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Abstract. Conditions for positive and polynomial recurrence have been pro-
posed for a class of reliability models of two elements with transitions from
working state to failure and back. As a consequence, uniqueness of stationary
distribution of the model is proved; the rate of convergence towards this distri-
bution may be theoretically evaluated on the basis of the established recurrence.
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1. Introduction

We consider a reliability model with two elements, the “first” and the “sec-
ond”, each of which may be either in a working state or at a repair. The systems
is said to be in a working state if at least one of the elements is in its working
state. It is assumed that for each element at each state – working or repairing
– there is an intensity of transition to another state. Independence of the ele-
ments is not assumed; instead, each intensity may depend on the states of both
elements and on their elapsed times of being in the current states (working or
repairing). The problem under consideration is to find conditions sufficient for
the polynomial recurrence of the process, which would suffice for existence of
a unique stationary regime and for some bounds of the rate of convergence to
this regime. (We do not pursue the goal to establish such bounds themselves,
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although, in fact, recurrence to be established is rather close to it.) This prob-
lem was considered in [15] where under certain conditions on the intensities (all
of them were assumed bounded and bounded away from zero; as a matter of
fact, they were also implicitly supposed to be continuous), and it was found
that the existence and uniqueness of the stationary distribution hold true, and
an exponential convergence rate to it was established. This was due to an ex-
ponential moment of certain stopping times. The primary goal of this paper is
to establish moment bounds for certain stopping times under assumptions not
covered by [15]; it is known that such bounds lead to some polynomial rates of
convergence to the stationary regime for the model.

In some earlier works for simpler models convergence was often derived via
a regeneration method. As it was noted in [15], in this model repeated regener-
ations can only occur with a probability zero. However, some other technique –
called generalized regeneration – may be used instead. Our aim is to construct
Lyapunov functions which would lead to the desired a priori bounds. After this
is done, we will only briefly comment about consequences for establishing con-
vergence rates, leaving the issue to further studies. Concerning reliability theory
in general, we refer to the seminal monograph [2] and to the lecture notes [11]
(in Russian). The particular model consisting of two elements with constant
intensities of all transitions can be found in various introductory textbooks on
mathematical reliability and queueing; the case of variable intensities belonging
to an interval bounded away from zero and from infinity was treated in [15]
among other works; see the references therein.

2. Setting

The state space of the model is the product

S := {0; 1} × R
+ × {0; 1} × R

+.

The elements of S are the vectors Z = (i, x; j, y) with i, j = 0, 1 and x, y ≥ 0.
The value i = 0 means that the first element of the system is in the working state;
the value x stands for the elapsed time from the last change of the first variable
i; the value i = 1 signifies a failure and repairing of the first element. Similarly
the values j and y are interpreted for the second element of the system: j = 0
means that the second element of the system is in the working state; the value y
stands for the elapsed time from the last change of the third variable j; the value
j = 1 signifies a failure and repairing of the second element. The intensities
of transitions are given by the functions λ(i, x; j, y) for the first element and
µ(i, x; j, y) for the second. It is assumed that transitions are only possible from
(i, x; j, y) to (ic, 0; j, y), or to (i, x; jc, 0), where by ic and jc we denote the
complementary to i and j, respectively, in the set {0, 1}. The dependence of
all intensities of the variables i and j are natural. Yet, their dependence of the
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variables x and y is also a frequent situation. For example, if the first element is
already working for a long time (x >> 1), then the second element may gradually
(or quickly) transfer from the full or partial rest to a full readiness; then the
increase of µ(0, x; 0, y) in x is plausible; also for x >> 1 the values of µ(0, x; 1, y)
and µ(1, x; 1, y) may increase in x because it is likely or even surely that the
second element may be required as soon as possible. Similar reasoning may be
applied to the dependence of λ(∗, x; ∗, y) in y (here ∗ signifies any value from
the set {0, 1}). The dependences of λ(∗, x; ∗, y) in x and of µ(∗, x; ∗, y) in y are
even more than natural, for example, because of the fatigue of the elements in
the working state and of the desire to finish their repairing faster if the elapsed
time in the failure state becomes too long.

By construction, Zt is a piecewise-linear Markov process continuous from the
right with left limits (càdlàg) in the state space S; this process is also strong
Markov (see [4]). The latter (strong Markov) property is not important in the
present paper, but is rather essential in applications to the evaluation of the
rate of convergence.

