
This is a repository copy of The AirTight Protocol for Mixed Criticality Wireless CPS.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/151895/

Version: Accepted Version

Article:

Burns, Alan orcid.org/0000-0001-5621-8816, Harbin, James Robert orcid.org/0000-0002-
6479-8600, Davis, Robert Ian orcid.org/0000-0002-5772-0928 et al. (3 more authors)
(2020) The AirTight Protocol for Mixed Criticality Wireless CPS. ACM Transactions on
Cyber-Physical Systems. 19. ISSN 2378-9638

https://doi.org/10.1145/3362987

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

The AirTight Protocol for Mixed Criticality Wireless CPS

J. HARBIN, A. BURNS, R.I. DAVIS, L.S. INDRUSIAK, I. BATE, and D. GRIFFIN, Department of

Computer Science, University of York, UK.

This paper describes the motivation, design, analysis and configuration of the criticality-aware multi-hop wire-

less communication protocol AirTight. Wireless communication has become a crucial part of the infrastructure

of many cyber-physical applications. Many of these applications are real-time and also mixed-criticality,

in that they have components/subsystems with different consequences of failure. Wireless communication

is inevitably subject to levels of external interference. In this paper we represent this interference using a

criticality-aware fault model; for each level of temporal interference in the fault model we guarantee the timing

behaviour of the protocol (i.e. we guarantee that packet deadlines are satisfied for certain levels of criticality).

Although a new protocol, AirTight is built upon existing standards such as IEEE 802.15.4. A prototype imple-

mentation and protocol-accurate simulator have been produced. This paper develops a series of schedulability

analysis techniques for single-channel and multichannel wireless Cyber-Physical Systems (CPS). Heuristics

are specified and evaluated as the starting point of design space exploration. Genetic algorithms are then

defined and evaluated to assess their performance in developing schedule tables incorporating multichannel

allocations in these systems.

CCS Concepts: • Computer systems organization → Embedded and cyber-physical systems; Real-

time systems; • Software and its engineering→ Software verification;

ACM Reference format:

J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin. 2019. The AirTight Protocol for Mixed

Criticality Wireless CPS. ACM Transactions on Cyber-Physical Systems 1, 1, Article 1 (January 2019), 28 pages.

DOI: 10.1145/3362987

1 INTRODUCTION

Many Cyber-Physical Systems (CPS) require some form of wireless communication and contain
components/subsystems of different levels of criticality. AirTight [8] is a wireless protocol that is
designed to meet the challenge of supporting mixed-criticality real-time traffic between computa-
tional nodes. In this paper we significantly expand the initial definition of AirTight [8] and consider
how a complete system can be specified via heuristics and the application of genetic algorithms.

Mixed-criticality scheduling analysis [6, 38] allows resources, such as processor time or commu-
nication bandwidth, to be managed in a way that enhances schedulability while ensuring that the
more critical/important work is protected. A focus on mixed criticality communication has led to
the definition of criticality-aware protocols and analysis for Network-on-Chip (NoC) [7, 23] and
CAN [5]; here we extend this work to cater for wireless communication. Unfortunately no existing
complete protocol gives the right level of support for event- and time-based communications that
have hard deadlines for packet delivery (see related work in Section 3). AirTight is a new protocol
that is built upon the physical and MAC layers of IEEE 802.15.4, a standard for wireless personal
area networks (WPANs), widely used as the basis of protocols such as ZigBee and WirelessHART.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM. XXXX-XXXX/2019/1-ART1 $15.00

DOI: 10.1145/3362987

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:2 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

With wireless communication, it is not realistic to only require that deadlines are met when
there are no faults. Rather, as in other considerations of fault tolerance, we require that certain
levels of performance are delivered when the likelihood and severity of fault(s) is bounded by what
is referred to as a fault model. We assume that the physical layer of the protocol incorporates the
usual methods of increasing resilience (for example spectrum spreading), and we therefore focus
on faults that manifest themselves as unacknowledged frame transmissions at the MAC layer.
In this paper the analysis developed for AirTight allows deadlines to be guaranteed at various

levels of service, corresponding to the severity of the fault model and the level of service required
by the criticality assigned to the packet being guaranteed. Different fault models can be applied;
the basic behaviour of AirTight is not dependent upon any particular fault model.
The first contribution of this paper is to present new analytical techniques for wireless Cyber-

Physical Systems. Firstly, the analysis in our previous AirTight paper [8] is extended to support
multi-hop flows by considering the summation of individual hop response times along the route.
This improved analysis is referred to in this work as Single Channel Analysis (SCA). This removes
the requirement for each hop of a multi-hop route to meet a particular individual deadline, as long
as their final summation meets the flow deadline.
The second contribution is to consider multichannel scheduling. Multiple orthogonal channels

allowing parallel non-interfering transmissions are a standard feature of the underlying physical
layers upon which wireless CPS are built. This imposes a wider design space, such as determining
an allocation of particular transmissions to channels. Also additional constraints are imposed,
such as the requirement that peer nodes be correctly tuned to the necessary channel to hear their
intended transmitter. In this paper multichannel analysis (MCA) is developed based on the concept
of affinity sets [19] and the associated scheduling equations are presented and explained.

Our third contribution is to specify and evaluate optimisation processes based upon Genetic Al-
gorithms for the construction of AirTight scheduling tables. We consider the automated generation
of slot tables for synthetically generated networks, using genetic algorithm optimisation to refine a
population originally generated using simple slot table heuristics.

In the next section we discuss the requirements for which AirTight was defined. We also give an
overview of the protocol and define some necessary terms. In Section 3 we consider related work.
Section 4 describes the fault model employed. Section 5 completes the description of the AirTight
protocol, and its analysis is given in Sections 6 and 7. We specify heuristics as a starting point for
the exploration of the design space of CPSs in Section 8, and give a numerical example in Section 9.
We then define a genetic algorithm search process in Section 10. Experimental evaluation of the
heuristics and GA search process is performed in Section 11. Finally conclusions are provided in
Section 12.

2 REQUIREMENTS FOR, AND OVERVIEW OF, AIRTIGHT

We assume that the system consists of a distributed set of nodes that can each perform any
combination of executing tasks, producing/consuming data from sensors/tasks, and relaying data
packets to and from other nodes. There may be a range of communication media within the Cyber-
Physical System; here we focus on the use of wireless technology. The required wireless network
protocol is assumed to have the following properties (most of them inherited from the parent
standard IEEE 802.15.4):

• Peer-to-peer packet-switching communication between tasks/nodes is the normal use of
the network. Packets are sent from a node to the next as one or more frames. Each successful
frame transmission is always acknowledged by the receiver through the transmission of a
short ACK frame.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:3

• Multi-hop routing is required due to the limited transmission range of each node, meaning
that some packets are unable to be sent directly to their destination.

• Buffers exist on each node to store frames in transit (the size of the buffers required on
each node can be determined during the off-line scheduling process).

• The nodes have their clocks synchronised so the maximum drift between any two clocks is
at most Terror ≪ S (the slot length).

• Nodes have line power, so energy efficiency/battery life is not a limiting concern.
• Multiple frequency bands (channels) are available in IEEE 802.15.4 (up to 16 in the 2.4GHz
band) and the standard is designed so that interference from one channel to another is
negligible. A node can only use one channel at a time.

• Node communications are represented by two graphs: the communications graph and the
interference graph:
– The communications graph C: if there is an edge from A → B in C, then the two

nodes can communicate directly. This is required to be a symmetric graph due to the
necessity for an acknowledgement to be returned to the sender, so A → B implies
B → A.

– The interference graph I: if there is an edge from A → B in I, then a transmission from
A will prevent B from successfully receiving a frame from any node (other than A and
then only if A → B is in C).

It is assumed that the packets to be communicated have tight timing constraints (i.e. deadlines).
We also require that the system supports applications of different levels of criticality. We will, in
this paper, assume just two criticality levels, high (HI) and low (LO). The main distinction between
these levels is the number and duration of faults that they must tolerate (see Section 4).
The distributed system consists of N nodes (n0 to nN−1). Each node generates a set of packet

flows (or flows), τi , defined by:

• Period, Ti ; the minimum time between packets.
• Capacity, Ci ; the packet’s maximum size.
• Criticality Level, Li ; a static parameter1 of the flow.
• Deadline, Di ; assumed initially to be no greater than Ti .
• Destination, Desi ; packets are assumed to be peer-to-peer so there is a single destination
for each flow.

• Source, Srci ; there is an implicit source for each flow.

As part of the configuration of local scheduling, unique local priorities are assigned to each of the
flows transmitted by a node. This is done for every node.
We do not assume that the flows are purely periodic. This implies that there must be some

form of run-time scheduling. However, we do not expect that centralised access control, or token
passing protocols can deliver the performance required by a modern Cyber-Physical System. Any
protocol that requires significant overhead to agree on the next packet to send is unlikely to meet
strict timing requirements. The alternative of a fully table-driven time-triggered protocol lacks the
flexibility needed to support event-triggered and adaptive applications.
AirTight is designed to balance efficiency and flexibility. At the system level, its media access

control is table-driven, but at the node level it uses criticality-aware priority-based frame scheduling.
The protocol is based on slot tables which define a repeating cycle of activities for each node –
either transmission or reception on a given channel, or null meaning no usage.

1The criticality level of a flow is inherited from the criticality level of the application(s) that it forms part of. This is a static

property, not to be confused with the criticality mode of a node or the system, which is a dynamic property.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:4 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

At each node, local scheduling decisions are made to manage the use of the node’s slot allocation.
We employ a fixed-priority scheme (although this is not fundamental to AirTight). A set of FIFO
queues (buffers), one per priority level, are used to hold the frames that need to be transmitted. Each
flow has a unique priority at each node and hence a specific buffer that it can use. The frames from
the same flow are stored in the buffer in FIFO order. Whenever the node has a transmission slot
available, it transmits the first frame in the highest priority non-empty buffer. If an ACK is received,
then the frame is removed from the buffer; if no ACK is received, then the frame remains in the
buffer and is a candidate for re-transmission when the next available slot for that node becomes
available.

AirTight is thus a two level protocol. A collection of slot tables (one per node) defines the usage
of the wireless media. Each slot in a table defines whether the node can transmit in that slot (and
on which channel if more than one channel is used), or whether it should listen in that slot (and
on which channel), or whether it is off-duty. The collection of tables reflects the properties of the
communication and interference graphs. So, within the same channel, two nodes may, in effect, be
allocated the same slot if the interference graph fulfils specific properties with regards to senders
and receivers [18].

