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Abstract. The path-integral formulation of quantum cosmology with a massless

scalar field as a sum-over-histories of volume transitions is discussed, with particular

but non-exclusive reference to loop quantum cosmology. Exploiting the analogy with

the relativistic particle, we give a complete overview of the possible two-point functions,

pointing out the choices involved in their definitions, deriving their vertex expansions

and the composition laws they satisfy. We clarify the origin and relations of different

quantities previously defined in the literature, in particular the tie between definitions

using a group averaging procedure and those in a deparametrized framework. Finally,

we draw some conclusions about the physics of a single quantum universe (where

there exist superselection rules on positive- and negative-frequency sectors and different

choices of inner product are physically equivalent) and multiverse field theories where

the role of these sectors and the inner product are reinterpreted.
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1. Introduction

One of the major problems of modern theoretical physics is the resolution of singularities

in the structure of classical spacetime. In particular, the big bang problem in General

Relativity has been inspiring a steady trend of research aiming at the removal of the

initial singularity via quantum effects, i.e., by replacing classical General Relativity with

a quantum theory of spacetime and gravity. The formal development of a background-

independent theory of quantum gravity is no easy task and some physical insight is

gained by looking at a mini-superspace toy model where the gravitational degrees of

freedom are reduced to a minimum. On this Friedmann–Robertson–Walker (FRW)

background, one can write the gravity and matter Hamiltonian and promote it to an

operator on a Hilbert space of states associated with the probability for the universe

to be in a given phase-space configuration. The ensuing quantum theory can then be

studied by exact or perturbative techniques and the fate of the big bang singularity

examined. While traditional quantum cosmology corresponded to a symmetry-reduced

version of the canonical quantum gravity in ADM variables [1], a new scheme for

quantum cosmology, called loop quantum cosmology (LQC) [2], has been developed

drawing inspiration from loop quantum gravity (LQG), an approach to the canonical

quantization of gravity based on connection variables [3, 4]. While the traditional

Wheeler–DeWitt quantization generally fails to solve the problem, loop quantum

cosmology does avoid the singularity by replacing it with a bounce at a finite curvature

and matter density. Unfortunately, the robustness of the results of LQC depend on

the yet unclear connection between the model and the full theory of loop quantum

gravity, itself still under active development and far from being complete. In particular,

concerning the full theory, most recent activities towards a complete definition of the

quantum dynamics have focused on a covariant or path integral version of the theory,

going under the name of spin foam models [5, 6]. Just as LQG states are graphs labelled

by group elements or group representations, spin foam histories are 2-complexes labelled

by the same type of data. Recently, a path-integral formulation has been proposed also

for LQC [7, 8]. The main virtues of this reformulation are the following: (a) obviously,

this alternative definition of the quantum dynamics could be advantageous from the

purely technical point of view as well as offer new conceptual insights; (b) it recasts

the dynamics of LQC in a form that formally resembles the spin foam formulation of

the full theory; in particular, it is expressed in terms of a ‘vertex expansion’ (see below

and [7, 8]) and could be used as testing ground for techniques later to be applied to

spin foam models; (c) it could exemplify issues and conceptual points that one would

eventually have to address in the spin foam formulation of quantum gravity and suggest

solutions to the same. On this last point, several interesting questions and suggestions

already came out of the work in [7, 8] and from the follow-up work (e.g. [9]), concerning

the possibility of defining different types of two-point functions in LQC, which maybe

encode different causal properties and dynamical information. In fact, this point had

been raised earlier in the quantum gravity literature [10, 11] and later in the spin foam
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literature [12, 13, 14].

The covariant construction of two-point functions is particularly simple because of

the close analogy between flat cosmology with a massless scalar field and the relativistic,

massive point particle in quantum mechanics [10, 15]. In fact, not only do both

systems have the same number of degrees of freedom, but they are also formally

identical.‡ However, because of the very different physics they entail, some aspects

and consequences of the path integral formalism have not been fully elucidated, causing

some results in the literature to appear unexpected and somewhat unclear. The main

purpose of this paper is to further investigate the structure of the mini-superspace path

integral formulation, and catalogue the whole zoo of two-point functions§ that can be

constructed for this system. In particular, we will analyze the mutual relations between

(a) different representations of the physical Hilbert space, (b) different frequency sectors,

(c) two-point functions and the composition laws governing the evolution of the quantum

universe, and (d) different time formalisms. Thanks to a complete comparison with the

single particle, the combination of all these aspects in a self-consistent framework will

allow us to acquire a precise dictionary and some novel physical insights.

In particular, and summarizing briefly our results, the single universe picture is the

analogue of the single massive particle in quantum mechanics, where the path integral

is the one-dimensional sum over histories of an individual quantum object. A two-point

function governs the evolution of the universe from one volume/matter configuration

to another. One can choose between different but physically equivalent canonical inner

products, both obtainable from a group averaging procedure, depending on whether

one uses a relativistic or non-relativistic representation of the canonical states. The

first choice (causal two-point function) is non-positive-definite because positive- and

negative-frequency sectors contribute with opposite signs; however, these sectors are

superselected by a complete set of Dirac observables and one can take either. Picking

positive-frequency modes only (thus obtaining the positive Wightman function), the

relativistic inner product is well-defined. The non-relativistic inner product (Newton–

Wigner function) is always well-defined. Both restricted two-point functions satisfy an

appropriate composition law. In the relativistic representation, one could also define

an inner product that is positive definite and includes both sectors, the Hadamard

function, but this fails to satisfy a nice composition law. Moreover, one can define

proper transition amplitudes (true Green functions for the Hamiltonian constraint)

both in the full Hilbert space (Feynman propagator) or for a single frequency sector