Assumptions and notations

Suppose that there exist constants γ,Γ > 0 such that for any Z = (i, x; j, y) ∈ S
(state space)

0 < γ
1+x ≤ λ(Z) ≤ Γ < ∞;

0 < γ
1+y ≤ µ(Z) ≤ Γ < ∞.

(2.1)

Let
Λ(Z) := λ(Z) + µ(Z).

For any Z = (i, x; j, y) denote (“c” stands for a “change” and “n” for a “no
change” for the respective variable 1 or 3):

Z = ((0, x), (0, y)) =⇒ Zcn = ((1, 0), (0, y)), Znc = ((0, x), (1, 0));

Z = ((1, x), (0, y)) =⇒ Zcn = ((0, 0), (0, y)), Znc = ((1, x), (1, 0));

Z = ((0, x), (1, y)) =⇒ Zcn = ((1, 0), (1, y)), Znc = ((0, x), (0, 0));

Z = ((1, x), (1, y)) =⇒ Zcn = ((0, 0), (1, y)), Znc = ((1, x), (0, 0)).

Recall that the two discrete components i and j in Z = (i, x; j, y) cannot change
both simultaneously, so that the notation like Zcc is not needed. Strictly speak-
ing, the process Zt is not regenerative (see [14]). More precisely, any state –
e.g., (0, 0; 0, 0) – may be claimed the regeneration state, but the problem is that
this (or any other fixed point in S) is achievable only with probability zero.

So, the methods of the proof of the ergodicity of the process using the theory
of regeneration processes are not directly applicable (see [1,14]). Yet, extended
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regeneration as a base of the coupling method may be used, see [10, 12]. We
will show how to apply the Lyapunov functions technique to this model so as to
guarantee good recurrence properties eventually leading to the polynomial con-
vergence under suitable conditions on the constants in the assumptions. Recall
that the evaluation these rates is not the goal of this paper.

Measurable intensities and extended generator

The standard definition and interpretation of intensities like

PZt
(exactly one jump of component i on [t, t+∆]) = λ(Zt)∆ + o(∆), ∆ ↓ 0,

(we stress out that the change in this event occurs just for one discrete compo-
nent, not for both of them), and

PZt
(exactly one jump of component j on [t, t+∆]) = µ(Zt)∆ + o(∆), ∆ ↓ 0,

and also

PZt
(exactly one jump of component i or j on [t, t+∆])=(λ(Zt)+µ(Zt))∆+o(∆),

as ∆ ↓ 0 (cf., e.g., [8]) implicitly (or, in some cases explicitly) assumes that the
functions λ(Z) and µ(Z) are either constants, or, at least, continuous. However,
for the discontinuous case such a definition may not be convenient if Zt happens
to be the point of discontinuity of one of the functions λ(·), or µ(·).

Since we do not assume their continuity, the definitions of intensities should
be revised and reformulated more precisely. There are several options for that.
One of them is to use a martingale approach, see, e.g., [9, section III.5.5] where
it is given as an example in terms of indicators.

Definition 2.1. Functions λ and µ are called intensities of the underlying pro-
cess (Zt, t ≥ 0) iff for any smooth enough function (h(Z), Z ∈ S) with a compact
support the process

h(Zt)− h(Z0)−

∫ t

0

Lh(Zs) ds

is a (possibly local) martingale, where L is the extended generator built via the
functions λ and µ by the rule,

Lh(Z) = λ(Z)(h(Zcn)− h(Z)) + µ(Z)(h(Znc)− h(Z))

+
(∂h

∂x
(Z) +

∂h

∂y
(Z)
)

. (2.2)

Why L should have this form is briefly explained below. The next slightly
different but equivalent definition simultaneously highlights that the process Z
here is Markov, cf. [5].
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Definition 2.2. Functions λ and µ are called intensities of the underlying pro-
cess (Zt, t ≥ 0) iff for any smooth enough function (h(Z), Z ∈ S) with a
compact support, any positive integer m, any non-random moments of time
0 ≤ t1 < . . . < tm+1, and any Borel bounded functions φi on S, 1 ≤ i ≤ m,

E

((

h(Ztm+1
)− h(Ztm)−

∫ t

0

Lh(Zs) ds)

m
∏

i=1

φ(Zti)

)∣

∣

∣

∣

∣

Ftm

)

= 0,

with L from (2.2) and with a filtration Ft generated by the process Z on [0, t].

