pore waters collected across all sites (Fig. 3a).  The main 

control on SO4
2- 

content is seawater mixing with low chlorinity, low sulfate hydrothermal 

fluid, which is advecting upwards from beneath the sediment pile at rates of 9 cm yr
-1

 (MC7) 

and 33 cm yr
-1

 (MC16; Aquilina et al., 2013).  Aquilina et al. (2013) estimated a 

hydrothermal end-member Cl
- 
content of 22 mM for these fluids and theoretical mixing for 

this fluid with seawater is shown in Fig. 3a.  Some samples from each site exhibit SO4
2-

 

values that are lower than the mixing line, which is attributed to in situ sulfate reduction (Fig. 

3a).  Elevated H2S (>10 cmbsf and up to 160 µM at 30-32 cmbsf) is only observed at site 

MC7 (Fig. 2).  H2S levels at site MC16 are <6 µM throughout the core, whereas H2S is not 

detectable in the background core (Table 2). 

An infaunal Annelid tubeworm, Sclerolinum sp.is abundant at site MC7; distributions 

of this species are controlled by the subseafloor supply of H2S, and they are abundant in 

sediments where H2S concentrations are ~150 µM at 10-20 cmbsf (Sahling et al., 2005).   

Sclerolinum sp. were abundant in the upper 15 cm of the sediment at MC7 but is not 

observed at site MC16 or the background sites MC2 and MC3 (A. Glover, pers. comm. 

2011).   

3.2. Fe and Mn distributions in Hook Ridge sediments 

The surface sediment on Hook Ridge site MC16 has a red-orange crust enriched in Fe 

and Mn, with high Fe/Ti and Mn/Ti ratios compared with recent volcanic material (Figure 2: 

Fe/Ti = 6.7-8.9 wt/wt and Mn/Ti = 0.1-0.17 wt/wt; Fretzdorff and Smellie, 2002), which is 

known to make up the majority of the lithogenic sediment component (Yoon et al., 1994).  

There is significant authigenic precipitation of Fe and Mn phases in the top ~5 cm at site 

MC16, seen as high Fe/Ti and Mn/Ti ratios in surface sediments, whereas surface authigenic 
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enrichment of Fe and Mn at site MC7 is not significantly different from the background site 

(Fig. 2).  Site MC7 has small subsurface Fe and Mn maxima at ~10 and 5 cmbsf, respectively 

(Table 2).   

3.2.1. Solid phase Fe speciation 

The relative abundance of various operationally defined reactive Fe phases were 

determined in six samples to further investigate the response of Fe to early diagenesis and to 

determine the nature of the oxidised crust material at MC16 (Figure 4; Table 3). As outlined 

in section 2.2, the highly reactive Fe pool (FeHR) consists of the carbonate, adsorbed, and 

exchangeable Fe (CAE), as well as oxide, magnetite, and pyrite phases, and can be compared 

to the total Fe content (FeT) (Figure 4). Highly reactive Fe phases are enriched in the upper 

oxic layer relative to the deeper layers (FeHR/FeT >0.5 at 0-1 cm, compared to FeHR/FeT ≈ 0.1 

below ~8 cmbsf). In the shallowest sample at 0-1 cm, the highly reactive pool comprises 

carbonate-associated and adsorbed/exchangeable Fe likely dominated by amorphous Fe, 

exchangeable Fe phases (FeCAE/FeHR ≈ 0.4), an easily reducible crystalline oxide (Feox/FeHR ≈ 

0.5), and magnetite (Femag/FeHR ≈ 0.1). The pyrite content shows an overall increase with 

depth but is nonetheless low in all of the measured samples (Fepy = 0.04 – 0.19 wt. %; 

Fepy/FeT < 0.03), consistent with very low pore water H2S content (<6 µM) at this site (Figure 

2; Aquilina et al., 2013). The residual Fe phase comprises unreactive lattice-bound Fe 

minerals and is relatively constant down core (~3.7 wt %; Table 3); this phase is inferred to 

be sourced from local volcanic inputs as observed in nearby basin sediments and ice rafted 

debris from the magmatic arc of the Bransfield Strait and the South Shetland Islands  

(Fretzdorff and Smellie, 2002). 

 

3.2.2. Pore water Fe and Mn distributions 

Cores from the hydrothermally influenced sites MC7 and MC16 have pore water Fe 

and Mn concentrations that are elevated to values 14-18 times higher than ferruginous pore 

waters in the background core, which are more typical of the deep shelf environment (up to 

31 µM; Figure 2).  The lowest pore water Fe and Mn concentrations in the Hook Ridge cores 

occur in the shallowest layers close to the sediment-seawater interface, consistent with 

removal by oxidative precipitation in the surface oxygenated layer. Distinct sub-surface 
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dissolved Mn maxima (75-95 µM) occur at 3-4 and 5-6 cm at sites MC16 and MC7, 

respectively, and broad subsurface Fe concentration maxima (100-500 µM) occur between 

depth intervals of 3-17 cm and 6-24 cm at sites MC16 and MC7, respectively. Iron and 

manganese contents are independent of Cl content (Fig. 3b and c), with the highest pore 

water metal contents present at mid-depth in the Hook Ridge cores. 

3.3.3 Water column Fe, Mn and Eh anomalies 

Total dissolvable Fe (TDFe) and Mn (TDMn) contents were determined in bottom 

waters at depths of 10 to 113 m above the seafloor on Hook Ridge above the MC7 core site. 