(retarded/advanced propagator), and impose causality, by restricting the one-parameter

integral over proper time (Schwinger representation) from the full real line (Hadamard

function) to the positive half-line (Feynman propagator). All such transition amplitudes

satisfy the appropriate composition law. Also in the case of (loop) quantum cosmology,

‡ The analogy with the relativistic particle not only holds for the symmetry-reduced theory but also

in full general relativity [10, 11, 15, 16].
§ Unlike some other authors in the physics literature, we reserve the term ‘Green’s function’ for

propagators, i.e. two-point functions that solve the equation of motion with a delta source.
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in the presence of a massless scalar field, as we will show, there exist physically equivalent

representations of the two-point functions, as well as an identical catalogue of them,

obtained in roughly the same manner, and depending on the same choices. These

results hopefully settle some recent debate about the origin of different definitions for

the inner product in cosmology, and their mutual relations. Such issues are also discussed

from the perspective of building a ‘third quantized’ or multiverse theory, where the role

of different sectors and the choice of inner product are drastically reinterpreted. We

stress that our findings hold independently of the form of the gravitational part of the

Hamiltonian constraint: while they apply rigorously to loop quantum cosmology where

the gravitational configuration variable ν defined below takes discrete values, they can

be extended at least formally to the standard Wheeler–DeWitt equation, upon the

replacement of summations over ν by integrations.

2. Basics of (loop) quantum cosmology and particle analogy

We will concentrate on the simplest cosmological model of a spatially flat, isotropic

universe with a massless scalar field as matter. For a canonical analysis of this model,

one first fixes a fiducial three-dimensional cell of comoving volume V0 < ∞ to avoid

divergences associated with infinite spatial volume, together with a flat metric 0qab which

may be taken to be δab in Cartesian coordinates.† This model admits a precise canonical

analysis both in the Wheeler–DeWitt quantization and in LQC; the difference between

the two approaches lies in the choice of canonical variables and in the operator reordering

in the Hamiltonian constraint, in turn leading to different quantum dynamics.‡

2.1. Kinematics

Focussing on the gravitational variables first, after a choice of orthonormal frame {0eai }
and dual {0eia} compatible with 0qab one may parametrize the Ashtekar–Barbero su(2)

connection Ai
a and the densitized triad Ea

i by

Ai
a =

c

V1/3
0

0eia , Ea
i =

p
√

det 0q

V2/3
0

0eai , (1)

where powers of V0, the 3-volume of the fiducial cell as measured by 0qab, have been

introduced to make the coordinates (c, p) invariant under rescalings of 0qab. The

coordinates are canonically conjugate variables,

{c, p} =
8πGγ

3
, (2)

† Here and in the following, spatial tangent indices are denoted by a, b, c and internal su(2) indices are

denoted by i, j, k.
‡ Strictly speaking, there is also an intermediate step before quantization, making also the classical

dynamics different. In fact, after rewriting the classical Hamiltonian constraint in terms of holonomy

plaquettes and positive powers of the triad, one ends up with an expression where the limit of zero area

for the plaquettes is taken. A non-trivial ad hoc step, inspired by the LQG kinematics, is to regularize

the Hamiltonian by imposing a non-zero lower bound for the holonomy areas, and then quantize.
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where γ is the Barbero–Immirzi parameter, and the only non-trivial dynamics of the

dimensionally reduced system is encoded in the Hamiltonian constraint of first-order

general relativity.

While in traditional mini-superspace (Wheeler–DeWitt) approaches to quantum

cosmology one quantizes the system in the standard Schrödinger representation, where

ĉ and p̂ are operators on a (kinematical) Hilbert space, in LQC one follows the kinematics

of full loop quantum gravity, quantizing only holonomies of the connection instead of

the connection itself. That is, instead of ĉ and p̂ one defines p̂ and ̂exp(iµc). Here, µ

denotes a real parameter which may also be chosen as a function of p by means of a

suitable procedure. The precise form of µ will not be relevant for our analysis.

The kinematical Hilbert space Hg
kin is taken to be the space of square integrable

functions on the Bohr compactification of the real line.§ One usually works in a basis

where p̂ is diagonal, with orthonomality relation

〈p|p′〉 = δp,p′ . (3)

Since this is a Kronecker delta rather than a distribution, one is dealing with a non-

separable Hilbert space. If µ is taken to be a non-trivial function of p, the action of

the holonomy operator ̂exp(iµc) takes a rather complicated form in this representation,

so that its commutator with p is not simply a multiple of the identity. It is usually

more convenient [18] to pass to a basis {|ν〉} of eigenstates of the volume operator V̂

measuring the kinematical volume of the fiducial cell, V = |p|3/2,
V̂ |ν〉 = 2πγ |ν| l2Pl|ν〉 . (4)

Note that ν has dimensions of length. One can normalize the states {|ν〉} so that one

still has an orthonormal basis,

〈ν|ν ′〉 = δν,ν′ . (5)

The basic operators are now ν̂, which acts by multiplication, and ̂exp(iλb), where

b is conjugate to ν and λ = const, which acts as a shift in ν. These satisfy the

standard Heisenberg algebra. For the matter sector, one chooses a standard Schrödinger

quantization with a natural representation of the Hilbert space Hφ
kin, the space of square

integrable functions on R, on which φ̂ acts by multiplication and p̂φ by derivation, and

with an orthonormal basis given by

〈φ|φ′〉 = 2πδ(φ− φ′) , (6)

where the 2π factor is for later convenience. The Hilbert space of the coupled system is

then just the tensor product Hg
kin ⊗Hφ

kin.