The fundamental time unit of AirTight is the duration (S) of a slot – the time it takes to commu-
nicate a single frame of data and receive an ACK for that frame. All parameters of the application,
the communication media and the environment (e.g. Ti , Ci , Di , table length, fault models, etc.) are
expressed as an integer number of slot times. We assume that clock drift is insignificant when
compare to the slot duration. (In our prototype implementation [8] a slot length of 10ms has been
achieved. This is the slot length in most WirelessHART implementations [17]).
Note that in contrast to mixed-criticality scheduling of processors where each task can have

a LO-criticality and a (larger) HI-criticality worst-case execution time estimate, in the context
of AirTight, we assume that a packet’s maximum size Ci is known and fixed. Mixed criticality
behaviour of the system is instead due to variability in the level of interference that must be
tolerated by packet flows of different criticality levels, and hence the differing number of extra
transmission slots that may be required to ensure correct transmission under an appropriate fault
model - see Section 4.

2.1 Example of the Basic AirTight Protocol

Below, we provide a simple example, to illustrate the basics of the AirTight protocol. (The protocol
is described in detail in Section 5). Figure 1 shows three nodes n0, n1, and n2 and their connectivity.

Fig. 1. Diagram of the nodes and communicating packet flows (basic example)

Also illustrated are five packet flows labeled τ1 to τ4 and τ7 (this is part of a larger example used
later). For simplicity, here we assume that there is only one channel available for transmissions
and that all packets consist of one frame, except τ1 which has two frames. Further, we assume that
on node n1, flow τ2 has higher priority than τ1 and on node n2, flow τ4 has higher priority than

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:5

τ3. Finally, the same slot table is used by all three nodes and consists of a repeating cycle {1, 0, 2}.
Flows τ1, τ3, τ4 and τ7 are initially ready to be transmitted and flow τ2 becomes ready after 3 slot
times (t = 3).
The AirTight protocol results in the following dynamic schedule. (Note "X" indicates a failed

transmission, and "-" no transmission).

Time slot 0 1 2 3 4 5 6 7 8 9

Node eligable to transmit 1 0 2 1 0 2 1 0 2 1

Flow transmitted 1 7 4 X - 3 2 - - 1

At time t = 0, node n1 is permitted to transmit, with the other two nodes listening on the
channel. On node n1, only flow τ1 is ready for transmission, its first frame is therefore sent and
acknowledged. At time t = 1, node n0 is permitted to transmit, it sends the only frame of τ7. At
time t = 2, node n2 is permitted to transmit. On this node, two flows are ready for transmission,
τ4 and τ3, as τ4 has higher priority its single frame is transmitted. At time t = 3 node n1 is again
permitted to transmit. Now both flows τ1 (1 frame remaining) and τ2 are ready. As flow τ2 has the
higher priority, its frame is transmitted. However, this transmission is not acknowledged due to
some assumed interference. The frame of τ2 therefore remains in the buffer, to be re-transmitted
later. The dynamic schedule from this point is as follows. At time t = 4, there is no transmission,
since node n0 has this transmission slot but no ready packets. At time t = 5, node n2 transmits
the single frame of packet flow τ3. At time t = 6, node n1 succeeds in transmitting the frame of τ2,
leaving only the second frame of τ1, which it is able to transmit at time t = 9.

This simple example serves to illustrate the two level protocol of AirTight: static global scheduling
(use of slot tables) and dynamic local scheduling, based on priorities. This enables the protocol
to react to higher priority flows becoming ready, and re-transmission requirements caused by
interference.

3 RELATED WORK

In this section we consider wireless protocols that have been designed to give time predictable
behaviour, and protocols that take into account mixed criticality. For information on more general
purpose protocols the interested reader may follow the links from [31].

3.1 General Real-Time Protocols

WirelessHART [17] was developed as an extension of the HART protocol [16] designed for wired
communications in industrial automation and process control scenarios. The WirelessHART proto-
col extensions were intended to allow mobile devices to attain the capabilities of HART networks.
WirelessHART employs a time-division multiple access (TDMA) based MAC layer, with multi-hop
routes centrally planned and allocated by a sink which operates as a gateway between the wireless
network and external access network. A similar TDMA approach is advocated by FireFly [29, 32].

One notable aspect of WirelessHART is the avoidance of spatial reuse throughout the network,
with only one simultaneous transmission allowed at any time. Although frequency reuse is permitted
through the simultaneous use of multiple channels, simultaneous transmissions on any one channel
are disallowed [35]. This avoids the problem of detecting interference patterns and allows the
network to be stabilised, but limits scalability and restricts the viable range of the network. In
addition, alternative routes are required in WirelessHART for redundant data transmission. By
comparison, our current work focuses entirely on avoiding faults via temporal retransmission;

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:6 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

that is, holding transmissions within buffers and making repeated transmissions of any failed
transmission after a delay.

Saifullah [33] presents several approaches for scheduling of multi-hop routing-centric wireless
networks built upon WirelessHART. Saifullah establishes that overall the wireless scheduling
problem is NP-hard, and then provides heuristics to simplify the scheduling decisions. The first
of these, Conflict-Free Least-Laxity First (CLLF) [35] schedules according to the laxity of the
transmissions, that is the time remaining until their deadlines. However, it guides the scheduling
process by focusing on conflicts, scheduling first in hotspot areas in which conflicts are likely
(e.g. around the sink and congested frequently used devices). Flow set evaluation results show that
CLLF is several orders of magnitude faster in determining schedulability than exhaustive search,
although run time does increase with increased routing diversity. Saifullah et al. also present an
end-to-end delay analysis [36] for an application with fixed priority flows, and extend this work to
the case of graph routing in [34].
A very different approach for broadcast wireless communication is provided via Glossy [14],

which attempts to simultaneously achieve time synchronisation as well as error tolerant commu-
nication via collaborative flooding of data packets. If time synchronisation is sufficiently tight,
multiple nodes are able to receive packets and rebroadcast them simultaneously. Glossy therefore
uses spatial diversity to compensate for any localised faults; it has been successfully used as a
primitive layer to build network services such as LWB [13] and Blink [44].

3.2 Mixed Criticality Protocols and Applications

Several papers have focused on mixed criticality in WSNs and CPS. Alemayehu et al. [1] consider
mixed-criticality used for video transmission in a multimedia sensor network. The paper uses
different criticality levels for different resolution video frames, to provide graceful degradation under
errors by providing a low resolution alternative. They focus on changing criticality in response
to a reduction in overall network bandwidth, and can discard data in response to criticality and
priority to improve overall performance. An interesting contrast to our work is that the paper did
not use TDMA and a pure wireless topology but a hybrid CSMA/CA over 802.11, yet still achieved
end-to-end response time reductions.

Shen et al. [37] present the PriorityMAC protocol. The paper uses a concept of priority levels, but
their definition overlaps with criticality – the importance of reliable delivery from the application
perspective. It defines four traffic types and requires windows at the start of every application
message for the two highest priority traffic levels to reserve capacity. Nodes must listen to these
windows and detect them as clear if they wish to transmit the two highest priority traffic types. This
allows dynamic adjustments in priority by allowing nodes with higher priority traffic to use slots
previously assigned to other nodes, but at the cost of channel capacity reductions. Moreover, their
analysis and evaluation only considers average-case latencies and does not provide a worst-case
guarantee.

Jin et al. [24] considers delay analysis for WirelessHART networks supporting mixed criticality
under fixed priorities. An interesting aspect of their model is that they assume a global network
criticality level, and a broadcast mechanism to signal a criticality mode change similar to WPMC-
FLOOD [23] within a network-on-chip (NoC). However, they do not specify any low level router
behaviour to achieve the change, merely assuming the change takes a maximum defined time. It
does not appear to use criticality monotonic arbitration, instead assuming that the LO-criticality
flows are dropped rather than buffered, due to the low memory capacity of the devices.
StealRM [25] is an alternative protocol which provides redundancy and is employed for HI-

criticality flows, with the transmissions of HI-criticality packets along two duplicate routes to

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:7

protect against interference or damage to one copy. The algorithm centrally establishes schedules
for both the LO and HI-criticality flows, but allows nodes to make the distributed decisions for
transmission of a HI-criticality flow in place of a LO-criticality flow when required. This is done by
means of a clear channel assessment performed by the radio before making every LO-criticality
transmission, which ensures that interference is avoided. Therefore, LO-criticality packets may
be destroyed when HI-criticality packets require the resource, referred to as slot stealing. This
approach is similar to the approach of Shen et al. with PriorityMAC [37], since it allows nodes to
request additional capacity dynamically.

Dimopoulos et al. [12] consider mixed criticality systems, specifically for smart building infras-
tructure. One interesting aspect they mention is the potential use of SDRs (software defined radios)
in the implementation of CPS, in order to present more adaptability in the behaviour and protocols
employed. In nodes with more resources than conventional WSN motes this may be a viable
solution. They also consider mixed criticality in wireless systems to require levels of autonomous
management in different regions, contrasting with the implicitly centralised management and
routing-centric designs required for WirelessHART (and assumed in the extensive scheduling
studies performed in [33]).

Xia [41] extends the slot stealing mechanism as a way to handle additional emergency traffic in
industrial CPS, potentially including alternative routes for emergency traffic. Although, since it
does not inform the entire network of the emergency via a functional mode change, it cannot free
up additional processing to handle the fault/emergency by stopping unnecessary LO-criticality
tasks. Xia [40] considers EDF scheduling in a mixed criticality CPS, incorporating different routing
strategies per criticality level. Graph routing is activated on a mode change in order to enhance the
path diversity, and analytical techniques consider the demand bounds at intermediate nodes. The
evaluation considers schedulability parameters but does not consider the impact of temporal faults
upon the system. Recently, multiple-input multiple-output (MIMO) antenna technology has also
been applied in mixed-criticality CPS [39] in order to provide additional capacity for HI-criticality
flows at bottlenecks. Although shown to improve schedulability performance, the requirements for
some heterogeneous hardware (MIMO) nodes would be an additional installation cost.