One more option – also equivalent, although, it is not our aim here to justify
this equivalence – is to write down an explicit (although a bit cumbersome)
formula for a more or less general event related to some interval of time [0, t].
Here we will use the convention

Z + s := (i, x+ s; j, y + s), ∀Z = (i, x; j, y) ∈ S, and for any s ≥ 0.

Definition 2.3. Functions λ and µ are called intensities of the underlying pro-
cess (Zt, t ≥ 0) iff for any smooth enough function (h(Z), Z ∈ S), any positive
integer m, any a1, . . . am taking values 1 or 2, any non-random moments of time
0 ≤ s0 < sa1

1 < ta1

1 < . . . < sam

m < tam

m < t, for a generic event on [0, t]

A := {exactly one jump of the component i on each of the intervals (s1∗, t
1
∗),

and exactly one jump of the component j on each of the intervals (s2∗, t
2
∗)}

where ∗ stands for any value of the index k = 1, . . . ,m, its conditional proba-
bility given Fs0 equals

P(A|Fs0) =

tam
m
∫

sam
m

. . .

t
a1
1
∫

s
a1
1

m
∏

k=1

drak

k exp






−

t
ak

k
∫

r
ak

k

Λ(Zk
sak + r̃ak

k +) dr̃ak

k






λak

(

Zk
(r

ak

k
)−

)

× exp






−

r
ak

k
∫

s
ak

k

Λ(Zk
sak + r̃ak

k −) dr̃ak

k







× exp






−

t
∫

tam
m

Λ(Zm
tam + r+) dr






× exp






−

s
a1
1
∫

0

Λ(Z0 + r0−) dr0






,

where the filtration Ft is generated by the process Z on [0, t], λ1(Z) = λ(Z),
λ2(Z) = µ(Z), (recall) Λ(Z) = λ(Z) + µ(Z), and the vector Zk

r
ak

k

for k = 1, . . .

is defined by induction by the rule

Zk
(r

ak

k
)−

= (Z
t
ak−1

k−1

+ (rak

k − t
ak−1

k−1 )),
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Zk
r
ak

k

= (Z
t
ak−1

k−1

+ (rak

k − t
ak−1

k−1 ))cn1(ak = 1)

+ (Z
t
ak−1

k−1

+ (rak

k − t
ak−1

k−1 ))nc1(ak = 2).

The integration over drak

k is performed here on the interval (sak

k , tak

k ). This
corresponds, in particular, to the approach in [4]. We stress out that all the
definitions lead to Dynkin’s formulae below. Also, note that the following usual
formulae (2.3)–(2.10) which are known to be valid under the assumptions of con-
tinuity of the intensities remain true without the requirement of this continuity.
Here we use the convention

Z + s := (i, x+ s; j, y + s), ∀Z = (i, x; j, y) ∈ S, and for any s ≥ 0.

For any non-random values t ≥ 0, ∆ > 0 the following exact (not asymptotic
for small ∆, i.e., without o(∆) except for (2.4), (2.6) and (2.7)) identities holds
true.

P(it,xt;jt,yt)(no jumps on [t, t+∆])=exp

(

−

∫ ∆

0

(λ+ µ)(it, xt+s; jt, yt + s) ds

)

.

(2.3)
Further,

P(it,xt;jt,yt)(more than two jumps on [t, t+∆]) = o(∆). (2.4)

A complementary probability to (2.3) is written as

P(it,xt;jt,yt)(at least one jump on [t, t+∆])

= 1− exp

(

−

∫ ∆

0

(λ+ µ)(it, xt + s; jt, yt + s) ds

)

. (2.5)

Emphasize that both (2.3) and (2.5) are rigorous equalities. Respectively,

P(it,xt;jt,yt)(exactly one jump on [t, t+∆])

= 1− exp

(

−

∫ ∆

0

(λ+ µ)(it, xt + s; jt, yt + s) ds

)

+ o(∆); (2.6)

and more precisely,

P(it,xt;jt,yt)(exactly one jump of component i on [t, t+∆])

= 1− exp

(

−

∫ ∆

0

λ(it, xt + s; jt+s, yt+s) ds

)

+ o(∆), (2.7)

and

P(it,xt;jt,yt)(at least one jump of component i on [t, t+∆])
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= 1− exp