§ The algebra of continuous functions on this space is equivalent to the almost periodic functions on

R as introduced in [17].
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2.2. Dynamics

To obtain the space of physical states, one is now left with solving the Hamiltonian

constraint which can be written in the form

Ĉ Ψ(ν, φ) ≡ −
(

Θ+ ∂2
φ

)

Ψ(ν, φ) , (7)

where Ψ is a wavefunction on configuration space and Θ only acts on Hg
kin. In LQC, Θ

is a difference operator which typically takes the form (e.g. [7])

ΘΨ(ν, φ) := A(ν)Ψ(ν + 4l0, φ) +B(ν)Ψ(ν, φ) + C(ν)Ψ(ν − 4l0, φ) , (8)

where A,B,C are functions (dependent on the details of the quantization scheme) and

l0 is an elementary length unit, usually defined by the square root of the area gap

encountered in loop quantum gravity (i.e. the Planck length up to a numerical factor).

In Wheeler–DeWitt theory, Θ is a differential operator acting on L2(R). The form of

the operator Θ in either theory will not be important in the following, except for the

fact that in LQC there is an interval’s worth of superselection sectors in Hg
kin; namely,

Θ preserves all subspaces spanned by {|ν0 + 4nl0〉 | n ∈ Z} for some ν0. We may

restrict to one of these subspaces, i.e. assume that wavefunctions only have support on

a discrete lattice which we take to be 4l0Z (see the comments in [19] if one wants to

keep the most interesting point ν = 0 in this lattice for a generic gauge choice). This

restriction picks out a separable subspace of the originally non-separable Hilbert space.

Our analysis will naturally apply to any Θ with this property in the setting of LQC,

and to any differential operator in Wheeler–DeWitt theory in the formal sense that we

will explain below. Our analysis will make no prior assumptions about the exact values

of ν included in the lattice. We will sum over all of these in a given, unspecified range.

Then, the results will be valid also for models of LQC where the range of ν is a subset

of the integer numbers, for instance the positive semiaxis as in [20].

Moreover, the space of states solving equation (7) is reducible in terms of two

sectors of solutions satisfying, respectively, (p̂φ ∓
√
Θ)Ψ±(ν, φ) = 0, resulting from the

fact that p̂φ is a Dirac observable for the system governed by the above dynamics. This

will allow us to perform an explicit splitting of the space of physical states into positive-

and negative-frequency states.

2.3. Particle analogy

The form of the constraint (7) is that of a relativistic particle in 1+1 dimensions (with

a discretized spatial coordinate in the case of LQC), where Θ plays the role of a second

spatial derivative (up to a mass terms), and we think of a parametrized form of the

particle action

S =

τ ′′
∫

τ ′

dτ
[

pxẋ+ ptṫ +N(p2x − p2t +m2)
]

, (9)

which is invariant under reparametrizations τ → f(τ) of the worldline (here ˙= d/dτ).
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In the particle analogy, the scalar field φ plays the role of the the time coordinate

t, and its conjugate momentum pφ of the energy E, with the corresponding eigenstates

related by Fourier transform. Correspondingly, the mentioned two sectors of solutions

can be understood as the analogue of the positive- and negative-frequency sectors,

respectively [21] (see [22] for a more recent discussion). Defining

|pφ〉 ≡
∫

dφ

2π

√

2|pφ| eipφφ |φ〉 , (10)

one verifies

p̂φ|pφ〉 = pφ|pφ〉 , pφ ∈ R , (11)

as well as the normalization

〈pφ|p′φ〉 = 2|pφ| δ(pφ − p′φ) . (12)

Alternatively, one may remove the absolute value in the definition (10), to obtain the

indefinite normalization

〈pφ|p′φ〉 = 2pφ δ(pφ − p′φ) . (13)

For our purposes, the volume eigenstates |ν〉 can equivalently be understood as

playing the role of the spatial coordinates x (or of the spatial momenta p, as our

manipulations are performed always in the ν basis). We will make use of this analogy

to extend what is known about two-point functions for a relativistic particle to the case

at hand, in particular, their composition laws as analysed in [23, 24]. We note that the

inclusion of a scalar field simplifies the formalism due to the existence of an internal

‘time’ variable, but it is also important in order to give an operational meaning to a

quantum system describing the universe as a whole, in particular in this case where

gravity is approximated by a single degree of freedom.

As we will show in detail, entirely as in the particle case, the definition of different

two-point functions is fully characterized by the following.

• The canonical representation chosen for the physical quantum states in

configuration space (more precisely, in the φ space). Typically, one has three

choices. The first is a non-relativistic representation‖ in terms of states

|ν, φ〉nr ≡ |ν, φ; +〉nr + |ν, φ;−〉nr , (14)

where

|ν, φ;±〉nr =

∫

dpφ
√

2|pφ|
e±ipφφ δ(pφ ∓

√
Θ) |ν, pφ〉 . (15)

‖ The name is inherited from the particle case, where it refers to the invariance properties of the

states under SO(1, 1) transformations. In the LQC case, due to the discrete nature of the ν basis, the

transformation properties under the same group are trickier at the quantum level. We maintain the

nomenclature nevertheless.
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These states are orthogonal at equal values of φ in the physical inner product and,

choosing the positive-definite normalization (12) and the suitable positive-definite

resolution of the identity in momentum space, they satisfy the completeness relation1 =
∑

ν

(

|ν, φ; +〉nr 〈ν, φ; +|nr + |ν, φ;−〉nr 〈ν, φ;−|nr
)

. (16)

This expression and the normalization factors in equation (15) depend on the details

of the normalization of kinematical states in Fourier representation. One can always

make all these definitions mutually consistent.