Total dissolvable metals—determined on unfiltered, acidified water samples—comprise truly 

dissolved, ligand bound, colloidal, and suspended leachable particulate phases. TDFe and 

TDMn concentrations above Hook Ridge are significantly elevated (up to 41 nM and 5.1 nM, 

respectively; Table 4).  These data match observations of widespread bottom water 

enrichment in TDFe and TDMn over the entire Hook Ridge by Klinkhammer et al. (2001), 

and their closest CTD cast is included for comparison in Table 4.  These authors 

demonstrated, by comparison with the truly dissolved metal determinations, that the majority 

of the TDFe was present as suspended particulate, amorphous oxyhydroxide species, whereas 

the majority of the TDMn was dissolved, which is consistent with the oxidation kinetics and 

relative solubilities of these elements in oxygenated seawater (von Langen et al., 1997; Liu 

and Millero, 2002).  

Typical Southern Ocean deep water values (outside the Bransfield Strait) for truly 

dissolved Fe and Mn are <1 nM (Middag et al., 2011), whereas total dissolvable metal values 

are always higher, and in the Bransfield Strait are ~1.7 nM Fe (Ardelan et al., 2010) and ~1 

nM Mn.  Deep water determinations of TDFe and truly dissolved Fe are not available at the 

background site but measurements made at equivalent depths (1070 m) SW of Deception 

Island (TDFe = 1.4 nM) and in deep water (2150 m) East of Bridgeman Island (1.86 nM) 

indicate that deep waters in the Central Bransfield Strait away from the Hook Ridge have 

typical low deep water values (Dulaiova et al., 2009). 

The four CTD tow yo surveys we conducted over Hook Ridge revealed consistent Eh 

anomalies at water depths between 900 – 1200 m over the MC7 core site and measurable 

anomalies dispersed over 3 km along Hook Ridge in a northeast direction (Figure 5).  No 
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anomalies were observed anywhere else in the Bransfield Strait other than in a localised area 

close to the seafloor on the Middle Sister volcanic edifice (Aquilina et al., 2013).  No 

temperature or particle anomalies were observed during any of our surveys, and the only 

evidence of discrete venting of fluids is from video survey of a single 1-2 m high edifice with 

shimmering water close to the MC7 site (Aquilina et al., 2013).  The paucity of evidence for 

hydrothermal flow is in contrast to surveys in the late 1990s, which revealed sediment 

temperatures of ~40
o
C in retrieved cores collected in this region (Dählmann et al., 2001).  

Decadal scale variability in hydrothermalism is not uncommon in dynamic volcanic 

environments (Von Damm et al., 1995; Yücel and Luther, 2013). 

4. DISCUSSION 

Sediment accumulation rates are high throughout the Bransfield Central Basin 

because of high seasonal productivity and significant supply of silty hemipelagic material. 

Linear sediment accumulation rates as high as 1.48 mm yr
-1

 have been estimated in the deep 

basin north of Hook Ridge (Howe et al., 2007). The Bransfield Strait is volcanically active, 

and the Deception Island volcano has generated a series of volcanic ash layers in the 

sedimentary record of the Central Basin (Fretzdorff and Smellie, 2002). We suggest that the 

Fe and Mn enrichment within the Hook Ridge cores studied here is related to episodic 

volcanic activity on Hook Ridge and further afield in the Bransfield Strait, depositing 

reactive volcanic material with a composition similar to that observed in ash layers in nearby 

sediments (Fretzdorff and Smellie, 2002). These sources are likely to be augmented by 

localised input of mineralised polymetallic sulfide chimney material and pyrite-marcasite 

crusts, which have been observed at the Hook Ridge (Petersen et al., 2004).  Organic carbon 

supply to the seafloor is also episodic due to the highly productive and short austral spring 

bloom at this latitude. 

Hook Ridge sediments have been studied previously to characterise the nature of the 

low-temperature hydrothermal fluid flow in this region (Dählmann et al., 2001; Sahling et al., 

2005; Aquilina et al., 2013).  Low chlorinity fluid is known to upwell at rates of 9-33 cm yr
-1

 

through Hook Ridge sediments (Aquilina et al., 2013).  Temperature anomalies of a few tens 

of degrees were observed in the sediments in the 1990s (Dählmann et al., 2001), but no 

temperature anomalies were observed during our extensive 2011 survey (Aquilina et al., 

2013). The hydrothermal fluid is depleted in chloride, which is attributed to phase separation 
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at depth.  The fluid is also depleted in major salinity components including Mg, SO4
2-

 and 

metals and is enriched in Si, NH4
+
, CH4, B, Ba, Li, and Ca (Aquilina et al., 2013).  Core 

MC16 has a more significant hydrothermal contribution with approximately 10% 

hydrothermal fluid at 20 cmbsf (Fig. 3a; Aquilina et al., 2013). Hydrothermal advection of 

low-temperature fluids, non-steady state redox cycling of metals in this dynamic 

environment, and faunal disturbance of surface sediments lead to significant fluxes of Fe and 

Mn to the overlying water column at the Hook Ridge as discussed below.   