(

−

∫ ∆

0

λ(it, xt + s; jt+s, yt+s) ds

)

; (2.8)

similarly for the other component j,

P(it,xt;jt,yt)(exactly one jump of component j on [t, t+∆])

= 1− exp

(

−

∫ ∆

0

µ(is, xs; jt, yt + s) ds

)

+ o(∆), (2.9)

and

P(it,xt;jt,yt)(at least one jump of component i on [t, t+∆])

= 1− exp

(

−

∫ ∆

0

λ(it, xt + s; jt+s, yt+s) ds

)

. (2.10)

Here is a brief explanation of the form of the (extended) generator L given in
(2.2). In this explanation we do assume all intensities continuous. Without this
assumption the formulae still can be justified, for example, by using the approach
from [13]. Let h(Z), Z ∈ S be a Borel bounded smooth enough function. For
small t > 0 and with Z0 = Z = (i, x; j, y) we have by the complete expectation
formula (by analogy with complete probability),

EZh(Zt) = tλ(Z)h(Zcn) + tµ(Z)h(Znc) + (1− (λ(Z) + µ(Z))t)h(Z + t) + o(t).

Subtracting h(Z) = (tλ(Z)+tµ(Z))h(Z)+(1−(λ(Z)+µ(Z))t)h(Z) and dividing
by t, we obtain,

EZh(Zt)− h(Z)

t
= λ(Z)(h(Zcn)− h(Z)) + µ(Z)(h(Znc)− h(Z))

+ t−1(1− (λ(Z) + µ(Z))t)(h(Z + t)− h(Z)) + o(1), t ↓ 0.

Since

t−1(h(Z + t)− h(Z)) →

(

∂h

∂x
(Z) +

∂h

∂y
(Z)

)

, t ↓ 0,

and

t−1(λ(Z) + µ(Z))t)(h(Z + t)− h(Z)) = o(1), t ↓ 0,

we get,

lim
t↓0

EZh(Zt)− h(Z)

t
= λ(Z)(h(Zcn)− h(Z)) + µ(Z)(h(Znc)− h(Z))
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+

(

∂h

∂x
(Z) +

∂h

∂y
(Z)

)

,

and this limit is uniform, as required. For the extended generator there will be
no uniformity, however, we still have Dynkin’s formula,

EZh(Zt)− h(Z) = EZ

∫ t

0

Lh(Zs−) ds, (2.11)

with L given by (2.2). The equation (2.11), “as usual”, can be justified via
the complete expectation formula; the latter with continuous intensities is a
simple corollary of the convergence of Riemann’s integral sums to their limit.
The reader is likely to be used to the “complete probability” formula where the
probability space is split into a no more than a countable number of events,
say, Ω =

∑

k Ωk, and then the probability of a new event A equals P (A) =
∑

k P (A
⋂

Ωk). It seems reasonable to call a similar formula for expectations by
complete expectations one. Why we insist that yet for integrals some care should
be taken and even that one may wish to justify such a formula accurately is that
in this case Ω is split into uncountably many events, “especially” if the integral
is Lebesgue’s one. A version of such a justification of a complete expectation
formula for possibly discontinuous intensities (where Lebesgue’s integral must
be used) can be found, for example, in [13].

Note that since jumps occur at each t with a probability zero, the formula
(2.11) can be rewritten in the form

EZh(Zt)− h(Z) = EZ

∫ t

0

Lh(Zs) ds. (2.12)

In turn, in terms of martingales the formula (2.12) (or its conditional expectation
version) can be rewritten as

h(Zt)− h(X)−

∫ t

0

Lh(Zs) ds = Mt, (2.13)

with some local martingale Mt; if h and Lh are bounded, then Mt in (2.13) is
a martingale (and, in fact, this is true for a much larger class of functions h).

In fact, we shall see shortly that for our purposes it is not important whether
or not the martingale is local: this is because what we want to derive from it
is some inequality rather than an equality. We will apply Dynkin’s formula in
the next sections for a justification that some function can serve as a Lyapunov

function. The latter will be understood as a decrease “on average” along the
trajectory of the process while the value of the process is not too close to the
class of states (∗, 0; ∗; 0).