The second possibility is a relativistic representation in terms of states

|ν, φ〉 ≡ |ν, φ; +〉+ |ν, φ;−〉 , (17)

where

|ν, φ;±〉 =

∫

dpφ
2|pφ|

e±ipφφ δ(pφ ∓
√
Θ) |ν, pφ〉 , (18)

which are not orthogonal at fixed φ. Choosing the indefinite normalization (13) and

the corresponding indefinite resolution of the identity in momentum space, these

states satisfy the completeness relation1 = i
∑

ν

(

|ν, φ; +〉
↔

∂ φ 〈ν, φ; +| + |ν, φ;−〉
↔

∂φ 〈ν, φ;−|
)

, (19)

where
↔

∂=
→

∂ −
←

∂ . It is immediate to see [23] that the corresponding inner product,

in the relativistic representation, is not positive definite (it is positive for the

positive-frequency sector, and negative for the negative-frequency one). This would

suggest that the corresponding quantum canonical theory is not well defined. A

similar issue is present also in the full (formal) quantum geometrodynamics in

Wheeler–DeWitt form [21, 22, 25]. One can obtain a positive definite inner product

in the relativistic representation, and in the presence of both sectors of solutions,

by choosing the positive-definite normalization (12) instead of (13), so that the

decomposition (19) is replaced by1 = i
∑

ν

(

|ν, φ; +〉
↔

∂ φ 〈ν, φ; +| − |ν, φ;−〉
↔

∂ φ 〈ν, φ;−|
)

. (20)

However, we will show that such non-standard resolution of the identity affects

the composition properties of the two-point function defining the physical inner

product.

• Whether one restricts consideration to either positive- or negative-frequency sectors

of the Hilbert space, or works in the full Hilbert space. As we have just seen,

the inclusion of both sectors has important consequences already at the canonical

level. However, the presence of a complete set of Dirac observables induces a

superselection rule which allows one to pick only one type of modes. In particular,

taking the positive-frequency sector the three resolutions of the identity (16), (19)

and (20) collapse into two positive-definite expressions, one nonrelativistic,1 =
∑

ν

|ν, φ; +〉nr 〈ν, φ; +|nr , (21)



Two-point functions in (loop) quantum cosmology 9

and one relativistic:1 = i
∑

ν

|ν, φ; +〉
↔

∂ φ 〈ν, φ; +| . (22)

The two representations are different in many respects, but physically equivalent,

as they are related by a unitary transformation [21].P
• The integration range in proper time (lapse) in the group averaging representation

of the two-point function, or, equivalently, the class of histories summed over in the

sum-over-histories formulation of the same. Integrals over the full real line give,

generically, solutions of the constraint equation, and thus true inner products for

the canonical theory; integrals of the positive semiaxis only give Green’s functions

(propagators) for the same constraint equation (i.e. solutions of the constraint

equation in the presence of a delta source).

We now proceed to define the various two-point functions for (loop) quantum

cosmology, depending on the above choices, and to give, for each of them, their covariant

(spin foam) representation in terms of sum-over-histories. This will also clarify their

mutual relations, and the origin of their differences. Having done so, we proceed to

derive the composition laws that the different two-point functions satisfy, and discuss

their physical implications.

3. Two-point functions as inner products in (loop) quantum cosmology

Since one has a constrained system, the first quantity of interest is the physical inner

product between states, which is usually defined, following Dirac [26], starting from

generic (kinematical) states, labelled by unrelated ν and pφ, by inserting a projector onto

those states annihilated by the constraints. Such an inner product defines a solution for

the Hamiltonian constraint operator. It is the analogue of a transition amplitude for

systems with an external time variable.

3.1. Timeless and deparametrized frameworks

In the cosmological model we are considering, the inner product between two states

|νi, φi〉 and |νf , φf〉 can be defined rigorously in the group averaging procedure (for a

review, see [27]). In the relativistic representation (18) extended to both frequency

sectors, the inner product is

GH(νf , φf ; νi, φi) ≡
+∞
∫

−∞

dα 〈νf , φf |eiαĈ |νi, φi〉 . (23)

A slightly modified definition, obtained by working in the non-relativistic representation

(15) also extended to both frequency sectors (once more, leading to a unitarily equivalent

P This can be seen by interpreting the states in each sector as distributions over an auxiliary Hilbert

space S, and noticing that the definitions (15) and (18) involve different spaces S.
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representation of Dirac observables), is used in [8], where an additional factor 2|pφ| is
introduced in order to simplify calculations:

GNW(νf , φf ; νi, φi) ≡
+∞
∫

−∞

dα 〈νf , φf |eiαĈ2|p̂φ||νi, φi〉 . (24)

A simple (but, in LQC, apparently unnoticed) fact is the following. For the relativistic

particle, the analogue of (23) is the Hadamard function, hence the suggestive notation

GH. On the other hand, the analogue of (24), where a factor of the frequency is included,

leads to a non-relativistic two-point function, namely the positive- or negative-frequency

Newton–Wigner function if one restricts to positive or negative frequencies, or a sum

of the two if one includes both. We will show that both expressions (23) and (24)

admit exactly the same interpretation in quantum cosmology and obey the expected

composition laws. In particular, equation (24) is the sum of positive- and negative-

frequency Newton–Wigner functions.