4.1. Solid phase Fe and Mn distributions 

The Fe/Ti ratio and Mn/Ti ratio can be used to compare the sediment composition to 

the background detrital phases present in the Bransfield Strait and make comparisons of 

metal cycling at each site studied here (Figure 2).  During early diagenesis, reactive Fe and 

Mn phases repeatedly pass through a cycle of reductive dissolution, upward transport of Fe
2+

 

and Mn
2+

, and subsequent oxidation and precipitation in the surface oxygenated layer; this 

process is occurring at all of the sites studied but only leads to significant authigenic 

enrichment at site MC16.   Subsurface peaks in authigenic Fe and Mn in core MC7, identified 

by elevated Fe/Ti and Mn/Ti relative to the lithogenic component, are attributed to past input 

of reactive material and non-steady state sedimentary conditions. 

Further insight into the response of Fe to early diagenesis is provided by the 

distribution of authigenic Fe phases in core MC16. Highly reactive Fe phases dominate the 

total Fe content in the surface oxygenated layer (oxygen penetration depth at MC16 ~5 

cmbsf, FeHR/FeT >0.5 at 0-1 cm). The surface enrichment in Feox phases is consistent with the 

high Fe/Ti ratios observed at this site and indicates authigenic precipitation of Fe phases. 

Moreover, the high FeCAE values at the surface suggest that Fe precipitation occurs as a 

variety of amorphous and carbonate-bound phases in the upper sediment. The low pyrite 

content in this core is consistent with the detectable but low measured H2S concentrations (<6 

µM), and the overall down core increase in Fepy indicates some precipitation of FeS2 at depth.  

Magnetite forms under ferruginous conditions in marine sediments (Roh et al., 2003), 

and surface magnetite enrichment (Femag = 0.61 wt% at 0.5 cm and 0.83 wt% at 2.5 cm) is 

consistent with active formation of magnetite at the onset of ferruginous conditions. The 

surface enrichment in residual Fe content relative to deeper in the core at MC16 (Fig. 4) is 

interpreted as an increased supply of material to the upper core leading to non-steady state 
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conditions and input of a pool of reactive Fe and Mn phases that undergo reductive 

dissolution and contribute to the subsurface pore water maxima.  

4.2 Pore water Fe and Mn distributions 

In the Hook Ridge and background site sediments, it is likely that bioturbation and 

bioirrigation resupply oxidants such as dissolved oxygen and nitrate down to a few 

centimetres depth. The water column conditions above Hook Ridge that ultimately determine 

the patterns of sediment diagenesis, such as surface primary productivity and organic carbon 

supply to the seafloor, are similar to the nearby background site. Therefore, we interpret the 

overall high pore water concentrations of Fe and Mn at Hook Ridge (relative to the 

background sites) as resulting from localized non-steady state input of reactive volcanic and 

hydrothermal mineral material to the sediment surface, followed by subsequent mineral 

dissolution, redox mobilization, transport, and authigenic mineral formation.  The 

coincidence of the subsurface Mn and Fe pore water peaks with solid phase enrichments of 

these metals in core MC7 is consistent with intermittent input of reactive metal phases and 

subsequent remobilisation below the depth of oxygen penetration. 

Dissolved Fe and Mn generated from dissimilatory reduction reactions will be 

transported upwards from the pore water maxima by a number of processes, including 

molecular diffusion along the concentration gradient and advection associated with upward 

migration of the low-temperature hydrothermal fluid.   We cannot use classical diagenetic 

models to estimate Fe fluxes across the several cm-thick oxic surface sediment layer because 

we do not have any constraints on reaction or removal rates in this setting. If we consider 

only the kinetics of Fe(II) oxidation, then oxic surface sediment layers >2 cm thick are 

sufficient to trap significant diffusive Fe fluxes as authigenic oxyhydroxides (Homoky et al., 

2012).  However, we can estimate advective and diffusive fluxes within the sediment in the 

region directly below the oxic interface where Fe and Mn are inferred to be present as 

dissolved divalent species.  This corresponds to consideration of the pore water Fe (5.5-9 

cmbsf at MC7 and 2.5-5.5 cmbsf at MC16) and Mn (0.5-5.5 cmbsf at MC7 and 0.5-3.5 cmbsf 

at MC16) gradients in the upper sediment at each site (Table 2).  The effective diffusion 

coefficient in seawater for Fe and Mn at 0
o
C (Dsw) was estimated from the diffusion 

coefficient at infinite dilution at 0
o
C corrected for the viscosity of seawater (Li and Gregory, 

1974).  The bulk sediment diffusion coefficient (Ds) was then calculated using Eq 1, which 
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corrects for sediment tortuosity estimated from porosity measurements at the relevant core 

depths (φ = 0.83 for MC16 and 5.5-9 cmbsf in MC7, φ = 0.80 for 0.5-5.5 cmbsf at MC7) 

 

Eq. 1 

The calculated Ds values for Fe and Mn at each site are shown in Table 5.  The 

diffusive flux (J) of Fe and Mn is calculated using Eq. 2. 

 

Eq. 2 

Where dCi/dz is the concentration gradient of the element of interest (i).  Diffusive 

fluxes of Fe and Mn in cores MC7 and MC16 are shown in Table 5.  The maximum upward 

advective fluxes can be estimated from the pore water advection rate (Table 5, from Aquilina 

et al., 2013) and the maximum Fe and Mn content (Table 2).  These Fe and Mn fluxes are 

shown in Table 5.  The Peclet number (Pe) is the ratio of the rate of advection of a pore water 

species to the rate of diffusion.  Pe values for Fe and Mn in Hook Ridge sediments are shown 

in Table 5 and range from 0.43-0.71 at MC7 and 1.4-1.5 at MC16 demonstrating that 

advection marginally dominates Fe and Mn transport at MC16 while diffusion marginally 

dominates at MC7.   