For a suitable function h(t, Z) depending on t and Z, Dynkin’s formula
becomes

EZh(t, Zt) = h(0, Z) +

∫ t

0

(

Lh(s, Zs−) +
∂h

∂s
(s, Zs)

)

ds,
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or, equivalently (by the same reason as (2.12)),

EZh(t, Zt) = h(0, Z) +

∫ t

0

(

Lh(s, Zs) +
∂h

∂s
(s, Zs)

)

ds. (2.14)

One more equivalent version for (2.14) is

h(t, Zt)− h(0, Z0)−

∫ t

0

(

Lh(s, Zs) +
∂h

∂s
(s, Zs)

)

ds = Mt, (2.15)

with a (local) martingale Mt. If in doubt whether or not the martingale is not
local, we will use some localizing sequence of stopping times in the calculus.
The equations (2.13) and (2.15) (or, more formally, their versions with Zs−) are
often called Ito’s formulae.

3. Recurrence of the process

Let us consider the following Lyapunov functions (i.e., the functions which
will be shown to possess a Lyapunov property to decrease on average outside K
on the trajectory of the process),

Vm(Z) := (1 + x+ y)m, Vk,m(t, Z) := (1 + t)k(1 + x+ y)m

with 1 ≤ m ≤ m0, for Z = (i, x; j, y). Further, let K > 0, and K = K(m) =
K(K,m) := (Z = (i, x; j, y) ∈ S : Vm(Z) ≥ K), and

τ = τ(m) = τ(K,m) := inf(t ≥ 0 : Zt ∈ K).

Theorem 3.1.

1. (Case k = 0, K >> 1) If γ > 2m0 ≥ 2, then

EZ0
τ (K,m0) ≤ Vm0

(Z0), (3.1)

if K is large enough. In particular, γ > 2 in (2.1) implies existence of the

stationary distribution which is necessarily unique.

2. (Case k > 0, K >> 1) For any k > 0, if γ > 2m0 > 2(1 + 2k), there exists

a constant C(k,K) such that for each Z0

EZ0
τk+1(K,m0) ≤ C(k,K)Vm0

(Z0), (3.2)

if K > 0 is large enough.

3. (Case k > 0, any K1) Under k > 0, γ > 2m0 > 2(1+ k), for any K1 there

exists a constant C(k,K1) such that

EZ0
τk+1(K1,m0) ≤ C̃(k1,K)(Vm0

(Z) ∨ (K + 1)). (3.3)
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Constants C(k,K) in (3.2) and C̃(k,K1) in (3.3) are, of course, not unique.
Version of such constant can be found below, respectively, in (3.11) and in
(3.15).

Remark 3.1. All values k,m,m0 are not necessarily integers.

Proof. 1. Assume m = m0 ∈ [1, γ/2). Let N > K, and let TN := inf(t ≥ 0 :
Vm0

(Zt) ≥ N), and τ = τK := inf(t ≥ 0 : Zt ∈ K(K)). Firstly let us apply Ito’s
formula (2.13) to Vm(Zt) for t < τK ∧ TN . We have,

Vm(Zt∧τ∧TN
) = Vm(Z0) +

t∧τ∧TN
∫

0

(λ(Zs)Vm(Zcn
s ) + µ(Zt)Vm(Znc

s ))ds

−

t∧τ∧TN
∫

0

((λ(Zs) + µ(Zs))Vm(Zs) + 2m((1 + xs + ys)
m−1)) ds

+Mt∧τ∧TN

= −

t∧τ∧TN
∫

0

(λ(Zs)(Vm(Zs)−Vm(Zcn
s ))−µ(Zs)(Vm(Zs)−Vm(Znc

s ))

+ 2mVm−1(Zs)) ds+Mt∧τ∧TN
,

for some (possibly local) martingale Mt; however, at t ∧ τ ∧ TN it is bounded,
hence, with a zero expected value. We will shortly show that the term under the
integral is “strictly negative” if the semi-norm Vm(Zt) > K (is large enough):
this would have been clear without the positive term (∂Vm/∂x+∂Vm/∂y)(Zt) =
mVm−1(Zt), but even when this term is present, the negative terms dominate,
because in all situations the semi-norm Vm(Zt) after any change (to Zcn

t or to
Znc
t ) becomes less than Vm(Zt−). As a result, we can claim that

Vm(Zt∧τ∧TN
)− Vm(Z0) ≤ −C

∫ t∧τ∧TN

0

Vm−1(Zs)ds+Mt∧τ∧TN
(3.4)

with some C > 0. Indeed, we estimate for Z = (i, x; j, y),

(Vm(Z)− Vm(Zcn))

= (1 + x+ y)m − (1 + y)m

= ((1 + x+ y)− (1 + y))((1 + x+ y)m−1 + . . .+ (1 + y)m−1)

≥ x(1 + x+ y)m−1 = xVm−1(Z),
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and

(Vm(Z)− Vm(Znc)) = (1 + x+ y)m − (1 + x)m

≥ y(1 + x+ y)m−1 = yVm−1(Z).