3.3 Comparison of AirTight To Reviewed Protocols

Compared to the WirelessHART protocol [17], AirTight provides simplicity under increased fault
conditions due to the ability for the nodes to make entirely local decisions, without requiring global
scheduling of all network flow transmissions. The same applies to scheduling techniques such as
Saifullah’s CLLF [35] which are built upon WirelessHART. Protocols built upon Glossy [14], such as
LWB [13] and Blink [44] require very tight time synchronization for physical layer transmissions
to the level of inserting NOPs in system code to ensure correct timing, adding implementation
difficulties compared to AirTight. Also, since every packet has to be flooded through the network,
utilisation would be much lower than in a highly peer-to-peer system incorporating AirTight.

Jin [24] incorporates a network broadcast criticality change, which requires a global change. Other
works [25, 37] require specific radio hardware support, in the form of channel clear assessment or
listening detection in particular slots. Compared to the units evaluated in [12], AirTight does not
require software defined radios and is capable of functioning upon commodity devices with fixed
radio transceivers. Xia et al. [41] does not incorporate mode changes so cannot free up additional
processing to handle the fault situation by stopping LO transmissions; [40] considers schedulability
parameters but does not consider the impact of long-lasting temporal faults. Compared to [39]
which requires MIMO antennas and [12] which relies upon SDRs, AirTight is capable of functioning
upon existing commodity devices with fixed radio transceivers.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:8 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

In summary, by comparison with the above approaches, AirTight is the first mixed criticality
wireless protocol that incorporates completely local scheduling decisions, and which delivers
time-bounded performance that is sensitive to whatever fault model is deemed appropriate for the
system under consideration.

4 FAULT MODEL

A wireless network, even in a protected domain, will suffer interference that will result in some
packets being corrupted. A predictable network can only be derived and analysed if there is a bound
on the level of interference suffered by each node in the system. This bound is usually expressed
as a fault model. If the level of interference is no worse than that implied by the fault model then
temporal guarantees can be made. The quality of the fault model can itself be modelled using a
probabilistic estimate of the likelihood of exceeding a given fault severity during, say, an hour of
operation [9]. With mixed-criticality systems the required quality will vary with criticality; so for a
LO-criticality transmission the fault model may bound the number of deadlines misses to be no
more than 1 in 1000, for a HI-criticality transmission this number may be extended to 1 in 1,000,000.
In general a node will suffer interference from a number of different sources. Each source will

produce a pattern of interference. Moreover, in a geographically distributed network each node
will experience different levels of interference from different sources. To model a particular node’s
(nk) level of interference we need a fault load function, Fk . This function, when given an interval of
duration t , will return the level of interference assumed by the fault model for this node at criticality
level, L; i.e. the function is defined as Fk (L, t). As the basic time unit in the analysis model is the
duration, S , of a single slot, both t and Fk are represented as an integer multiple of S .

We note that the fault model is always assumed to be more severe for HI-criticality packets than
for LO-criticality packets. Hence we require that:

∀t,∀nk : Fk (HI , t) ≥ Fk (LO, t)

The function Fk can be decomposed into a combination of fault load functions (fk) for each of
thew sources of interference:

Fk (L, t) = GL{ f
1
k
(L, t), f 2

k
(L, t), . . . , f w

k
(L, t)}

where GL is a criticality-specific application-defined means of combining the different sources of
interference.
So, for example, for LO-criticality packets GLO may be defined to be the MAX operator, and

hence at this criticality level the node is assumed to only suffer interference from one source at a
time – but the maximum possible single level is used to define Fk . For HI-criticality packetsGHI

may be defined to be the SUM operator, and hence all sources are assumed to contribute their
maximum levels – a situation that may be impossible as interference is not cumulative.

The most straightforward way of representing a single source of interference fk is via a duration
and a frequency. So a single corruption could cause a blackout for duration b(L), with the minimum
time between faults:T b (L). Note these parameters are functions of criticality level and are measured
in units of S . A single source of interference could, for instance, be modelled by b(LO) = 4,
T b (LO) = 100, b(HI) = 6,T b (HI) = 80: for LO-criticality transmissions this interference is assumed
to last up to 4 units of time and repeat every 100 units; but for HI-criticality transmissions a more
severe view is taken, the blackout can last 6 units of time and repeat every 80 units.
For an actual deployment of AirTight various signal processing schemes (for example Fourier

Analysis) are available that allow the overall interference experienced at a node to be decomposed
into component sources defined by these two parameters. These are statistical methods and hence

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:9

the parameters derived are a functions of the level of confidence required. Higher levels of criticality
will require higher levels of confidence and hence more conservative parameters will be obtained.

In this paper we do not address further this analysis of actual interference, rather we assume
that by the time an implementation requires analysis the necessary fault load functions have been
obtained. All that the analysis requires is that Fk (L, t) is defined for all time intervals t , all nodes
nk and for each criticality level in the system, and that Fk (L, t) is a monotonically non-decreasing
function of t . (Note that the analysis for the AirTight protocol developed in this paper (Sections 6
and 7) considers dual-criticality systems). In future, it could potentially be extended to multiple
criticality levels, as has been done with the analysis for tasks [15].

5 THE AIRTIGHT PROTOCOL

In general a wireless network can be characterised by a number of properties:

• Single-hop or multi-hop (i.e. is the communications graph fully connected?).
• Single-domain or multi-domain (i.e. is the interference graph fully connected?).
• Single-channel or multichannel.

In this first journal paper on AirTight we focus on multi-hop, single-domain, multichannel
networks. The extension to multi-domain does not introduce any fundamental issues, but requires
a more complicated construction for the slot tables.
The protocol has three main phases:

(1) The construction of the slot table. This is derived from the requirements of all the packet
flows on all the nodes. The table is communicated to all nodes during system initialisation.

(2) The run-time local scheduling of flows. Each node will, independently, make use of the
slots allocated to it. This will take account of priorities, errors, and re-transmissions.

(3) An adaptive system will, over time, look to modify the slot table – for example there could
be free slots that nodes compete for, or unused slots that are reallocated, or potentially the
complete table could change due to a system mode change.

Analysis is used on each node to check for packet flow schedulability. This requires knowledge
of the slot table; however, the structure of the slot table is itself a function of the schedulability of
all nodes. In Section 6 we first derive analysis, assuming a known slot table, and then show how the
slot table can be constructed with a simple heuristic. We then make use of a search-based algorithm
(a GA) to: construct (near-optimal) slot table layouts, cover all required routing decisions, and cater
for multichannel systems. The third phase (adaptation) is left for future work.
A schedulable AirTight network behaves as follows:

• If there are no faults experienced by the system then all packets will meet their deadlines.
• If the faults experienced by the system are no worse than that implied by the LO-criticality
fault model then all packets will meet their deadlines.

• If the faults experienced by the system are no worse than that implied by the HI-criticality
fault model then all HI-criticality packets will meet their deadlines.

• If the faults experienced by the system are worse than that implied by the HI-criticality
fault model then each node will apply a best-effort approach. The faults are deemed to be
beyond the level at which guarantees can be provided.

Following the behaviour of mixed criticality task scheduling [4], three modes of operation are
defined. Each node is, independently, in either LO-criticality, HI-criticality or Best-Effort mode. In
the LO-criticality mode all of the node’s packets are sent and they are delivered by their deadlines.
If the LO-criticality fault model is exceeded, then the node moves to HI-criticality mode. In this
mode, LO-criticality packets are abandoned (or moved to local background priority); however,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:10 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

all HI-criticality packets are still delivered by their deadlines. If the HI-criticality fault model is
exceeded, then the node moves to Best-Effort mode. At any time that the output buffers of the
node are empty the node can return to LO-criticality mode. (This is equivalent to the return to
LO-criticality mode on an idle-tick in task scheduling).
It is possible to consider an alternative approach for HI criticality traffic in addition to best

effort. In this alternative model, a given number of faults upon particular ultra-HI criticality traffic
flows can trigger a network-wide change to UH (ultra-HI criticality mode). In this approach, an
alternative delivery protocol is used for this UH data to give an increased probability of delivery to
the destination. This idea has been explored in [21] but is not considered further in this paper.
Usually with distributed systems it is assumed that the packets inherit significant release jitter

from the variability in the completion times of the tasks that generate them. This jitter can then be
factored into the response-time analysis [3]. Here we apply a protocol that eliminates release jitter
while not extending the worst-case overall (i.e. end-to-end) response-time [11]. Release jitter is
eliminated by the following protocol which is applied to all frames of all packets. For clarity we
describe its application to a single frame f of a single packet flow τi . The time q when frame f of
the first packet of packet flow τi is received by node nk is recorded. When at a later time t the node
receives frame f of the next packet of the same packet flow, then: (i) if t ≥ q +Ti , then the frame
is immediately eligible for onward transmission by nk and q is set to t ; (ii) if t < q +Ti , then the
frame is held (i.e. delayed) and is not eligible for further transmission along its route by nk until
time q +Ti is reached. At that point q is set to q +Ti . The same process is repeated for subsequent
frames of all packets of that flow. This protocol also applies to frames “received” by the source node
from the sending task, with the initial maximum jitter due to the sending task (i.e. its worst-case
response time) deducted from the end-to-end deadline. The effect of the protocol is to eliminate the
interference effects of jitter, and thereby improve schedulability.

6 BASIC AIRTIGHT ANALYSIS FOR ONE CHANNEL

The starting point for the analysis of a complete system is a set of single-hop packet flows with
Destination and Source nodes directly linked in the communications graph. In other words, all rout-
ing requirements have been met by the addition of intermediate flows passing between connected
nodes (we revisit this issue in Section 8.3). We also assume local priorities have been assigned to all
packet flows (an optimal assignment can be obtained by applying Audsley’s algorithm [2]).

For any particular phase of the analysis the slot table is known. It has duration TSL (measured in
slots). Each node has one or more slots within the table; let this allocation be represented by ai . We
have (note, as before, N is the number of nodes in the system):

∑

j ∈N

aj = TSL

The required analysis is obtained from adapting three schemes/notions:

• Modelling the impact of faults by a fault load function(Fk (L, t)), which gives the maximum
number of failed slots for criticality level L in time t for node nk .

• Basic fixed-priority analysis for mixed-criticality task scheduling – using the AMC ap-
proach [4].