The calculated fluxes of Fe into the surface oxic layer are at the high end of the range 

seen to escape from continental shelves (Severmann et al., 2010; Noffke et al., 2012; 

Homoky et al., 2013), and demonstrate the potential for these sediments to generate and 

sustain a significant dissolved fluxes of Fe to the overlying water column if the continuity of 

surface oxic layer were breached.  The fluxes calculated for Mn are high and are similar to 

those determined from volcanogenic sediments around Montserrat (Homoky et al., 2011). 

The kinetics of Mn oxidation in seawater are slow (Von Langen et al., 1997) and a 

component of this upward flux of dissolved Mn is likely to be transported to the overlying 

water column and contribute to the observed bottom water Mn enrichment (Klinkhammer et 

al., 2001). 
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4.3 Sedimentary Fe and Mn input to the water column 

The CTD survey of the Hook Ridge demonstrates that there is no apparent buoyant 

plume of reducing compounds at this volcanic edifice (Figure 5), and the Eh anomalies occur 

close to the top of Hook Ridge near site MC7.  This is most likely the result of low 

temperature (non-buoyant), inputs of reduced compounds.  The Eh detector may be activated 

by any reduced compound that can be oxidised on the surface of the electrode, and at Hook 

Ridge this is likely to be nanomolar levels of H2S, Mn
2+

 and Fe
2+

. 

The Fe/Mn ratios of dissolved and particulate pools in seawater can been used to 

identify the sources of these elements (Measures et al., 2012; Hawkes et al., 2014). We 

follow this approach to constrain the likely sources of Fe and Mn to bottom water above 

Hook Ridge. Bottom water Fe/Mn ratios of total dissolvable (TDFe /TDMn) pools range 

from 7 to 9 and fall within the range determined by Klinkhammer et al. (2001) closest to our 

sampling stations (TDFe /TDMn  = 4 to 12; Table 4). The pore water Fe/Mn ratio varies 

widely down core, and ratios similar to those in the overlying water column are observed at 

the depth of maximum dissolved Fe concentration and in surface sediment at the MC7 site 

(Figure 6). The pore water Fe/Mn ratio decreases towards the sediment surface (except at the 

MC7 site) because the rates of Fe oxidation and concomitant authigenic mineralisation 

exceed Mn oxidation rates in this zone, and the ratio decreases below the ferruginous zone 

due to FeS and FeS2 precipitation.  Solid phase Fe/Mn ratios are much higher (Fe/Mn = 28 to 

82; Figure 6). The coincidence of the TDFe/TDMn ratio of bottom water with that of the 

subsurface ferruginous pore water maximum is consistent with this being the source of total 

dissolvable metal to the bottom waters. Resuspension of sediments and associated upward 

mixing of fine grained particulate material, will produce a TDFe/TDMn pool with a very high 

Fe/Mn ratio, and inputs from Mn-rich pore fluids (low Fe/Mn) would have to be invoked to 

produce the observed Fe/Mn ratios over the Hook Ridge. 

 Hook Ridge sediments host abundant Sclerolinum sp. (up to 800 individuals 

m
-2

) in areas of measurable sulfide flux (Sahling et al., 2005).  This small infaunal annelid 

worm inhabits tubes 0.2-0.4 mm in diameter with a maximum length of 15 cm (Sahling et al., 

2005).  The adult species is inferred to host obligate sulfide oxidising symbionts within the 

trophosome (Hilario et al., 2011), and thus the species distribution is controlled by sulfide 

supply within the upper sediment layers (Sahling et al., 2005). Sclerolinum sp. are abundant 
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at site MC7 where H2S levels exceed 150 µM and there is active advection of hydrothermal 

fluid through the sediment pile (Aquilina et al., 2013).  These infaunal worms have no gut, 

mouth, or anus (Hilario et al., 2011), and when alive the symbionts actively uptake the sulfide 

present in the reduced fluids.  On death the worm tube will provide a conduit for the 

upwardly advecting fluids present in this region (Sahling et al., 2005; Aquilina et al., 2013). 

We hypothesise that a significant flux of reduced Fe(II) and Mn(II) can bypass surface 

reaction and enter bottom waters directly via Sclerolinum sp. breach of the surface oxic layer 

at sites with abundant infaunal worm populations—leading to the observed enrichment in 

TDFe and TDMn in this region (Figure 5).  The advection dominated pore water hydrology 

demonstrated by the Pe numbers close to unity suggest significant fluxes of Fe and Mn are 

possible. Our conceptual model of bioirrigation at this site is summarised in Figure 7. We 

propose that the abundant Sclerolinum sp. observed at site MC7 can lead to breach of the 

surface oxic layer and efflux to the overlying water (Figure 7). The main evidence for 

effective bypass of the surface sediment at site MC7 is the absence of any authigenic 

mineralisation at the sediment surface at this site (Fig. 2), the maximum in dEh/dt anomaly in 

the water directly overlying the sediment at this coring site (Figure 5), and the coincidence in 

Fe/Mn ratio between the pore water pool and the water column TDmetal pool (Fig. 6).  In the 

absence of any breach of the surface oxic layer by infaunal Sclerolinum sp., the dissolved Fe 

and a proportion of the Mn precipitates in the surface zone as authigenic minerals (Figure 4).  