The Hadamard function has a sum-over-histories representation [23] obtained by

fixing the reparametrization invariance of the action (9) in proper-time gauge Ṅ = 0:

GH(x
′′t′′; x′, t′) =

+∞
∫

−∞

dT g(x′′, t′′;T |x′, t′; 0) , (25)

where g(x′′, t′′;T |x′′, t′; 0) is a non-relativistic transition amplitude for the Hamiltonian

H = p2x − p2t +m2, in (proper) time T .

While this proper-time representation is analogous to what is done in full quantum

gravity, in the cosmological setting one can also exploit the existence of a relational time

φ to pass to a ‘deparametrized’ formalism in which one takes the positive square root

of (7) [21],

− i∂φΨ(ν, φ) =
√
ΘΨ(ν, φ) ≡ HΨ(ν, φ) , (26)

interprets the system as a non-relativistic particle in one dimension with external time

φ (and Hilbert space Hg
kin), and computes the transition amplitude

G+
NW(νf , φf ; νi, φi) ≡ 〈νf |eiH∆φ|νi〉 , (27)

where we introduced the shorthand ∆φ ≡ φf − φi. Similarly, taking the negative square

root of (7) one can define the negative-frequency amplitude

G−NW(νf , φf ; νi, φi) ≡ 〈νf |e−iH∆φ|νi〉 . (28)

Obviously, this interpretation goes also behind the non-relativistic canonical

representation given above.

For the relativistic particle, the non-relativistic functions (27) and (28) are,

again, the (positive- and negative-frequency) Newton–Wigner functions [28] (see also

[15, 29, 30]), obtained from a sum-over-histories representation in canonical gauge φ = τ ,

where τ was the affine parameter in (9) [23]. This is precisely what is done in the

deparametrized formalism for (loop) quantum cosmology.



Two-point functions in (loop) quantum cosmology 11

We now show that

GNW(νf , φf ; νi, φi) = G+
NW(νf , φf ; νi, φi) +G−NW(νf , φf ; νi, φi) . (29)

The left-hand side is equation (24). Writing the integral in the parameter α as a delta

distribution and using the formal relation

2|pφ|δ(p2φ −Θ) = δ(pφ −
√
Θ) + δ(pφ +

√
Θ) , (30)

we get

GNW(νf , φf ; νi, φi) = 2π〈νf , φf |2|p̂φ|δ(p2φ −Θ)|νi, φi〉
= 2π

[

〈νf , φf |δ(pφ −
√
Θ)|νi, φi〉+ 〈νf , φf |δ(pφ +

√
Θ)|νi, φi〉

]

.

Inserting decomposition (18), one realizes that the first and second contributions involve,

respectively, only positive- and negative-frequency states. Carrying out a pφ integration

explicitly, one arrives at the sum of definitions (27) and (28) of the restricted Newton–

Wigner functions, as announced.

We will see that the inclusion of the factor 2|pφ| into (24) changes the character of

the inner product thus defined from relativistic to non-relativistic. In particular, we will

show that the non-relativistic two-point function (27) satisfies a different composition

law than the Hadamard function (23). Therefore, both the relativistic particle analogy

and the composition laws satisfied by the different two-point functions are consistent

with equation (29). However, starting from the two distinct expressions for the Newton–

Wigner function G±NW, one can proceed as in [7, 8] and derive distinct vertex expansions

for the inner product in cosmology, which we will report below. This functional difference

may come as a surprise [7, 8], but is what one could expect immediately when looking

at the two expressions (24) and (27), one involving the operator Θ in the exponent

and the other its square root H . Here, equation (29) shows the existence of a unique

Newton–Wigner function in both the group averaging and deparametrized framework,

thus settling the issue.

3.2. Vertex expansions: Hadamard and Newton–Wigner functions

Evaluating the quantity (23) or (24), one observes [8] that Ĉ consists of two pieces that

only act on Hg
kin and Hφ

kin respectively, so that for equation (23) the group-averaged

inner product takes the form

GH(νf , φf ; νi, φi) ≡
+∞
∫

−∞

dα AH(∆φ;α)AΘ(νf , νi;α) , (31)

where

AH(∆φ;α) ≡
+∞
∫

−∞

dpφ
2π

eiαp
2
φeipφ∆φ , (32)
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while for equation (24) we get [7]

GNW(νf , φf ; νi, φi) ≡
+∞
∫

−∞

dα ANW(∆φ;α)AΘ(νf , νi;α) , (33)

where

ANW(∆φ;α) ≡
+∞
∫

−∞

dpφ
2π

(2|pφ|)eiαp
2
φeipφ∆φ . (34)

The factor AΘ(νf , νi;α) ≡ 〈νf |e−iαΘ|νi〉 is common to both two-point functions, and

their difference lies in the pφ-dependent part, that is, as it was reasonable to expect,

in the different treatment of the ‘time’ variable in the relativistic versus non-relativistic

representation.

In both cases, AΘ(νf , νi;α) is reorganized in the manner of Feynman by splitting

up the ‘time’ interval α into N parts of equal length ǫ = α/N and introducing

decompositions of the identity on Hg
kin,

AΘ(νf , νi;α) =
∑

ν̄N−1,...,ν̄1

〈νf |e−iǫΘ|ν̄N−1〉〈ν̄N−1|e−iǫΘ|ν̄N−2〉 . . . 〈ν̄1|e−iǫΘ|νi〉 . (35)

One then reorganizes the sum by characterising each possible history (νi, ν̄1, . . . , ν̄N−2, ν̄N−1, νf)

by the number of volume transitions M that occur:

AΘ(νf , νi;α) =
N
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

AN (νf , νM−1, . . . , ν1, νi;α) (36)

≡
N
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

N−1
∑

NM=M

NM−1
∑

NM−1=M−1

. . .