• Modelling the supply function (S(X)), the maximum time which the slot table can take to
supply X slots to the node.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:11

6.1 AMC Analysis for AirTight

AMC analysis was originally devised for a collection of tasks and exploits the fact that the load
on the system is lighter during the LO-criticality mode, and the fact that LO-criticality tasks are
dropped once the system transitions to the HI-criticality mode. With task scheduling the load is
less in the LO-criticality mode as tasks have smaller worst-case execution time estimates in that
mode [38]. When analysing packet flows, this is not the case (although the model could easily be
extended to include this). Rather it is the fault load that is lower in the LO-criticality mode. This
allows us to define response-time analysis for each packet flow, τi on node nk . In the LO-criticality
mode:

Ri (LO) = Ci + Fk (LO,Ri (LO)) +
∑

j ∈hp(i)

⌈

Ri (LO)

Tj

⌉

Cj (1)

where hp(i) is the set of all local (i.e. also transmitted by node nk on part of their route) flows with
priority higher than that of τi . In the HI-criticality mode:

Ri (HI) = Ci + Fk (HI ,Ri (HI)) +
∑

τj ∈hpH(i)

⌈

Ri (HI)

Tj

⌉

Cj +

∑

τk ∈hpL(i)

⌈

Ri (LO)

Tk

⌉

Ck (2)

where hpH(i) is the set of local HI-criticality packet flows with priority higher than that of flow
τi ; and hpL(i) is the set of local LO-criticality packet flows with priority higher than that of flow
τi . Note Ri (HI) is only defined for packet flows of HI-criticality. (Note all quantities in the above
equations, including Ri (LO) and Ri (HI) are measured in units of the slot length S).

6.2 Sufficient Analysis for AirTight

The above analysis assumes that the required resources (the slots of the slot table) are always
available for the node under investigation. This is a valid assumption for tasks executing on a single
processor, since the processor is always available. With AirTight the slots are not as readily available.
Indeed, as few as one in TSL slots may be all that is available for the node under investigation.
We therefore represent the availability of slots as a supply function: Sk (X), defined as follows:

Given a slot table of length TSL indicating the node that is permitted to transmit in each slot, the
supply function Sk (X) for node nk returns the maximum number of slots that could elapse in a
repeating static cycle of the table (starting at any point) before X slots allocated to node nk occur,
and hence node nk could transmit X frames.
Equation (1) is now split into two parts:

X = Ci + Fk (LO, Sk (X)) +
∑

j ∈hp(i)

⌈

Sk (X)

Tj

⌉

Cj (3)

with

Ri (LO) = Sk (X) (4)

The equations are solved via fixed point iteration in the usual way, starting with an initial value of
X of Ci . Iteration continues until either the value of X converges, in which case Ri (LO) gives the
worse-case response-time, or Ri (LO) exceeds Di , in which case the packet flow is not schedulable.

Similarly equation (2) becomes

X = Ci + Fk (HI , Sk (X)) +
∑

τj ∈hpH(i)

⌈

Sk (X)

Tj

⌉

Cj +

∑

τk ∈hpL(i)

⌈

Ri (LO)

Tk

⌉

Ck (5)

with

Ri (HI) = Sk (X) (6)

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:12 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

An example of the application of this analysis is given in Section 9.
A number of different formulas for Sk (X) are possible. When node nk has only one slot in the

table (ak = 1) then it must be assumed that the worst-case possible phasing between this slot and
the packet flow under consideration occurs. This implies that a frame of the packet flow arrives just
after the slot has been assigned to a lower priority packet, or indeed a null or background packet is
assigned. Hence there is a ‘blocking time’ of 1 slot. Minor clock drift is also accommodated within
this blocking term.

If no internal structure for the table is known then a sufficient model for the supply function is

Sk (X) = 1 +

⌈

X

ak

⌉

TSL (7)

So, for example, if the table is of length of six and a node has one slot within the table, then the
supply function returns 7 for S(1), 13 for S(2) and so on. Similarly if the node has two slots in the
table, then its conservative supply function is S(1) = S(2) = 7, S(3) = S(4) = 13. If the internal
structure of the table is known, then a less pessimistic estimate is possible. For example, the two
slots cannot both come at the end of the table, so an improvement is S(1) = 6, S(2) = 7, S(3) = 12,
S(4) = 13 etc. Moreover, if the table is known to have allocated the two slots to positions (1 and 4,
or 2 and 5, or 3 and 6) then the supply function becomes: S(1) = 4, S(2) = 7, S(3) = 10 etc. This
latter supply function dominates the more pessimistic ones, since it provides the same number of
available slots in the same or less time, for any number of required slots.

7 MULTICHANNEL ANALYSIS

7.1 Affinity Set Basics and Structure

In a single-channel, single-domain network in which the interference graph is complete, only
one transmission node can be active during a slot. Increasing the number of available channels
clearly increases the capacity of the network, by permitting simultaneous transmissions using the
additional channels available. There is another mechanism by which adding multiple channels can
improve the overall performance of the algorithm, however. This involves partitioning the flows
within the flowset so that each is restricted to transmission on a specific subset of channels. This
approach is inspired by [19]. An affinity set is a mapping which given a flow τi returns a non-empty
set of channels Q which the flow may use.
The key benefit of this is to reduce the size of the sets of higher priority flows using the same

channels that need to be considered during analysis. However, the multichannel affinity sets may
in some cases reduce performance. If a node has to send its transmitted flows on different channels,
then it will require additional transmission slots on these channels (together with its receivers
having to listen on these channels). Therefore, we will consider the optimisation of these affinity
sets during our experimental work.

This concept of channel affinity also involves modifying the AirTight protocol so its transmission
decisions for a slot assigned to a given channel Y, choose the highest priority flow that has affinity
for channel Y. Of course, when a node makes a mode change, only a HI criticality packet with
suitable affinity can be considered for transmission.

7.2 Multichannel Analysis (MCA)

In the multichannel analysis, fixed point iteration is used in a similar way to the SCA case. A key
difference in considering the slot allocations is that in MCA a distinct supply function SMk (X ,Q) is
used. This supply function is defined as follows. Given a slot table of length TSL indicating the sets
of node-channel pairs that are permitted to transmit in each slot, the supply function SMk (X ,Q)

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:13

for node nk , and a set of channels Q, returns the maximum number of slots that could elapse in
a repeating static cycle of the table (starting at any point) before X slots occur where node nk is
permitted to transmit on some channel in Q.

A further difference is that only the higher priority flows that share a common channel in their
affinity sets need be considered. Therefore, modified sets hpA, hpAH and hpAL are used in the
analysis: hpA(i) is the set of all local flows with priority higher than that of τi sharing any common
channel in their affinity sets with flow τi . hpAH(i) is the set of local HI-criticality flows with
priority higher than that of flow τi that share any common channel in their affinity sets with flow
τi . Similarly, hpAL(i) is the set of local LO-criticality flows with priority higher than that of flow
τi that share any common channel in their affinity sets with flow τi . The response-time analysis
becomes:

X = Ci + Fk (LO, SMk (X ,Q)) +
∑

j ∈hpA(i)

⌈

SMk (X ,Q)

Tj

⌉

Cj (8)

Ri (LO) = SMk (X ,Q) (9)

X = Ci + Fk (HI , SMk (X ,Q)) +
∑

τj ∈hpAH(i)

⌈

SMk (X ,Q)

Tj

⌉

Cj

+

∑

τk ∈hpAL(i)

⌈

Ri (LO)

Tk

⌉

Ck

(10)

Ri (HI) = SMk (X ,Q) (11)

8 HEURISTICS FOR CPS SCENARIO SETUP

In order to design a system using the AirTight protocol, it is necessary to specify slot tables, channel
affinity sets (if using a multichannel network) and routes (if needing multihop routing). Although
this design space can be explored with search and optimisation techniques, it is better to have
constructive heuristics as a starting point. In this section we first define simple heuristics for
generating slot tables, multichannel affinity sets, and routes in a flowset incorporating multihop
routing. This step is later used as a basis for evolutionary enhancement during a GA search process.

8.1 Slot Table Heuristic

Consider a flowset with multihop routes defined for its flows. The route for flow τi consists of
H hops from nsrc to ndes , with ndes being the destination node that only receives and does not
re-transmit packets of the flow. The utilisation load that flow τi imposes on all of its transmitting
nodes n ∈ {nsrc , . . .ndes } can be determined from the flow’s capacity (maximum packet size) and
its period.

Ui =
Ci

Ti
(12)

The total utilisation for nodenk , (UTk) is the sum of all the utilisation values for all flows transmitted
via the node.

Now it is necessary to convertUTk into a slot count which can be used in the analytical techniques,
i.e. substituted into the value of ak in equation (7). This is done by rank-ordering all non-zero node
utilisations and converting them into an integer slot number via the following relationship. The
highest 25% of utilisations receive 3 slots, the next 25% receive 2 slots and final 50% receive 1 slot.
Of course, nodes that do not engage in transmission (those with zero utilisations) receive zero slots.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:14 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

8.2 Affinity Sets Heuristic

When performing multichannel scheduling, a simple approach for specifying initial channel affinity
sets (as specified in Section 7.1) is to assign each flow to a fixed channel throughout its route.
This assignment is performed in a round-robin fashion. For example, flow τi is assigned affinity to
channel i mod K , where K is the number of channels. For example, with 3 channels, flows 1, 4, and
7 are assigned to channel 1. This serves to separate out the interference sets and thereby reduce the
interference between flows.

8.3 Routing Heuristic

In general routing must be addressed as part of the mapping of an application to the available
hardware, since it influences how intermediate nodes need to forward traffic, and therefore the loads
experienced at these nodes. Several approaches have been used for route determination in systems
derived from WirelessHART, which generally incorporate graph routing to/from a sink node; for
example Han graph routing [20], Zhang graph routing [42], and Q-learning route construction [26].
Here we, initially take a simpler approach, since we are assuming a static industrial application with
peer to peer traffic, in which the topology remains constant and routes can be pre-programmed. In
Section 10 we describe in detail the use of a genetic algorithm to construct the tables. However,
unlike in the Q-learning routing scheme just mentioned, the GA approach is applied prior to
deployment, and only the best multihop route for each flow resulting from the optimisation process
is used in the deployed system The interactions which come as a result of varying the routing and
scheduling will be considered in future work. Hence:

(1) The shortest route between Source and Destination is chosen (an arbitrary choice is made
if there is more than one route with the same length).

(2) The deadline of the packet is partitioned between each hop of the route, and local priorities
are assigned to the flows transmitted by each node by applying Audsley’s algorithm [2].

(3) Response times are computed for each hop and summed to obtain the end-to-end response-
time that is then compared with the end-to-end deadline.

(4) Initially the packet deadline is divided equally between the hops, if any hop is unschedulable
(i.e.Ri > Di) its deadline is increased (toRi , but not exceedingTi) (while others are decreased
when Ri < Di).