This process is inferred to dominate at site MC16, where significant surface authigenic 

mineral enrichments are observed.   

Additionally, the Fe and Mn flux across the sediment-seawater interface can be 

augmented by sediment disturbance and resuspension processes, which would contribute by 

adding particle loading and releasing Fe- and Mn-enriched pore water to the benthic 

boundary layer. Indeed, resuspension of sediments is widely considered an important 

mechanism for Fe and Mn surface water enrichment above the shelf of the South Shetland 

Islands (e.g., Hatta et al., 2012; de Jong et al., 2012; Frants et al., 2013; Measures et al., 

2013). On the shallower shelf region, resuspension is affected by the high velocity bottom 

currents interacting with shelf bathymetry; in this deeper environment, resuspension is more 

likely driven by volcanic activity and associated slumping, turbidite inputs, and disturbance 

to seafloor sediments—and will occur less frequently. 
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Bottom water enrichments in TDFe and TDMn are likely to remain in the water 

column because enhanced mixing occurs within the benthic boundary layer up to 100 m 

above the seafloor (typical Kv = 1 x10
9
 m

2
 s

-1
; Chung and Kim, 1980), thus countering the 

theoretical settling velocity of nano-scale minerals in ocean water (~5 x10
-8

 m s
-1

; Yücel et 

al., 2011). We suggest the wide-scale Eh anomaly above site MC7 (Fig. 5) and widespread 

total dissolvable metal enrichment reported by Klinkhammer et al. (2001) results from a 

sediment-enhanced total dissolvable metal inventory, which is mixed through the deep 

Bransfield Strait.  Likely mechanisms to stabilise this hydrothermal Fe include retardation of 

oxidation kinetics (Hawkes et al., 2013), formation of pyrite nanoparticles (Yücel et al., 

2011) and organic complexation (Sander and Koschinsky, 2011).  

Net flow in the upper Bransfield Strait is towards the northeast, parallel to the shelf 

slope, and the surface mixed layer is as deep as 500 m in the austral winter (Zhou et al., 

2013).  The deep Central Basin waters are ventilated from the Weddell Sea and transported 

out of the Strait along the northeast shelf slope (Gordon et al., 2000).  Water that exits into 

the Drake Passage entrains water from the Bransfield Strait shelf slope and deeper Central 

Basin water that has acquired elevated TDFe and TDMn from Hook Ridge (Zhou et al., 

2013).  Thus, this source potentially fuels primary production in the Southern Ocean as this 

deep water mass is mixed upwards into the surface mixed layer and is made available for 

biological uptake (Tagliabue et al., 2010).  

5. CONCLUSIONS 

Intermittent input of reactive volcanic and hydrothermal material to Hook Ridge 

sediments leads to non-steady state conditions in Fe and Mn supply and reaction compared 

with background shelf sediments.  Sub-seafloor pore water Fe and Mn content is extremely 

high compared to that measured at the background shelf site because of enhanced dissolution 

from the reactive volcanic and hydrothermal phases. 

Fluxes to the surface sediment occur via molecular diffusion augmented by the net 

upward advection of the subsurface Fe and Mn maxima at this site (Peclet numbers range 

from 0.4 to 1.5), and authigenic mineralisation occurs unless there is a breach of the surface 

layer. The surface authigenic mineral assemblage is characteristic of Fe-rich crusts and 

deposits commonly associated with seafloor volcanism and continental rifting.  
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One mechanism for breaching the oxide trap is the infaunal lifestyle of the abundant 

Sclerolinum sp. in areas of ample H2S supply, such as site MC7.  Mapped water column 

dEh/dt distributions show that there are no buoyant seafloor venting features in this region. 

Instead, the Eh distribution suggests a bathymetry-hugging effluent, which is most likely 

sourced from sediments from the top of Hook Ridge.  Our analyses, building on previous 

work, demonstrate that worm abundance is a function of H2S supply to surface sediment and 

that there is a specialised community of Sclerolinum sp. worms at Hook Ridge inhabiting this 

low-temperature environment. We infer that breach of the surface oxidised layer of these 

hydrothermal sediments leads to a significant flux of TDFe and TDMn from the subseafloor 

ferruginous and manganous zones into the lower water column.  This input leads to 

significantly elevated TDFe and TDMn over the Hook Ridge, which will be dispersed 

through the Bransfield Strait and mixed into the Drake Passage, thereby supplying these 

metals to the upper mixed layer and associated phytoplankton communities (Frants et al., 

2013). Sediment-hosted rifted margins are relatively common but have been overlooked as a 

source of dissolved Fe and Mn to the oceans. 
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FIGURE CAPTIONS 

 

Figure 1. Regional map of the Antarctic Peninsula and Bransfield Strait (inset) and 

detailed bathymetry of the Central Basin within the Bransfield Strait showing coring sites 
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MC16 and MC7 on Hook Ridge and the background core site (MC1/MC2/MC3) on the 

Antarctic Peninsula shelf. All coring sites are at a depth of ~1100 m water depth.  This map is 

constructed using GEBCO bathymetry. 