These inequalities are trivial for any integer natural m following from the “sim-
plified multiplication formulae”. For any m ≥ 1 not necessarily integer they
also easily follow from the equality,

(1+x+y)m−(1+x)m−y(1+x+y)m−1 = (1+x+y)m−1(1+x)−(1+x)m ≥ 0,

as required (recall that y ≥ 0). So, on t < τK ,

− λ(Zt)(Vm(Zt)− Vm(Zcn
t ))dt− µ(Zt)(Vm(Zt)− Vm(Znc

t )) + 2mVm−1(Zt)

≤ −
γ

1 + xt
xtVm−1(Zt)−

γ

1 + yt
ytVm−1(Zt) + 2mVm−1(Zt).

By our assumptions, on t < τK we have either xt ≥ K/2, or yt ≥ K/2 (or both).
So, for any δ > 0 there exists K(δ) large enough such that for any K ≥ K(δ),

−
γ

1 + xt
xtVm−1(Zt)−

γ

1 + yt
ytVm−1(Zt) ≤ −(1− δ)γVm−1(Zt) (3.5)

on t < τK . We have, (γ(1− δ)− 2m)Vm−1(Zt) > 0 on this set. So, this leads to
the inequality

EZ0
Vm(Zt∧τ∧TN

) + EZ0
(t ∧ τ ∧ TN ) ≤ Vm(Z0), (3.6)

which is a weakened version of (3.4). Letting here N → ∞ and t → ∞, by
virtue of the Fatou lemma we obtain

EZ0
Vm(ZτK ) + EZ0

τK ≤ Vm(Z0). (3.7)

Note that the inequalities (3.6) and (3.7) are valid for all 1 ≤ m ≤ m0. In
particular,

EZ0
τK ≤ Vm(Z0), ∀m ∈ [1,m0],

which proves (3.2).
Further, because of the local mixing within any K(K) (since on K(K) all the

intensities are bounded and bounded away from zero according to (2.1)) and due
to the Harris –Khasminskii principle, this implies existence of the stationary
distribution of the Markov process Zt ( [6, 7]). Its uniqueness follows from
the assumption (2.1) which implies the possibility of gluing two processes with
possibly different stationary distributions.

2. Now assume k > 0 and m0 ≥ m ≥ 1. Let us apply Ito’s formula to
Vk,m(t, Zt) for t < τ ∧ TN and show that under our assumptions

EZτ
k+1
K ≤ C(k,K)Vm0

(Z))
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with some constant C(k,K) > 0 to be specified. We have,

Vk,m(t ∧ τ ∧ TN ;Zt∧τ∧TN
)− Vk,m(0, Z0)

=

t∧τ∧TN
∫

0

(kVk−1,m(s, Zs) + λ(Zt)Vk,m(t;Zcn
t ) + µ(Zs)Vk,m(s;Znc

s )) ds

−

t∧τ∧TN
∫

0

(λ(Zt) + µ(Zt))(Vk,m(s;Zs) +mVk,m−1(s;Zs))ds+Mt∧τ∧TN

=

t∧τ∧TN
∫

0

(

k

1 + s
Vk,m(s, Zs) + λ(Zt)Vk,m(t;Zcn

t ) + µ(Zs)Vk,m(s;Znc
s )

)

ds

−

t∧τ∧TN
∫

0

(λ(Zt) + µ(Zt))(Vk,m(s;Zs) +mVk,m−1(s;Zs))ds+Mt∧τ∧TN

= −

t∧τ∧TN
∫

0

(λ(Zs)(Vk,m(s;Zs)− Vk,m(s;Zcn
s ))ds

+ µ(Zs)(Vk,m(s;Zs)− Vk,m(s;Znc
s ))ds

+

t∧τ∧TN
∫

0

(

k

1 + s
Vk,m(s, Zs) +mVk,m−1(s;Zs)

)

ds+Mt∧τ∧TN
.