Clearly this is a non-optimal approach, although the heuristic does account for ‘busy’ nodes by
allowing them to have more slots in the table.

9 ILLUSTRATIVE EXAMPLE

9.1 An Avionics Use-case

A good example of the potential deployment of a wireless communication media is within an aircraft
engine for the purposes of active health monitoring [43]. Figure 2 shows the communication graph
for a 25-node wireless network inspired by a possible engine monitoring system [8]; it is clear that
the topology of this example is a 5-node subsystem repeated 5 times. In total this network has 55
packet flows mapped to the 25 nodes; 25 of these flows are defined to be of HI-criticality and 30 of
LO-criticality.

We will use the 5-node subsystem to illustrate the analysis associated with AirTight. The 5-node
subsystem was also used in a prototype implementation of the protocol. This implementation2

2The prototype implementation is based on IEEE 802.15.4-compliant node hardware (the Iris XM-2110 nodes [22] man-

ufactured by Crossbow Technology) and the TinyOS version 2 operating system [27] as obtained from the development

repository in July 2017 [10].

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:15

is described in detail in a conference paper [8] and therefore is not covered here. In addition to
the implementation, a protocol-accurate simulator for AirTight has been produced and validated
against the prototype.

0

1

2

3

4

10

11

12

13

14

15

17

16

19

18

5

8

9

6

7

20

24

23

22

21

Fig. 2. Communication Graph of a 25 node Health Monitoring System

9.2 Example of Analysis

In this section we give an overview of single-channel slot table construction for an example 5
node network. Later we extend it to the multichannel case, showing how the provision of a second
channel can provide more capacity without increasing the table size.

9.2.1 Single Channel Analysis. In this section we analyse a simple five node example which is
motivated by the subsystem identified in the avionics use case (as illustrated in Figure 2). The 5
nodes (which are the central group in Figure 2) are depicted in Figure 3 and form a star topology:
n1,n2 ↔ n0 ↔ n3,n4. So n0 can communicate directly with all nodes; but n1, for example, can only
communicate with n2 and n0, and not with n3 or n4. However, we assume conservatively that the
interference graph of the system is complete such that all nodes may potentially interfere with
each other, even though they may be out of range for intelligible communication. Therefore, we
do not allow node n1 to transmit to n2 at the same time as n3 transmits to n4. We use periods and
deadlines that are 1/5 of those of the larger example as this allows the tightness of the analysis to
be illustrated. It also means that the full 25 node example is schedulable if this subsystem is.

Fig. 3. Diagram of the nodes and communicating packet flows

There are nine end-to-end packet flows of two criticality types. Two packet flows must be routed
through n0; these are accommodated by simply, for this example of the analysis, dividing the
deadline in two. This results in the eleven packet flows that are given in Table 1 (where P is the
local priority, with 1 being the highest).

For this simple example we assume a single source of interference; the fault model is defined as
follows:

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:16 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

(1) For b = 5 and T b
= 100, all deadlines must be met

(2) For b = 15 and T b
= 100, the deadlines of all HI-criticality flows must be met

(3) For b > 15 and any T b
< 100, best effort – send HI-criticality packets when possible,

perhaps using a secondary parameter (importance) to order local access.

If we start with a table of length 5 with all nodes having a single slot then n1, n2, n3, and n4
are schedulable, but n0 is not; with n0 having two slots then all nodes are schedulable. Worst-case
response times are given in Table 1. These invariably occur following faults of the worst possible
magnitude (as defined by the fault model). Note that no assumptions have been made about where
in the table any node’s particular slot(s) are actually positioned. We use a simple formulation of the
analysis, the supply function for all nodes apart from n0 is 1 in 7, 2 in 13, 3 in 19 etc. For n0 it is 2 in
7, 4 in 13, 6 in 19, 8 in 25, 10 in 31 and 12 in 37.

To give an example of the analysis; consider τ5 which is the lowest priority packet flow on node
n0. It is a HI-criticality flow but first its worst-case response-time in the LO-criticality mode must
be computed. Using equations (3) and (4) we initially have X = 3 and R5(LO) = 13. Now equation
(3) becomes:

X = 3 + F5(LO, 13) +

⌈

13

26

⌉

1 +

⌈

13

64

⌉

1

F5(LO, 13) is 2, since one table is corrupted within which there are two slots, hence X becomes 7
and R5(LO) = 25. At this point, iteration has converged, as the value of X does not change when 13
is replaced by 25.
To compute R5(HI) we can start with a value of 25 (since Ri (HI) ≥ Ri (LO)) so equation (5)

becomes:

X = 3 + F5(HI , 25) +

⌈

25

26

⌉

1 +

⌈

25

64

⌉

1

The fault load, F5(HI , 25) is now 6 (three tables corrupted), so X = 11 and R5(HI) = 37. Another
iteration gives:

X = 3 + F5(HI , 37) +

⌈

25

26

⌉

1 +

⌈

37

64

⌉

1

which is again 11; so R5(HI) has converged to 37. Note the interval for interference from the
LO-criticality packet flow τ6 is capped at 25, which is the response-time of τ5 in LO-criticality mode
(i.e. R5(LO)).

(Note that a blackout of length 5 (b = 5) can only affect one table of length 5. This is because
the table is a simple repeating static cycle that can be assumed to start at any point, including
synchronised with the blackout).

9.2.2 Example of Table Construction for Multichannel Network. In a multichannel network it is
possible to reduce the length of the slot table, by making use of parallelism in the network. For
simplicity we will here concentrate on the introduction of a second channel to the example network.
If the network was as shown in Figure 3 then there would be no benefit from multiple channels,
since the network is sufficiently small that no two nodes can be transmitting simultaneously. For
example, nodes 1 and 3 cannot be allocated slots on channels 0 and 1 simultaneously, since node 0
may be required to receive a packet from both simultaneously.
However, consider the modified scenario depicted in Figure 4. Two new nodes n5 and n6 are

introduced into the network, together with flows τ12 and τ13. If nodes n5 and n6 only require a single
transmission slot, it is possible to allocate node n5’s transmission slot on the alternate channel in
parallel with the slot of node n1 on the original channel. Similarly, node n6 can be allocated on
the alternate channel in parallel with node n2 on the original channel. Therefore the table length

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:17

Name From To Criticality T D C P R

τ1 n1 n2 LO 30 30 2 2 25
τ2 n1 n0 LO 26 13 1 1 13

τ3 n2 n0 HI 40 40 1 2 31
τ4 n2 n0 LO 13 13 1 1 13

τ5 n0 n4 HI 38 38 3 3 37
τ6 n0 n4 LO 26 13 1 1 13
τ7 n0 n1 HI 64 32 1 2 31

τ8 n3 n4 LO 32 14 1 1 13
τ9 n3 n0 HI 64 32 1 2 31
τ10 n3 n0 LO 32 32 2 3 31

τ11 n4 n0 HI 40 40 2 1 31

Table 1. Example, Parameters and Response-Time Calculations For Single-Channel (SCA)

Fig. 4. Diagram of the nodes and communicating packet flows (multichannel alternative scenario)

would not increase over the original scenario depicted in Figure 3.

10 CONFIGURATION OPTIMISATION USING A GENETIC ALGORITHM

In Section 8, heuristics have been defined for a number of factors in the design space, specifically the
slot table size, channel affinity sets, and routing from source to destination for multi-hop data. These
provide a basic intuitive approach for configuring a system, but may not be optimal for a particular
configuration. However, the schedulability problem is complex with a number of interactions.
For example, adding additional transmission slots increases capacity available for a particular
node, which could make a particular flow schedulable, but could also impact schedulability for
another flow by lengthening the table. In addition, multichannel usage or modifications to channel
affinity sets may reduce interference from higher priority flows, but it could also require additional
transmitting and listening slots on another channel. These non-obvious interactions motivate the
use of a search-based optimisation framework for configuration of the AirTight protocol.

10.1 Genetic Algorithm Structure

We follow a schedulability-driven GA model that has been successfully used in the optimisation
of networked real-time systems [30]. In our implementation, the GA operates by evolving all
population of chromosomes encoding slot table allocations. The initial population is created using
the heuristics described in Section 8. Selected chromosomes are then modified via the operations
of mutation and crossover in order to produce variations in the slot allocations. The quality of

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:18 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

n0 n1 n2 n3 n4 n5
0 3 2 0 1 1

Fig. 5. An example slot allocation count vector for a 6 node network with the single-channel GA. Elements

give the number of slots for the node indicated in the header.

these allocations is evaluated by testing the schedulability according to the flowset equations in
Sections 6.2 and 7. If the candidate solutions improve the fitness, then they are integrated into
the population. The chromosomes with the lowest fitness are removed from the population. This
process is repeatedly for a number of “generations" that results in a progressive refinement of
the population towards successful schedulability. It terminates successfully when the population
includes at least one slot allocation that enables full end-to-end schedulability of the flowset, or
unsuccessfully if such allocation is not found over a customisable limit to the number of generations.

10.2 Single-Channel GA

Within a single channel AirTight system, the only consideration for a node is whether it is currently
transmitting upon a particular slot. Given the assumption that all nodes are line powered, it is not
necessary to optimise duty cycles and idle states, and thus all nodes which are not transmitting can
be assumed to be listening on the single channel.
The GA for the single-channel system takes as input the number of network nodes and the

flowset (which also informs it of which nodes are sink-only and which are active). We chose to
structure chromosomes as an integer vector (commonly used in many GA implementations [28]),
where each element represents the number of slots in the table allocated to a particular node
(depicted in Figure 5). Sink nodes do not need any transmission slots, therefore it can be assumed
that the allocation vector element representing them is zero. The table size can be computed as the
sum of the allocation vector, and the kth element gives the value of ak to be used in the analysis.

The initial population is as defined by the heuristic slot table generator but with some additional
random variation in order to provide diversity in the population. Every node that is needed for
transmission has the number of slots required by the heuristic plus an additional randomly selected
number (which may be zero).