N2−1
∑

N1=1

(〈νf |e−iǫΘ|νf〉)N−NM−1

× 〈νf |e−iǫΘ|νM−1〉 . . . 〈ν1|e−iǫΘ|νi〉(〈νi|e−iǫΘ|νi〉)N1−1 , (37)

where Ni denotes the step at which the ith transition occurs. While up to this point

we have been using the LQC identity decomposition
∑

ν |ν〉〈ν| in the derivation, one

would obtain completely analogous expressions for Wheeler–DeWitt theory by replacing

all summations
∑

νi
by integrals

∫

dνi.

In the form (37) the limit N → ∞ can be defined rigorously;+ the sums over

N1, . . . , NM become integrals and one finally obtains

AΘ(νf , νi;α) =
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

A(νf , νM−1, . . . , ν1, νi;α) , (38)

+ This is, of course, the continuum limit of the discretization of the α-interval, which is the counterpart

of the continuum limit of the (proper) time interval for the relativistic particle. In the spin foam analogy,

it would correspond, in the full theory, to the infinite-refinement limit of the triangulation on which the

spin foam is based. Defining this limit in the full spin foam case, or in simplicial quantum gravity, is of

course a highly non-trivial task. Equally non-trivial would be to show that this limit can equivalently

written as a kind of sum over discretizations of the same topology (here, the line interval). In the

(L)QC case this is much easier, and in fact the existence of a vertex expansion for the two-point

function, defined in the same limit, is a proof of such equivalence, at least for this simple case.
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where [8]

A(νf , νM−1, . . . , ν1, νi;α) = ΘνfνM−1
. . .Θν2ν1Θν1νi

×
p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1 p
∑

m=1

e−iαΘwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
. (39)

Here,

Θνkνl ≡ 〈νk|Θ|νl〉 (40)

are the matrix elements of Θ, and in the second line the p distinct values appearing in

(νi, ν1, . . . , νM−1, νf) are denoted by w1, . . . , wp with multiplicities ni so that n1 + . . .+

np = M + 1. It is this step that can only be done formally if the variable ν has a

continuous range. Our analysis, which is rigorous for LQC, will be understood to hold

for Wheeler–DeWitt theory in this formal sense.

In order to give the complete vertex expansion of the two-point functions, one has

to insert the above expression in equations (31) and (33), perform the integration over

α, and finally the one over pφ.

The integration over α in (31) leads to delta distributions δ(p2φ−Θwmwm
) enforcing

the Hamiltonian constraint. One is left with a straightforward integration over pφ, giving

the final result

GH(νf , φf ; νi, φi) =

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

1
√

Θwmwm

cos(
√

Θwmwm
∆φ)

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
. (41)

The reader will observe the appearance of a cosine typical of the Hadamard two-point

function.

Integrating over α in (33), one notes that the delta distributions δ(p2φ − Θwmwm
)

appearing under the pφ integral are replaced by equation (30) with Θ → Θwmwm
, so

that restricting to positive or negative pφ corresponds to picking out positive- and

negative-frequency solutions to the square root of the constraint (7) as one does for

the Newton–Wigner function of the relativistic particle [23].

Integrating over both positive and negative pφ one finds [7]

GNW(νf , φf ; νi, φi) =
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

×
p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1 p
∑

m=1

2 cos(
√

Θwmwm
∆φ)

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
. (42)

Once more, one recognizes the cosine factor typical of symmetrized (over frequency

sectors) solutions of the Hamiltonian constraint, and the different functional dependence

on the ‘energy’ H resulting from the non-relativistic representation of the canonical

states.
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Restricting to positive pφ gives

G+
NW(νf , φf ; νi, φi) =

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

×
p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1 p
∑

m=1

ei
√

Θwmwm∆φ

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
. (43)

This procedure provides, in the simplified setting of loop quantum cosmology, an explicit

spin-foam type expansion of the physical inner product GH or GNW, thus strengthening

(at least on a formal level and in this ultra-minimalistic model) the relation between

canonical and covariant approaches.

From the expression for the deparametrized inner product (27), it is immediate

that it can be expressed in the form

G+
NW(νf , φf ; νi, φi) =

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

A(νf , νM−1, . . . , ν1, νi;α)
∣

∣

∣

α↔∆φ,Θ↔−H

=

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

HνfνM−1
. . .Hν2ν1Hν1νi

×
p
∏

k=1

1

(nk − 1)!

(

∂

∂Hwkwk

)nk−1 p
∑

m=1

eiHwmwm ∆φ

∏p
j=1

j 6=m

(Hwmwm
−Hwjwj

)
, (44)

where

Hνkνl ≡ 〈νk|
√
Θ|νl〉 . (45)

As noticed in [7], group averaging and the deparametrized framework lead to distinct

vertex expansions. However, as we have already discussed above, the two expansions

only correspond to different perturbative expressions of the same two-point function.

This can be recognized working at the ‘non-perturbative’ level, i.e., before operating the

vertex expansion, or else (if one is able to) after this has been performed, by re-summing

the whole series.