Figure 2. Down-core schematic representation of biogeochemical zonation and the 

distribution of pore water and solid phase sediment compositions for (a) Hook Ridge site 

MC16, (b) Hook Ridge site MC7 and (c) the background shelf site MC1/2/3.  The 

biogeochemical zonation is determined from pore water distributions of terminal electron 

acceptors (O2, NO3
-
, Mn

2+
, Fe

2+
 and H2S) and previously published description of advection 

of hydrothermal fluids through the sediment (Aquilina et al., 2013).  Oxygen microsensor 

data are plotted at 100 µm depth intervals.  Shaded area in Mn/Ti and Fe/Ti plots is the range 

of values for ash layers in Bransfield Strait sediments (Fretzdorff and Smellie, 2002). 

Figure 3.  Plots of (a) pore water SO4
2-

 against Cl
-
 content for all cores, (b) pore water 

Mn content against Cl
-
 content and (c) pore water Fe content against Cl

-
 content.  The dashed 

line in (a) shows the composition of mixtures of seawater with the inferred low salinity 

hydrothermal end member advecting through Hook Ridge sediments (Aquilina et al., 2013).   

Figure 4. Solid-phase Fe distribution in Hook Ridge (site MC16) sediments. Highly 

reactive Fe (FeHR) is defined as the sum of Fe present as carbonate (FeCAE), oxide (Feox), 

magnetite (Femag) and pyrite (Fepy), following determination by the sequential extraction of 

Poulton and Canfield (2005) and the pyrite determination technique of Canfield et al. (1986).  

Residual Fe is calculated from the difference between total Fe determinations and the sum of 

the highly reactive Fe species. 

Figure 5. Profiles of total dissolvable metal content and reductive potential (Eh) over 

Hook Ridge.  (a) Total dissolvable iron (TDFe) and manganese (TDMn) at four depths at 

stations CTD192 (solid circles) and CTD420 (open circle) (stations marked in B), with 

typical background concentrations shown as dashed lines.  (b) Four sections of dEh/dt 

(change in reductive potential in mV/s) over Hook Ridge.  Warmer colours show more 

negative reductive potential and therefore higher concentrations of electron donor species 

such as Fe
2+

 or H2S.  All positive values (i.e. where the detector is returning to background 

reading) are shown as zero for clarity.  Coring sites MC7, MC16 and the two CTD profile 

stations are marked on the relevant sections. 
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Figure 6: Down core Fe/Mn molar ratios for pore fluid (closed symbols) and solid 

phase (open symbols) in Hook Ridge cores (MC7 and MC16).  Water column Fe/Mn ratios 

are shown for comparison along with the range of data measured in the Hook Ridge vicinity 

for previous studies (Station 39, Klinkhammer et al., 2001). 

Figure 7. Conceptual cartoon summarising the principal mechanisms for Fe reaction, 

transport and efflux from sediments on the Hook Ridge.  The presence of significant 

Sclerolinum sp. is inferred to enhance transport of pore waters through the oxic layer into 

bottom waters and thus lead to the observed enrichment of total dissolvable Fe and Mn.
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Table 1. Measured abundance of Fe, Mn and Ti in Certified Reference Materials. 

Cert. Ref. Material Fe Mn  Ti  

Consensus values 

MAG-1 4.76 ± 0.42  wt. % 760 ± 69.0  ppm 4500 ± 420  

ppm 

GSMS-2 4.15 ± 0.11  wt.% 4570 ± 232  ppm 3660 ±180  

ppm 

NASS-5 3.70 ± 0.63   nmol L-1 16.7 ± 1.04   nmol L-1 - 

Mean measured values
*
 

MAG-1; n = 3 4.85 ± 1.45  wt.% 764 ± 28.0  ppm 4220 ± 65.0  

ppm 

GSMS-2; n = 2 4.12 ± 0.28  wt.% 4580 ± 334  ppm 3460 ± 171  

ppm 

NASS-5; n = 7 3.74 ± 0.62  nmol L-1 16.4 ± 1.60  nmol L-1 - 

- Not determined 

*Mean of replicate number of samples (n), error quoted are ±1SD 
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Table 2. Pore water and solid-phase data collected from Bransfield Strait. 

S

ite 

 Pore 

water 

      Solid

-

phase 

    

Sed. 

dept

h 

Cl-
   SO4

2- H2S O2 NO3
- Fe Mn Fe Mn Ti Inorg

. C 

Org

. C 

cm mmo

l L-1 

mmo

l L-1 

µmo

l L-1 

µmo

l L-1 

µmo

l L-1 

µmo

l L-1 

µmo

l L-1 

wt. % wt. 

% 

wt. 

% 

wt. % wt. 