Evolution across generations is a result of mutation and crossover operations, which are random
in nature. The mutation operation consists of varying elements of the slot allocation vector, by
incrementing or decrementing the slot allocation. It is obviously unnecessary for nodes that only
receive to have a transmission slot, and therefore vector values for these nodes remain at zero
during mutation. During a mutation allocationMC nodes with transmission flows are chosen to be
altered, and for each node, the number of slots allocated is incremented by {−MV ,−MV + 1 . . .MV }.
One-point crossover is performed upon two chromosomes G1 and G2 of length N by selecting

a random crossover point in the table structure v and creating a new vector by combining the
elements from [G1[0]...G1[v]] and [G2[v + 1]...G2[N]].
The fitness function is computed by executing the analysis as described in Section 6.2, and

returning a number indicating the proportion of flows which are schedulable within the flowset,
for each level of criticality.

10.3 Multichannel GA

For a multichannel AirTight system, the scheduling and optimisation problem is more complex
due to the requirement to consider receiver listening and correct channel tuning. A receiving node
must be tuned correctly to the channel that its intended transmitter is using in the appropriate slot,

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:19

Channel n0 n1 n2 n3 n4 n5
C0 0 1 0 0 1 0

C1 0 1 2 0 0 1

C2 0 0 0 0 1 1

Fig. 6. An example slot allocation count vector for a 6-node network for the multichannel GA on 3 channels.

Elements give the number of slots on the channel for the node indicated in the header

otherwise the transmission will fail. Therefore, the optimisation process must solve at least two
partially independent but connected problems: firstly, determining the allocation vectors giving
the number of slots to use on each channel, and secondly determining an optimal packing of these
slots to meet channel activity constraints (for example that a node can only perform one action at a
time). There is a third dependent problem, which is determining the affinity sets for the nodes. It is
also possible for the GA to determine the affinity sets, which may improve performance either by
reducing interference or enabling a smaller table size. This will be explored within the experimental
section.

Like its single-channel counterpart, the GA for the multichannel system also takes as input the
number of network nodes and the flowset. In addition, it requires channel affinity sets, which define
the channels which a flow can use for transmission (as described in Section 7.1). From those inputs,
it then builds active node peer sets (i.e. the sets of all receivers for a given transmitter node).

To accommodate the multichannel alocation problem, chromosomes are structured as a 2D array
representing the number of slots allocated to the nodes over each specific channel, as illustrated in
Figure 6. Rows represent the channels and the value in each column represents the number of slots
allocated. Therefore, a particular element gives the integer count of all slots on the given channel
for a particular node. Mutation is performed in a similar manner to the single channel GA, varying
the table elements to increment and decrement the channel allocation count. One-point crossover
is again applied by copying part of the node assignments from the source vector and another from
the second.

The fitness function consists of the proportion of the flowset schedulable under the multichannel
scheduling equations given in Section 7.2, for each level of criticality. The only complex operation
is the computation of the table sizes, which is more complex than the single channel SCA approach.
This is because the table sizing corresponding to a multichannel allocation array depends on the
particular parallelism obtained. Bounds can be established such that the theoretical minimum table
size for a channel allocation is the maximum sum of slots required on any channel. The theoretical
maximum table size is the sum of allocations on all channels, and represents the case in which
there is no transmission parallelism possible and the situation degenerates to a single channel used
per slot (as in the small case study of Figure 3). To determine an exact table size corresponding to
the current multichannel schedule vector, schedule packing is performed as described in Section
10.3.1.

10.3.1 Schedule Packing. In the schedule packing problem, the problem is to determine a packing
for the schedule allocations required which minimises the table size while meeting all the following
constraints SPCn :

• SPC1: A node must only perform a single action on a single channel during a slot. This is
due to the assumption of nodes only having a single channel radio.

• SPC2: All potential receivers of a node must be tuned correctly to receive from it during
its transmission slot(s). For example, if node n1 transmits data flows to receivers n3 and

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:20 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

n4, then both nodes n3 and n4 must be listening during all of node n1’s TX slots; it is not
possible to reassign node n4 to another channel. This is because node n1 must be free under
the AirTight protocol to make its local decision as to which packet to send.

• SPC3: A node may not be allocated so as to receive from more than one transmitter
simultaneously, even if they are on the same channel. This is because transmission decisions
are decentralised, and two nodes may decide to transmit at the same time, which would
cause a collision at the receiver.

• SPC4: In this paper we make an additional assumption: the single-domain constraint. This
is an assumption that the interference graph for the topology is complete, so there can
only be one transmitter active on a particular channel during any slot. This is similar to
the assumption conventionally employed in industrial applications of WirelessHART [17].
This is a stronger condition than SPC3.

The algorithm that constructs the schedule table proceeds as follows:
Inputs: (I1) The slot allocation count vector, illustrated in Figure 6, which gives the number of
slots required for each node-channel combination. (I2) The set of potential receivers for every
transmitting node-channel combination RCV (TXn,Ch). This is determined from the set of flows
and their channel affinity sets.
Outputs: (O1) The schedule table.
Intermediate: A channel tracking vector is used to track the use of channels in the current slot. All
channels are set initially to free.

1. The current slot s = 0, representing operation on the first slot of the schedule table. The schedule
table is initially empty.

2. All channels in the channel tracking vector are set to free.
3. The slot allocation count vector is scanned for an element (node TXn , channel Ch) with a non-

zero value that meets the following constraints: (i) the node TXn is free in slot s of the schedule
table; (ii) all of the receiving nodes required (i.e. in the set RCV (TXn,Ch)) are also free in slot s
of the schedule table; (iii) channel Ch is free in the channel tracking vector.

4. If no element is found that meets the above constraints then s = s + 1 and control returns to step
2. Otherwise, for slot s in the schedule table, node TXn is set to transmitting on channelCh, and
all its potential recipients in the set RCV (TXn,Ch) are set to listening (to TXn) on channel Ch.
Further, the entry in the slot allocation count vector for node TXn channel Ch is decremented,
and channel Ch is set to used in the channel tracking vector.

5. If all elements of the slot allocation count vector are zero, the algorithm terminates, with s + 1
as the size of the slot table. Otherwise control returns to step 3.

Note that the algorithm terminates since it adds slots to the table until all of the entries in the slot
allocation count vector have been decremented to zero. (Each time a slot is added, at least one entry
is decremented).

10.4 GA Optimisation Of Affinity Sets And Slot Tables

The heuristic for constructing affinity sets was defined in Section 8.2. However, it may be possible
to improve performance by allowing the GA to mutate affinity sets during its optimisation process.
The overall approach in this case is based on the multichannel GA described in Section 10.3,

with the following modifications:

• The genome is structured as a pair containing both the slot table allocation array and the
affinity sets. An initial population is defined which begins with both of these calculated
using the heuristics defined in Section 8.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:21

• During the mutation operation, the initial population is modified by altering either one of
the slot table or the affinity sets. Mutation of the slot table is as described in the general
multichannel GA in Section 10.3. Mutation of the channel affinity sets consists of selecting
a flow and randomly either adding or removing a particular channel from its affinity set.

11 EVALUATION

This section contains experimental results showing the performance of the various analytical
schedulability equations on tables constructed via the set of heuristics, and the results of improve-
ment of schedulability using genetic algorithms.

11.1 Evaluating Heuristic-based Configurations

In order to test the schedulability properties of the various analysis techniques independently of
GA performance, the heuristic is used to build slot tables that serve as a baseline. This will lead to
some flows not being schedulable, since it may construct larger tables that lead to deadline misses
during the iterative analysis algorithm. However, it provides capacity to each node based upon
their loadings, as described in Section 8.1. For MCA, channel affinities are assigned as described in
Section 8.2. Then, in order to exploit parallelism inherent in this flowset, the schedule packing is
performed using the algorithm described in Section 10.3.1.
The experimental procedure in this section generates flowsets, according to the distribution

parameters given in Table 2. Four different experimental configurations are used in the generation
of these flowsets, configurations A to D. These configurations have various values for the proportion
of HI criticality flows, and, in the analysis used, different values for the length of faults, and the
minimal spacing time before the start of subsequent faults. The values of these parameters are
listed in the table.
Typically a flowset gives rise to a median value of three single-hop flows once routing is taken

into account. For example, over 1000 generated flowsets, with 30 end-to-end flows, the minimal
number of flows obtained was 63, a median of 87 and a maximal value of 105. The schedulability
of the flowsets is tested according to each of the algorithms presented in Section 6.2 and Section
7: SCA and MCA. A flowset is considered schedulable if all its constituent end-to-end flows are
schedulable. If any flow within it is not schedulable, then the entire flowset is not schedulable.
Under SCA and MCA, individual hops are not required to meet the sub-deadline assigned to the
hop, as long as the final worst-case response time at the destination is less than the flow end-to-end
deadline. Figure 7 illustrates the schedulability of flowsets of increasing size for SCA and MCA.
Several scenarios are tested, with faults of varying lengths. The long and short fault parameters are
as described in Table 2.

WithMCA, the increasing number of channels available in the network improves the performance
over SCA by increasing the overall bandwidth available and permitting simultaneous transmissions,
which leads to better schedulability at higher loadings. However, the optimal number of channels
is actually 2 or 3, with 4 channels producing a reduction in schedulability. This is as expected and is
due to the interaction between affinity set heuristic and schedule generation, specifically additional
slots are required for the support of the additional channels which cannot be parallelised, and this
negates the advantage from the reduction of the slot table sizes or separation of interference sets.
With the case in which faults are more frequent, in Figure 7c, the overall schedulability is lower
but separation between the various MCA channel variants is lower.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:22 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

Parameter Value

Node count 36 (6x6 topology)
Standard flow count in flowset 40
HI criticality proportion (experiment configurations A, B, C) 25%
LO criticality proportion (experiment configuration D) 50%
Fault length (experiment configurations A, D) 10 (LO), 30 (HI)
Fault length (experiment configurations B, C) 5 (LO), 15 (HI)
Minimum time between fault starts (experiment configurations A,B,D) 100 slots
Minimum time between fault starts (experiment configuration C) 75 slots
Minimum period of flows 200
Maximum period of flows 1000
Flowsets tested in heuristic experiment (Section 11.1) 10000
Flowsets tested in GA experiment (Section 11.2) 1000

Table 2. Default flowset parameters for experiments

11.2 GA-based Optimisation of Slot Table Construction

This section considers the performance of the genetic algorithms described in Section 10 for
generating slot tables for the AirTight protocols in the single channel (SCA) and multichannel
analysis (MCA) cases. In the single-channel case, the progression of the GA in terms of evolution
towards schedulability is presented in Figures 8a and 8b. (Note these figures are best viewed
online in colour). The line plots show the number of generations taken for flowsets to achieve
schedulability in both LO and HI crit modes, with the generation number listed on the horizontal
axis and the schedulability proportion at this generation on the y axis. Values between 0 to 0.5
indicate the proportion of flows in the flowset that are schedulable in the LO mode, and values
from 0.5 to 1.0 indicate the proportion schedulable considering HI mode.