3.3. Vertex expansions: Feynman propagator

A most crucial issue in quantum gravity concerns different possible definitions for the

transition amplitudes, and in particular the difference between two-point functions

defining canonical inner products and causal two-point functions defining, possibly, true

transition amplitudes. However, discussions on the problem are usually constrained to

take place on a formal level (see, e.g., [6, chapter 1.3.1] for an overview, [10, 11] for

the formal construction in quantum gravity path integrals, and [12, 13, 14] for tentative

definitions of causal counterparts of spin foam models for quantum gravity).

It may prove insightful to make such discussions explicit in a simplified model such

as (loop) quantum cosmology, exploiting once more the analogy with the relativistic
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particle. In the latter case, one may define the Feynman Green’s function in a way

similar to equation (25) by

iGF(x
′′, t′′; x′, t′) =

+∞
∫

0

dT g(x′′, t′′;T |x′, t′; 0) , (46)

so that in the gravitational context one only integrates over positive lapse. This suggests

to define the correspondent quantity in quantum cosmology as

iGF(νf , φf ; νi, φi) ≡
+∞
∫

0

dα AH(∆φ;α)AΘ(νf , νi;α) , (47)

where AH is given in equation (32) (no factor 2|pφ|). Let us stress that the restriction in

the Schwinger parameter α, the (L)QC analogue of the proper time for the relativistic

particle [23] and of the lapse for quantum gravity [10], is not a restriction in any time

variable, e.g. φ, and it is thus fully consistent with (symmetry-reduced) background

independence [11]. As is usual for the Feynman propagator, one has to choose a contour

in the complex pφ plane since now the integrand has poles. We follow the causal ‘+iε’

prescription:

iGF(νf , φf ; νi, φi) =

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

+∞
∫

−∞

dpφ
2π

i

p2φ −Θwmwm
+ iε

eipφ∆φ

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
. (48)

Performing the pφ integration in the complex plane, we obtain

iGF(νf , φf ; νi, φi) =
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

e−i
√

Θwmwm∆φθ(∆φ) + ei
√

Θwmwm∆φθ(−∆φ)

2
√

Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
. (49)

Because of the open contour (or equivalently, because of the restriction to the positive

semiaxis in the α integration) the two-point function GF is not a solution of the

Hamiltonian constraint equation; thus it does not define an inner product for the

canonical theory. However, it is a proper Green’s function (propagator) for the same

equation, i.e. it defines a transition amplitude taking into account the relative ordering in

the ‘time’ variables φ labelling the states (and thus defining a background-independent

notion of ‘in’ and ‘out’).

We may also determine Wightman functions G± as in [23] by choosing a closed

contour around only one of the poles pφ = ±
√

Θwmwm
. This obviously corresponds to
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restricting to positive- or negative-frequency sectors. One finds:

G±(νf , φf ; νi, φi) =
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

e∓i
√

Θwmwm∆φ

2
√

Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
. (50)

The choice of a closed contour also implies that the two Wightman functions, like the

Hadamard two-point function, satisfy the Hamiltonian constraint for (loop) quantum

cosmology, and thus define appropriate physical inner products for the two sectors

corresponding to positive- and negative-frequency, in the relativistic representation.

One can easily show that the two-point functions we have defined satisfy the

relations familiar from the relativistic particle case:

GH(νf , φf ; νi, φi) = G+(νf , φf ; νi, φi) +G−(νf , φf ; νi, φi) , (51)

iGF(νf , φf ; νi, φi) = G+(νf , φf ; νi, φi)θ(φf − φi) +G−(νf , φf ; νi, φi)θ(φi − φf) . (52)

Finally, we can define the causal two-point function by

iGc(νf , φf ; νi, φi) ≡ G+(νf , φf ; νi, φi)−G−(νf , φf ; νi, φi) , (53)

noting that this gives the explicit expression

Gc(νf , φf ; νi, φi) = −
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

sin
(√

Θwmwm
∆φ

)

√

Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
, (54)

where the characteristic sine factor appears.

It is interesting to note that, once more in parallel with the relativistic particle

case, one can obtain the above causal two-point function as the inner product between

quantum states in the relativistic representation (18) with completeness relation (19).

This results in an indefinite inner product, contrary to the decomposition (20) which

produces the Hadamard function (31). In contrast to the latter, the causal two-point

function Gc does not have a sum-over-histories representation [23].

3.4. A local vertex expansion?

A slightly different derivation for the inner product in loop quantum cosmology has been

recently given in [9], motivated by the following two shortcomings of the inner product

(42): Firstly, it was noted that the derivation of (42) that we have sketched in section 3.2

contains ambiguities related to a particular ordering for summations and integrations to

be carried out. Since one is dealing with divergent quantities along the way (the integral
∫

dα A(νf , νM−1, . . . , ν1, νi;α) is a sum of distributions and derivatives of distributions),

there is no guarantee that the result will be independent of such choices. Secondly, the
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formal analogy of (42) with a spinfoam amplitude lacks the locality familiar from spin

foam models for full quantum gravity [5, 6, 31]. These issues hold not only for equation

(42) but also for the other two-point functions.

Both issues are adressed by noting the following identity for two-point functions:

GH(νf , φf ; νi, φi) = 2Re [iGF(νf , φf ; νi, φi)] , (55)

which is true both for two-point functions for the relativistic particle given in [23] and

for (41) and (49).

This allows for a definition of the Hadamard function in terms of the Feynman

propagator, which is now computed differently. Namely, starting from equation (48),

one performs the sum over m in the second line before integrating, finding (this follows

by taking expression (3.19) in [9], substituting iδ → iε − p2φ and taking the complex

conjugate)

iGHRVW
F (νf , φf ; νi, φi) =

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

×
+∞
∫

−∞

dpφ
2π

i eipφ∆φ

∏M
k=0(p

2
φ −Θνkνk + iε)

, (56)

where the products of differences of matrix elements in equations (41) and (49) have

disappeared. The integrand now is local, inasmuch as it features a product over

amplitudes of elements forming the particular ‘history of the Universe’ one considers.