Similarly to the calculus in the first step of the proof, this implies the following
inequality with c = 2γ −m,

EVk,m(t ∧ τ ∧ TN ;Zt∧τ∧TN
)

≤ Vk,m(0, Z0)− E

∫ t∧τ∧TN

0

(

cVk,m−1(s;Zs)−
k

1 + s
Vk,m(s, Zs)

)

ds,

and by the Fatou Lemma also

EVk,m(τK ;ZτK ) ≤ Vk,m(0, Z0)− E

τK
∫

0

(

cVk,m−1(s;Zs)−
k

1 + s
Vk,m(s, Zs)

)

ds.

(3.8)
Now consider the identity

1 = 1(1 + xs + ys > ε(1 + s)/k) + 1(1 + xs + ys ≤ ε(1 + s)/k),
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and insert this split of unity under the integral. Then for any 0 < ε < c =
(1− δ)γ − 2m the expression with the indicator 1(1+ xs + ys ≤ ε(1+ s)/k) will
be dominated by the term cVk,m−1 and we will get with c′ = c− ε,

EVk,m(τK ;Zt∧τK ) ≤ Vk,m(0, Z0)− E

τK
∫

0

(

c′Vk,m−1(s;Zs)−
k

1 + s
Vk,m(s, Zs)

× 1(Vk,m(s;Zs) > ε(1 + s)Vk,m−1(s;Zs))
)

ds

= Vk,m(0, Z0)− E

τK
∫

0

c′Vk,m−1(s;Zs)ds

+ E

τK
∫

0

k

1 + s
Vk,m(s, Zs)1(1(1 + xs + ys > ε(1 + s)/k)) ds.

(3.9)

We estimate the last term here as follows:

E

τK
∫

0

k

1 + s
Vk,m(s, Zs)1(1 + xs + ys ≤ ε(1 + s)/k) ds

≤ E

τK
∫

0

k1+b

1 + s
Vk,m(s, Zs)

(1 + xs + ys)
b

εb(1 + s)b
ds

= k1+bε−b
E

τK
∫

0

(1 + s)k−1−bVm+b(Zs)ds.

Due to the assumptions, the values m, b, k are such that

k − 1− b < −1, & m+ b ≤ m0.

Then,

EZ0

τK
∫

0

(1 + s)k−1−bVm+b(Zs)ds = EZ0

τK
∫

0

(1 + s)k−1−bVm+b(Zs∧τK )ds

≤

∞
∫

0

(1 + s)k−1−b
EZ0

Vm+b(Zs∧τK )ds

≤ Vm+b(Z0)

∞
∫

0

(1 + s)k−1−bds
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=
1

b− k
Vm+b(Z0).

From here and from (3.9), since Vk,m(0, Z) = Vm(Z) and since Vk,m−1(s, Zs) ≥
(1 + s)k on (s < τK), we conclude (recall that c′ = c− ε = (1− δ)γ − 2m− ε)

(1− δ)γ − 2m− ε

(k + 1)
EZ0

τk+1
K ≤ EVk,m(τK ;Zt∧τK ) + E

τK
∫

0

c′Vk,m−1(s;Zs)ds

≤ Vm(Z0) +
k1+bε−b

b− k
Vm+b(Z0)

= Vm(Z0) +
k1+m0−mε−(m0−m)

m0 −m− k
Vm0

(Z0). (3.10)

Since Vm(Z0) ≤ Vm0
(Z0) for m ≤ m0, the second statement of the Theorem 3.1

is proved with

C(k,K) =
(k + 1)

(1− δ)γ − 2m− ε

(

1 +
ε−(m0−m)k1+m0−m

m0 −m− k

)

, (3.11)

with any K,m,m0, δ, ε satisfying (see (3.5))

K ≥ K(δ), 1 + k < m < m0 − k, (1− δ)γ > 2m0, & 0 < ε < (1− δ)γ − 2m.