% 

Background 

MC1/2/

3 

0-1 544 28.0 - 185 51 bdl bdl 4.92 0.0

8 

0.4

7 

0.43 0.84 

MC1/2/

3 

1-2 - 28.8 - 68.1 33 4.02 0.06 4.82 0.0

8 

0.4

6 

- - 

MC1/2/

3 

2-3 - 28.3 - - 22 bdl bdl 5.02 0.0

8 

0.5

1 

0.06 0.92 

MC1/2/

3 

3-4 546 28.1 - - 5.2 bdl 1.47 4.85 0.0

7 

0.4

4 

- - 

MC1/2/

3 

4-5 545 28.1 - - 2.8 6.97 2.44 4.69 0.0

6 

0.4

5 

0.06 0.95 

MC1/2/

3 

5-6 550 28.2 - - 2.3 23.2 2.07 4.39 0.0

6 

0.4

6 

- - 

MC1/2/

3 

6-7 544 28.0 - - 2.0 31.8 2.31 4.55 0.0

7 

0.4

8 

0.07 0.91 

MC1/2/

3 

7-8 - - - - 
*

16.3 1.65 4.13 0.0

6 

0.4

5 

- - 

MC1/2/

3 

8-9 549 28.1 - - 2.3 bdl 1.42 4.24 0.0

7 

0.4

6 

0.08 0.90 

MC1/2/

3 

9-10 - - - - 2.1 3.36 1.46 4.23 0.0

6 

0.4

6 

- - 
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MC1/2/

3 

10-

12 

547 28.0 - - 3.0 15.5 1.59 4.43 0.0

7 

0.4

8 

0.17 0.79 

MC1/2/

3 

12-

14 

- - - - 1.0 2.49 1.73 4.31 0.0

6 

0.4

8 

- - 

MC1/2/

3 

14-

16 

548 27.9 - - 1.0 10.3 2.09 4.43 0.0

7 

0.5

0 

0.12 0.72 

MC1/2/

3 

16-

18 

- - - - 1.5 12.7 2.22 4.15 0.0

6 

0.4

6 

- - 

MC1/2/

3 

18-

20 

554 28.0 - - 6.0 bdl 2.32 4.49 0.0

7 

0.4

9 

0.07 0.80 

MC1/2/

3 

20-

22 

551 27.8 - - 0.7 3.76 2.61 4.18 0.0

6 

0.4

6 

- - 

MC1/2/

3 

22-

24 

584 27.7 - - 2.4 7.51 2.84 4.16 0.0

6 

0.4

5 

0.09 0.80 

MC1/2/

3 

24-

26 

548 27.3 - - 4.8 5.47 3.00 4.15 0.0

6 

0.4

5 

- - 

MC1/2/

3 

26-

28 

543 27.0 - - 1.6 4.15 3.22 3.94 0.0

6 

0.4

3 

0.09 0.86 

MC1/2/

3 

28-

30 

549 27.2 - - 3.7 2.56 3.28 - - - - - 

MC1/2/

3 

30-

32 

- 28.3 - - 3.5 3.73 2.91 - - - 0.10 0.83 

MC1/2/

3 

32-

33 

- - - - - 15.2 3.00 - - - - - 

MC1/2/

3 

33-

36 

- - - - - 11.7 3.45 - - - - - 

Hook Ridge 

MC7 0-1 546 28.1 bdl 175 70 1.11 0.21 5.19 0.1

0 

0.5

2 

- - 
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MC7 1-2 548 28.1 bdl 57.7 58 bdl 0.14 5.53 0.1