In the SCA case (Figure 8a), a number of flowsets require a significant number of generations to
reach schedulability, and around 9% had not attained schedulability by the time the experiment
ended at 500 generations (some requiring additional slots for schedulability in the HI mode). In the
MCA example (Figure 8b) a majority of the flowset cases become schedulable quickly within a few
generations, since the multi-channel and schedule packing process enables schedulability more
easily by permitting a smaller slot table, and the scheduling problem is threfore easier. However, a
few clear outliers take longer to achieve schedulability.

The number of generations of the GA necessary to achieve final schedulability of a flowset may
also be represented as a histogram, in order to more clearly see the behaviour of both approaches
at a low number of generations. This is illustrated in Figures 8c and 8d. These histograms include
flowsets which attained schedulability below 100. SCA has a much broader spread of generations
to reach schedulability, and in comparison MCA is likely to become schedulable immediately or
with minor modification in a single generation or two after the evolution begins (reflecting that
the slot table heuristic is relatively good at this table size). Fewer flowsets require more than 20
generations for MCA. There are a small number of outliers clustered under the 20-25 generation
range for MCA.

11.2.1 Variations In Fault Length. Altering the fault lengths by making the fault model accom-
modate longer or shorter faults can change the schedulability and therefore the fitness function
values delivered which impact GA performance. In particular, shorter absolute faults could lead to

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:23

0 10 20 30 40 50 60
Flow count

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
g
e
n
e
ra

te
d
 f

lo
w

se
ts

 s
ch

e
d
u
la

b
le

Flowset schedulability with different flow counts

(SCA) Single-Channel

(MCA) 2 Channels

(MCA) 3 Channels

(MCA) 4 Channels

(a) Configuration A - Long faults

0 10 20 30 40 50 60
Flow count

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
g
e
n
e
ra

te
d
 f

lo
w

se
ts

 s
ch

e
d
u
la

b
le

Flowset schedulability with different flow counts

(SCA) Single-Channel

(MCA) 2 Channels

(MCA) 3 Channels

(MCA) 4 Channels

(b) Configuration B - Short faults

0 10 20 30 40 50 60
Flow count

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
g
e
n
e
ra

te
d
 f

lo
w

se
ts

 s
ch

e
d
u
la

b
le

Flowset schedulability with different flow counts

(SCA) Single-Channel

(MCA) 2 Channels

(MCA) 3 Channels

(MCA) 4 Channels

(c) Configuration C - Frequent faults

0 10 20 30 40 50 60
Flow count

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
g
e
n
e
ra

te
d
 f

lo
w

se
ts

 s
ch

e
d
u
la

b
le

Flowset schedulability with different flow counts

(SCA) Single-Channel

(MCA) 2 Channels

(MCA) 3 Channels

(MCA) 4 Channels

(d) Configuration D - Long faults (50% HI)

Fig. 7. Schedulability - SCA and MCA for varying numbers of channels with different fault scenarios

smaller slot tables, since there would be less cascading impact from higher priority flows to lower
priority flows.

However, make the fault repeat interval more frequent would potentially increase the number of
times the analysis exceeds a fault boundary, and therefore take longer to reach schedulability. In
particular, when the fault periodicity was halved and the fault length (in both LO and HI modes)
halved a majority of the scenarios became unschedulable even at the end of the GA process.
Therefore, the fault length was reduced by half in this experiment while retaining the constant
fault periodicity.

Figures 9a, 9b, 9c and 9d illustrate the corresponding results for these shorter fault cases. (Again,
these figures are best viewed online in colour). They show that the shorter fault cases are broadly
similar to the longer fault case assessed previously in Figure 8; however, one notable difference is
that for SCA scheduling lines (Figure 9a), the addition of slots during GA evolution is normally
sufficient to make the flowset entirely schedulable in HI mode as well as LO. This accounts for
the frequent near vertical steps from 0.5 to 1.0 in a number of flowsets approaching complete

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:24 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

0 100 200 300 400 500
Generation number

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fl
o
w

se
t

sc
h
e
d
u
la

b
le

 -
 0

.5
 t

o
 1

.0
 i
s

H
I
m

o
d
e

Evolution of flowset schedulability over generations

(a) Flowset schedulability improvement for SCA with

generation number

0 100 200 300 400 500
Generation number

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fl
o
w

se
t

sc
h
e
d
u
la

b
le

 -
 0

.5
 t

o
 1

.0
 i
s

H
I
m

o
d
e

Evolution of flowset schedulability over generations

(b) Flowset schedulability - MCA with 3 channels

0 20 40 60 80 100
Generation number

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
op

or
tio

n
of

 fl
ow

se
ts

Range of generations required to achieve schedulability

(c) Flowset schedulability histograms - SCA

0 20 40 60 80 100
Generation number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 fl
ow

se
ts

Range of generations required to achieve schedulability

(d) Flowset schedulability histogram - MCA with 3

channels

Fig. 8. GA Evolution Progress With Standard Faults

schedulability. perhaps reflecting the less challenging fault conditions. The shape of the histograms
and the associated outliers is also broadly similar to the previous experiment.

11.3 GA Optimisation of Affinity Sets And Slot Table Structure

With multichannel analysis it can be is possible to mutate the affinity sets during the evolutionary
process, as described in Section 10.4. In this case, the channel affinity sets are modified within the
evolutionary process, giving more choice in the allocation decisions. Figures 10a and 10b show
the equivalent schedulability progression and histograms for the standard fault case. Overall the
time taken for evolution and the progress towards schedulability is similar to that without affinity
set modification, although few outliers tend to reach schedulability more quickly (i.e. there are
no outliers in the over 200 range). Also, some flowset/affinity set combinations do not progress
towards schedulability under this GA. This may be because the larger search space produced by
affinity set modification does not permit any improvements to the scheduling problem in the given

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:25

0 100 200 300 400 500
Generation number

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fl
o
w

se
t

sc
h
e
d
u
la

b
le

 -
 0

.5
 t

o
 1

.0
 i
s

H
I
m

o
d
e

Evolution of flowset schedulability over generations

(a) Flowset schedulability improvement for SCA with

generation number

0 100 200 300 400 500
Generation number

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fl
o
w

se
t

sc
h
e
d
u
la

b
le

 -
 0

.5
 t

o
 1

.0
 i
s

H
I
m

o
d
e

Evolution of flowset schedulability over generations

(b) Flowset schedulability - MCA with 3 channels

0 20 40 60 80 100
Generation number

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
op

or
tio

n
of

 fl
ow

se
ts

Range of generations required to achieve schedulability

(c) Flowset schedulability histograms - SCA

0 20 40 60 80 100
Generation number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 fl
ow

se
ts

Range of generations required to achieve schedulability

(d) Flowset schedulability histogram - MCA with 3

channels

Fig. 9. GA Evolution Progress With Shorter Faults

number of generations, or because modifications to the affinity sets interfere with optimisations on
slot tables.

11.4 Schedulability Improvement From the GA At Different Flow Counts

In Section 11.1 the results considered schedulability resulting from the starting heuristics for slot
table and affinity set construction. This section considers the final schedulability improvements
delivered by the genetic algorithm. Since this is produced by evolutionary improvement of an
original population, this allows the relative benefit of the GA to be assessed for different flowset
sizes. In Figure 11 the improvements generated by GA evolution are presented for the long and
short fault cases, represented by the gap between the original and GA improved lines. The GA
improved case is only evaluated at increments of 5 flows, due to the time taken to execute it. Since
3 channels typically performed best in 7a, 3 channels are used for MCA. It is notable that in Figure
11a the GA improvement is lower for MCA than SCA at flow counts less than around 45, since

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:26 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

0 100 200 300 400 500
Generation number

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n
 o

f
fl
o
w

se
t

sc
h
e
d
u
la

b
le

 -
 0

.5
 t

o
 1

.0
 i
s

H
I
m

o
d
e

Evolution of flowset schedulability over generations

(a) Flowset schedulability - MCA with 3 channels

0 20 40 60 80 100
Generation number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 fl
ow

se
ts

Range of generations required to achieve schedulability

(b) Flowset schedulability histogram for short faults -

MCA with 3 channels

Fig. 10. GA Evolution Progress With Channel Affinity Set Mutation

0 10 20 30 40 50
Flow count

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 g
en

er
at

ed
 fl

ow
se

ts
 sc

he
du

la
bl

e

Flowset schedulability with different flow counts

SCA GA improved
MCA (3 channels) GA improved
SCA original heuristics
MCA (3 channels), original heuristics

(a) Long fault case

0 10 20 30 40 50
Flow count

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 g
en

er
at

ed
 fl

ow
se

ts
 sc

he
du

la
bl

e

Flowset schedulability with different flow counts

SCA GA improved
MCA (3 channels) GA improved
SCA original heuristics
MCA (3 channels), original heuristics

(b) Short fault case

Fig. 11. Schedulability curves before and a�er GA improvement

MCA with heuristics is already starting at a higher value. At 40 flows, the case used in the earlier
experiments, the SCA GA was able to raise the schedulable proportion from around 8% (original slot
table heuristics) to nearly 90% after 500 generations of the GA. However, its performance declines
at 50 flows, representing a significantly more challenging scheduling situation. For MCA, the GA is
able to achieve almost 90% of flows schedulable at the end of 500 generations.

12 CONCLUSION AND FUTURE WORK

This paper presents schedulability analysis for single-channel and multichannel multi-hop wireless-
enabled Cyber-Physical Systems based on the AirTight protocol. Heuristics are specified and
evaluated as a basis for the starting point of design space exploration demonstrating the schedula-
bility performance for AirTight’s slot table development. Genetic algorithms are then defined and

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

The AirTight Protocol 1:27

evaluated to assess their performance in developing schedule tables incorporating multichannel
allocation in these systems. In future work we aim to analyse the impact of adaptive routing (since
routing was kept constant using the shortest path available during this work) and the extent to
which routing can be customised with respect to criticality (perhaps to allow nodes more options
for HI criticality traffic in the presence of faults).

Acknowledgements

The research described in this paper is funded, in part, by the EPSRC grants MCCps (EP/P003664/1).
No new primary data was created during this study.