3. Let K be the large value for which the inequality (3.2) holds from the
part 2 of the Theorem. Of course, it suffices to consider the case K1 < K. Note
that by virtue of the assumptions on the intensities

q := inf
Z∈K(K+1)

PZ(∃ s ∈ [0, 1] : ZτK+s ∈ K(K1)) > 0. (3.12)

This is because

inf
Z∈K(K+2)

(λ(Z) ∧ µ(Z)) ≥
γ

1 +K + 2
> 0;

so, the (strong Markov) process which starts at any state in K(K + 1) at any
stopping time (at Tn with any n, see below) has a positive probability to hit
the set K(1) over the period of time of length 1/2, say, and from this set there
is again a positive probability to hit the set K(K1) over the period of time of
length 1/2 (here we assumed K1 < 1; if not, then the second transition is not
necessary). Denote Γ := S \ K(K + 1) and consider two sequences of stopping
times:

τ0 = T 0 := 0, τ1 := τK , T 1 := inf(t > τ1 : Zt ∈ Γ) ∧ (τ1 + 1), . . . ,
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τn+1 := inf(t > Tn : Zt ∈ K(K)),

Tn+1 := inf(t > τn+1 : Zt ∈ Γ) ∧ (τn+1 + 1), . . .

and let
∆n := τn − Tn−1, n ≥ 1.

We have,
ZTn ∈ K(K + 1), ∀ n,

and, hence, under k > 0, γ > 2m0 > 2(1 + k),

EZ
Tn−1

(∆n)k+1 ≤ (K + 1)C(k,K + 1). (3.13)

Take any k < k1 so that 2m0 > 2(1 + k1), and denote p1 = (k1 + 1)/(k + 1),
and p2 = (k1 + 1)/(k1 − k).

Due to (3.12),
P(τK1

≤ Tn|τK > τn) ≥ q > 0,

and by induction
PZ(τ

ℓ < τ) ≤ (1− q)ℓ. (3.14)

So, using strong Markov property, we estimate denoting ηi :=
∑i

j=1 ∆
j by

virtue of Hölder’s inequality, (3.13) and (3.14),

EZτ(K1)
k+1

= EZ

∑

ℓ≥1

τk+1
K1

1(τ ℓ−1 < τ ≤ τ ℓ)

≤
∑

ℓ≥1

EZ(τK + (ℓ+ ηℓ))
k+11(τ ℓ−1 < τ)

=
∑

ℓ≥1

(EZ(τK + (ℓ+ ηℓ))
k1+1)1/p1(EZ1(τ

ℓ−1 < τ))1/p2

≤
∑

ℓ≥1

((ℓ+ 1)k1(EZτ
k1+1
K + ℓk1+1 + ηℓ)

k1+1)1/p1(EZ1(τ
ℓ−1 < τ))1/p2

≤
∑

ℓ≥1

[

(ℓ+ 1)k1(C(k1,K)Vm0
(Z) + ℓk1+1 + (K + 1)C(k1,K))

]1/p1

× (1− q)(ℓ−1)/p2

≤ C̃(k1,K)(Vm0
(Z) ∨ (K + 1)), (3.15)

as required, e.g., with

C̃(k1,K) ≤
∑

ℓ≥1

[(ℓ+ 1)k1(C(k1,K) + ℓk1+1 + C(k1,K))]1/p1(1− q)(ℓ−1)/p2 .

All the statements of the Theorem are thus proved. 2
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Remark 3.2. It is tempting to claim that the random variables ηℓ and 1(τ ℓ−1 <
τ) are independent. If this were correct, then the last estimate would have been
much better (with a much smaller value of the constant) and the last calculus
a bit easier; also the analogue of the inequality (3.3) for k = 0 would have been
valid under the assumption γ > 2m0 ≥ 2. Yet, in our model we do not see how
to justify this fairly plausible claim.

Note on convergence rate

Now assume that we achieved the situation that two independent strong
Markov processes Z and Z ′ both attain the set K at some stopping time T = T1.
Then, due to the assumption (2.1) by changing appropriately the probability
space (which must be explained in the full presentation) we manage to arrange
gluing the two equivalent processes with a positive probability bounded away
from zero on the interval [T, T + 1]; if at least one of the processes leaves the
compact K(K1 + 1), we stop the couple at the moment of exit. If at this step
coupling was not successful, we wait till they both attain K for the next time
T2 , etc. In this way and using the analogue of the moment inequality for the
pair of two independent copies of our Markov process one of which is stationary,
it is possible to establish a polynomial bound for the convergence rate towards
the stationary distribution (which again shows that it is unique),

‖PZ
t − π‖TV ≤ C(Z, δ)(1 + t)−k+δ

with any δ > 0, where the norm in the left hand side is in total variation, and
where PZ

t is the distribution of the process given the initial state Z, and π is a
stationary distribution of the process. We postpone it till further studies.
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