1 

0.5

5 

- - 

MC7 2-3 544 27.9 bdl 8.74 38 1.28 4.14 5.25 0.1

0 

0.5

4 

- - 

MC7 3-4 545 27.9 bdl - 23 bdl 21.4 5.49 0.1

2 

0.5

5 

0.02 0.83 

MC7 4-5 548 28.0 bdl - 
*

2.45 35.7 5.08 0.1

5 

0.5

1 

- - 

MC7 5-6 543 27.7 bdl - 9.4 3.10 77.5 5.67 0.1

2 

0.5

1 

0.01 0.87 

MC7 6-8 542 27.5 bdl - 1.2 144 58.4 5.22 0.0

8 

0.5

2 

- - 

MC7 8-10 537 27.1 bdl - 4.9 470 18.7 7.84 0.0

7 

0.4

9 

- - 

MC7 10-

12 

535 26.9 12 - 6.3 180 13.2 4.75 0.0

7 

0.5

1 

- - 

MC7 12-

14 

532 26.8 23 - 5.6 128 11.4 4.21 0.0

7 

0.5

7 

0.10 0.73 

MC7 14-

16 

534 26.9 25 - 
*

150 11.8 4.21 0.0

7 

0.5

6 

- - 

MC7 16-

18 

531 26.7 28 - 2.6 184 11.3 4.47 0.0

8 

0.5

7 

0.10 0.54 

MC7 18-

20 

531 26.8 61 - 4.2 171 8.81 5.69 0.0

7 

0.5

4 

- - 

MC7 20-

22 

535 27.0 91 - 8.6 111 8.38 4.61 0.0

7 

0.5

8 

0.03 0.73 

MC7 22-

24 

534 26.8 89 - 6.4 116 8.87 4.81 0.0

7 

0.6

0 

- - 

MC7 24-

26 

531 26.8 119 - 4.9 - - 3.91 0.0

7 

0.5

6 

0.03 0.77 
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MC7 26-

28 

533 26.9 81 - 1.1 11.4 8.07 4.65 0.0

8 

0.6

2 

- - 

MC7 28-

30 

529 26.7 63 - bdl 13.3 9.25 5.24 0.0

9 

0.7

0 

0.04 0.42 

MC7 30-

32 

527 26.6 160 - 6.3 5.76 6.58 3.23 0.0

6 

0.4

9 

- - 

MC7 32-

34 

524 26.5 122 - 7.5 6.02 7.07 3.94 0.0

6 

0.4

6 

0.03 0.67 

MC7 34-

36 

526 26.6 121 - 2.4 4.49 6.14 3.02 0.0

5 

0.4

6 

0.00 0.93 

MC16 0-1 527 26.7 - 157 36 1.07 3.24 11.1 0.3

9 

0.3

7 

- - 

MC16 1-2 526 26.4 - 86 21 3.57 44.4 11.7 0.2

1 

0.3

8 

- - 

MC16 2-3 514 25.8 2 39 14 13.3 68.1 10.6 0.2

3 

0.4

2 

0.56 0.25 

MC16 3-4 508 25.5 1 23 bdl 119 98.8 7.47 0.0

9 

0.4

7 

- - 

MC16 4-5 503 25.4 - - 1.7 389 55.8 5.28 0.0

9 

0.5

5 

0.09 0.73 

MC16 5-6 498 25.2 1 - bdl 565 44.7 4.70 0.0

8 

0.5

2 

- - 

MC16 6-7 502 25.4 - - bdl 551 36.9 4.64 0.0

8 

0.5

4 

- - 

MC16 7-8 498 25.2 1 - bdl 485 36.4 4.20 0.0

7 

0.5

4 

- - 

MC16 8-9 496 25.2 - - 0.1 497 40.1 4.25 0.0

8 

0.5

5 

0.05 0.66 

MC16 9-11 499 25.3 2 - bdl 502 37.1 4.12 0.0

7 

0.5

4 

- - 
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MC16 11-

13 

492 25.0 4 - - 410 36.2 3.93 0.0

7 

0.5

1 

0.05 0.64 

MC16 13-

15 

490 24.9 3 - bdl 251 35.2 4.09 0.0

7 

0.5

4 

- - 

MC16 15-

17 

501 25.5 - - 2.9 114 33.6 4.09 0.0

8 

0.5

4 

0.06 0.54 

MC16 17-

19 

488 24.8 6 - bdl 43.0 33.6 4.04 0.0

7 

0.5

7 

- - 

MC16 19-

21 

490 25.0 6 - bdl 21.1 33.0 4.13 0.0

8 

0.5

8 

-0.01 0.64 

MC16 21-

23 

488 24.9 3 - 0.5 13.5 31.8 4.11 0.0

7 

0.5

8 

- - 

  All background site data collected from MC2, except for pore water O2 (MC1), and Fe and Mn (MC3). 

  MC1   Latitude: 62.3842°S  Longitude: 57.2440°W, 1150 m water depth 

  MC2   Latitude: 62.3842°S  Longitude: 57.2444°W, 1150 m water depth 

  MC3   Latitude: 62.3842°S  Longitude: 57.2441°W; 1148 m water depth 

  MC7   Latitude: 62.1969°S  Longitude: 57.2975°W, 1174 m water depth 

  MC16 Latitdue: 62.1924°S  Longitude: 57.2784°W, 1040 m water depth 

  bdl      Below detection limit 

- Not determined 

*Data excluded - see methods section. 
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Table 3. Solid-phase Fe partitioning in Hook Ridge sediments (MC16). 

Sed. depth FeCAE FeOX FeMAG FePy FeRES 

cm wt. % wt. % wt. % wt. % wt. % 

0-1 2.59 2.60 0.61 0.04 5.27 

2-3 1.91 3.32 0.83 0.06 4.53 

6-7 0.16 0.17 0.46 0.19 3.65 

8-9 0.04 0.10 0.28 0.04 3.79 

13-15 0.00 0.08 0.23 0.05 3.72 

19-21 0.00 0.04 0.19 0.11 3.79 

FeCAE - Carbonate, adsorbed and exchangable 

FeOX - Reducible oxides 

FeMAG - Magnetite 

FePY - Pyrite 

FeRES – Residual 
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Table 4. Water column concentrations of TDFe and TDMn above Hook Ridge. 

Station Lat. Long. Depth Height 

a.s.f. 

TDFe TDMn Fe/Mn 

°S °W m m nmol L-1 nmol L-1 mol/mol 

192a 62.1186 57.1786 1156 10 39.23 5.12 7.66 

192a 62.1186 57.1786 1107 59 40.2 5.08 7.92 

192a 62.1186 57.1786 1053 113 29.98 3.26 9.2 

420
a
 62.1194 57.1747 1191 17 41.54 5.94 6.99 

39b 62.1159 57.1659 1045 - 66.6 5.58 11.93 

39b 62.1159 57.1659 1038 - 42.6 11.33 3.76 

39b 62.1159 57.1659 1038 - 49.6 5.27 9.41 

a.s.f.: Above seafloor 

- Not determined 

aThis study. 

bKlinkhammer et al. (2001). 
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Table 5. Diffusive and advective flux estimates within Hook Ridge sediments. 

 Ds Fe at 0oC Fe Ds Mn at 0oC Mn 

Diffusive flux x 10-6 cm2 s-1 mmol m-2 d-1 x 10-6 cm2 s-1 mmol m-2 d-1 

MC7 2.36 226 2.00 21.6 

MC16 2.36 311 2.11 48.3 

 v* Fe v* Mn 

Advective flux cm yr-1 mmol m-2 d-1 cm yr-1 mmol m-2 d-1 

MC7 9 96.1 9 15.4 

MC16 33 424 33 74.2 

Peclet number Pe(Fe) Pe(Mn)   

MC7 0.43 0.71   

MC16 1.4 1.5   

*from Aquilina et al. (2013) 