REFERENCES

[1] A. Alemayehu, L. George, V. Sciandra, and M. Agueh. Mixed criticality scheduling applied to JPEG2000 video streaming

over wireless multimedia sensor networks. In Proc. of the Workshop on Mixed Criticality (WMC 2013), pages 55–60,

2013.

[2] N.C. Audsley. On priority assignment in fixed priority scheduling. Information Processing Letters, 79(1):39–44, 2001.

[3] N.C. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J. Wellings. Applying new scheduling theory to static priority

preemptive scheduling. Software Engineering Journal, 8(5):284–292, 1993.

[4] S.K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed criticality systems. In Proc. IEEE Real-Time

Systems Symposium (RTSS), pages 34–43, 2011.

[5] A. Burns and R.I. Davis. Mixed criticality on controller area network. In Proc. Euromicro Conference on Real-Time

Systems (ECRTS), pages 125–134, 2013.

[6] A. Burns and R.I. Davis. A survey of research into mixed criticality systems. ACM Computer Surveys, 50(6):1–37, 2017.

[7] A. Burns, J. Harbin, and L.S. Indrusiak. AWormhole NoC protocol for mixed criticality systems. In Proc. IEEE Real-Time

Systems Symposium, pages 184–195. IEEE, 2014.

[8] A. Burns, J. Harbin, L.S. Indrusiak, I. Bate, R.I. Davis, and D. Griffin. AirTight – A resilient wireless communication

protocol for mixed-criticality systems. In Proc. RTCSA, 2018.

[9] A. Burns, S. Punnekkat, L. Strigini, and D.R. Wright. Probabilistic scheduling guarantees for fault-tolerant real-time

systems. In Proc. of the 7th International Working Conference on Dependable Computing for Critical Applications. San

Jose, California, pages 339–356, 1999.

[10] TinyOS core developers. TinyOS development repository. https://github.com/tinyos/tinyos-main, 2017. Master branch

as of July 2017.

[11] R.I. Davis and N. Navet. Traffic shaping to reduce jitter in controller area network (CAN). SIGBED Review, 9(4):37–40,

2012.

[12] A.C. Dimopoulos, G. Bravos, G. Dimitrakopoulos, M. Nikolaidou, V. Nikolopoulos, and D. Anagnostopoulos. A

multi-core context-aware management architecture for mixed-criticality smart building applications. In 11th System

of Systems Engineering Conference (SoSE), pages 1–6, 2016.

[13] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-power wireless bus. In Proc. of the 10th ACM Conference on

Embedded Network Sensor Systems, pages 1–14, 2012.

[14] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient network flooding and time synchronization with Glossy.

In Proc. Information Processing in Sensor Networks (IPSN), pages 73–84, 2011.

[15] T. Fleming and A. Burns. Extending mixed criticality scheduling. In Proc. 1st Workshop on Mixed Criticality Systems

(WMC), RTSS, pages 7–12, 2013.

[16] HART Communications Foundation. Document No 7.5: HART communication protocol specification. Technical

report, HARTComm, 2013.

[17] HART Communications Foundation. Iec 62591: Industrial networks - wireless communication network and communi-

cation profiles - WirelessHART (tm). Technical report, IEC Geneva, 2016.

[18] S. Gandham, M. Dawande, and R. Prakash. Link scheduling in wireless sensor networks: Distributed edge-coloring

revisited. Journal of Parallel and Distributed Computing, 68(8):1122–1134, 2008.

[19] A. Gujarati, F. Cerqueira, and B. Brandenburg. Multiprocessor real-time scheduling with arbitrary processor affinities:

from practice to theory. Real-Time Systems, 51(4):440–483, Jul 2015.

[20] S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon. Reliable and real-time communication in industrial wireless mesh

networks. In 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 3–12, April 2011.

[21] J. Harbin, D. Griffin, A. Burns, I. Bate, R. Davis, and L. Indrusiak. Supporting critical modes in AirTight. In Proc. 6th

Int. Workshop On Mixed Criticality Systems (WMC), 2018.

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

1:28 J. Harbin, A. Burns, R.I. Davis, L.S. Indrusiak, I. Bate, and D. Griffin

[22] MEMSIC Inc. IRIS wireless measurement system. www.memsic.com/userfiles/files/Datasheets/WSN/IRIS_Datasheet.

pdf, 2011. Original document from Crossbow Technologies.

[23] L.S. Indrusiak, J. Harbin, and A. Burns. Average and worst-case latency improvements in mixed-criticality wormhole

networks-on-chip. In Proc. European/Euromicro Conference on Real-Time Systems (ECRTS), pages 47–56. IEEE, 2015.

[24] X. Jin, J. Wang, and P. Zeng. End-to-end delay analysis for mixed-criticality WirelessHART networks. IEEE/CAA

Journal of Automatica Sinica, 2(3):282–289, 2015.

[25] X. Jin, C. Xia, J. Wang, and P. Zeng. Mixed criticality scheduling for industrial wireless sensor networks. Sensors,

16(9):1376, 2016.

[26] G. Kunzel, G.P. Cainelli, I. Muller, and C.E. Pereira. Weight adjustments in a routing algorithm for wireless sensor and

actuator networks using Q-learning. IFAC-PapersOnLine, 51(10):58 – 63, 2018. 3rd IFAC Conference on Embedded

Systems, Computational Intelligence and Telematics in Control CESCIT 2018.

[27] P. Levis and D. Gay. TinyOS Programming. Cambridge University Press, New York, NY, USA, 1st edition, 2009.

[28] S. Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. Available for free at

http://cs.gmu.edu/∼sean/book/metaheuristics/.

[29] R. Mangharam, A. Rowe, R. Rajkumar, and R. Suzuki. Voice over sensor networks. In Proc. 27th IEEE International

Real-Time Systems Symposium (RTSS’06), pages 291–302, 2006.

[30] P. Mesidis and L. S. Indrusiak. Genetic mapping of hard real-time applications onto NoC-based MPSoCs – a first

approach. In Proc. 6th Int Workshop on Reconfigurable Communication-Centric Systems-on-Chip (ReCoSoC), 2011.

[31] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems: The next computing revolution. In Proceedings

of the 47th Design Automation Conference, DAC ’10, pages 731–736, New York, NY, USA, 2010. ACM.

[32] A. Rowe, R. Mangharam, and R. Rajkumar. RT-Link: A time-synchronized link protocol for energy- constrained

multi-hop wireless networks. In 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and

Networks, volume 2, pages 402–411, 2006.

[33] A. Saifullah. Real-time wireless sensor-actuator network for cyber-physical systems. PhD thesis, Department of Computer

Science and Engineering, Washington University in St Louis, 2013.

[34] A. Saifullah, D. Gunatilaka, P. Tiwari, M. Sha, C. Lu, B. Li, C. Wu, and Y. Chen. Schedulability analysis under graph

routing in WirelessHART networks. In IEEE Real-Time Systems Symposium, pages 165–174, 2015.

[35] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. Real-time scheduling for WirelessHART networks. In 2010 31st IEEE Real-Time

Systems Symposium, pages 150–159, 2010.

[36] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. End-to-end delay analysis for fixed priority scheduling in WirelessHART

networks. In 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages 13–22, 2011.

[37] W. Shen, T. Zhang, F. Barac, and M. Gidlund. PriorityMAC: A priority-enhanced MAC protocol for critical traffic in

industrial wireless sensor and actuator networks. IEEE Transactions on Industrial Informatics, 10(1):824–835, 2014.

[38] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance. In

Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

[39] C. Xia, X. Jin, L. Kong, J. Wang, and P. Zeng. Transmission scheduling for mixed-critical multi-user multiple-input and

multiple-output industrial cyber-physical systems. International Journal of Distributed Sensor Networks, 13(12), 2017.

[40] C. Xia, X. Jin, L. Kong, and P. Zeng. Bounding the demand of mixed-criticality industrial wireless sensor networks.

IEEE Access, 5:7505–7516, 2017.

[41] C. Xia, X. Jin, L. Kong, and P. Zeng. Scheduling for emergency tasks in industrial wireless sensor networks. Sensors,

17(7), 2017.

[42] Q. Zhang, F. Li, L. Ju, Z. Jia, and Z. Zhang. Reliable and energy efficient routing algorithm for WirelessHART. In

Xian-he Sun, Wenyu Qu, Ivan Stojmenovic, Wanlei Zhou, Zhiyang Li, Hua Guo, Geyong Min, Tingting Yang, Yulei

Wu, and Lei Liu, editors, Algorithms and Architectures for Parallel Processing, pages 192–203, Cham, 2014. Springer

International Publishing.

[43] X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, and J.L Rose. Active health monitoring of an aircraft wing

with embedded piezoelectric sensor/actuator network: I. defect detection, localization and growth monitoring. Smart

Materials and Structures, 16(4):1208, 2007.

[44] M Zimmerling, L Mottola, P Kumar, F Ferrari, and L. Thiele. Adaptive real-time communication for wireless cyber-

physical systems. Technical report, ETH Zurich, 2016.

Received July 2019

ACM Transactions on Cyber-Physical Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Requirements for, and overview of, AirTight
	2.1 Example of the Basic AirTight Protocol

	3 Related Work
	3.1 General Real-Time Protocols
	3.2 Mixed Criticality Protocols and Applications
	3.3 Comparison of AirTight To Reviewed Protocols

	4 Fault Model
	5 The AirTight Protocol
	6 Basic AirTight Analysis for One Channel
	6.1 AMC Analysis for AirTight
	6.2 Sufficient Analysis for AirTight

	7 Multichannel Analysis
	7.1 Affinity Set Basics and Structure
	7.2 Multichannel Analysis (MCA)

	8 Heuristics For CPS Scenario Setup
	8.1 Slot Table Heuristic
	8.2 Affinity Sets Heuristic
	8.3 Routing Heuristic

	9 Illustrative Example
	9.1 An Avionics Use-case
	9.2 Example of Analysis

	10 Configuration Optimisation using a Genetic Algorithm
	10.1 Genetic Algorithm Structure
	10.2 Single-Channel GA
	10.3 Multichannel GA
	10.4 GA Optimisation Of Affinity Sets And Slot Tables

	11 Evaluation
	11.1 Evaluating Heuristic-based Configurations
	11.2 GA-based Optimisation of Slot Table Construction
	11.3 GA Optimisation of Affinity Sets And Slot Table Structure
	11.4 Schedulability Improvement From the GA At Different Flow Counts

	12 Conclusion and Future Work
	References