Since, in contrast to [9], we have included the scalar field φ, one is left with an

integration over pφ where one picks up residues at the poles pφ = ±
√

Θwiwi
, i = 1, . . . , p,

which are of order ni. It is not too difficult to see that the residue at pφ = +
√

Θwmwm

is

1

(nm − 1)!

∂nm−1

∂pnm−1
φ

[

1

2π

i eipφ∆φ(pφ −
√

Θwmwm
)nm

∏M
k=0(p

2
φ −Θνkνk)

]

∣

∣

∣

∣

pφ→
√

Θwmwm

=
1

(nm − 1)!

∂nm−1

∂pnm−1
φ





1

2π

i eipφ∆φ

(pφ +
√

Θwmwm
)nm

∏p
j=1

j 6=m

(p2φ −Θwjwj
)nj





∣

∣

∣

∣

pφ→
√

Θwmwm

=

p
∏

k=1

k 6=m

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1 1

(nm − 1)!

× ∂nm−1

∂pnm−1
φ





1

2π

i eipφ∆φ

(pφ +
√

Θwmwm
)nm

∏p
j=1

j 6=m

(p2φ −Θwjwj
)





∣

∣

∣

∣

pφ→
√

Θwmwm

=

p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1




1

2π

i ei
√

Θwmwm∆φ

2
√

Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)



 , (57)

with a similar expression for pφ = −
√

Θwmwm
, so that one reproduces the ‘non-local’

result (49). Therefore, while providing an interesting new viewpoint on the inner product
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for the purely gravitational sector, the findings of [9] do not modify our analysis. In

the presence of free scalar matter, quantum cosmological two-point functions are always

non-local, in the sense specified above.

4. Composition laws

Having computed the analogue for (loop) quantum cosmology of all two-point functions

known for the relativistic particle, we are now in a position to verify the composition

laws they satisfy and to interpret them in the cosmological setting. Such composition

laws are in fact crucial for using these two-point functions as canonical inner products

(or transition amplitudes). We will derive these laws using their sum-over-histories

(or vertex expansion) formulation. It goes without saying that the results match the

expectations coming from the particle analogy [23].

4.1. Newton–Wigner function

Let us start with the transition amplitude (27) computed in the deparametrized

framework. By inserting a resolution of the identity on the kinematical gravitational

Hilbert space Hg
kin, we immediately verify the composition law

G+
NW(νf , φf ; νi, φi) = 〈νf |eiH(φf−φi)|νi〉

=
∑

ν

〈νf |eiH(φf−φ)|ν〉〈ν|eiH(φ−φi)|νi〉

=
∑

ν

G+
NW(νf , φf ; ν, φ)G

+
NW(ν, φ; νi, φi) (58)

for any given intermediate φ, which is the obvious counterpart of the usual non-

relativistic composition law satisfied by the Newton–Wigner function,

G+
NW(x′′, t′′; x′, t′) =

∫

dx G+
NW(x′′, t′′; x, t)G+

NW(x, t; x′, t′) . (59)

This rule incorporates the requirement that any path from (x′, t′) to (x′′, t′′) that only

goes forward in time will pass through precisely one x at a specified intermediate time

t′ < t < t′′. Note that this identity is, as we have anticipated above, independent of the

form of H (or, equivalently, of Θ).

Using the representation (33) of the physical inner product in the timeless

framework, a composition law of the form (59) would amount to

+∞
∫

−∞

dα ANW(φf − φi;α)AΘ(νf , νi;α)
?
=

∑

ν

+∞
∫

−∞

+∞
∫

−∞

dα dα′ ANW(φf − φ;α)ANW(φ− φi;α
′)

×AΘ(νf , ν;α)AΘ(ν, νi;α
′) . (60)

From the definition AΘ(νf , νi;α) ≡ 〈νf |e−iαΘ|νi〉, it is again immediate that
∑

ν

AΘ(νf , ν;α)AΘ(ν, νi;α
′) =

∑

ν

〈νf |e−iαΘ|ν〉〈ν|e−iα
′Θ|νi〉 = AΘ(νf , νi;α + α′) . (61)
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Clearly, this composition rule extends to the case of Wheeler–DeWitt theory where ν

has continuous range. The calculations in this section can be extended to the continuous

case if one accepts the summation over M to be of formal nature.

Further evaluating the right-hand side of (60), we have

rhs of (60) =

+∞
∫

−∞

+∞
∫

−∞

dα dα′ ANW(φf − φ;α)ANW(φ− φi;α
′)AΘ(νf , νi;α + α′)

=
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

∫

dα dα′
dpφ
2π

dp′φ
2π

(4|pφp′φ|)

× eiαp
2
φeiα

′p′
φ
2

eipφ(φf−φ)eip
′
φ
(φ−φi)

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

e−i(α+α′)Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
, (62)

where the integration range of pφ now depends on whether we restrict to positive

frequency or not.

Integrating over both positive and negative frequencies, equation (62) reduces to

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

4 cos[
√

Θwmwm
(φf − φ)] cos[

√

Θwmwm
(φ− φi)]

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
, (63)

which is never equal to GNW(νf , φf ; νi, φi) because Θ is a positive operator. If we restrict

to positive pφ, we will instead obtain

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

ei
√

Θwmwm (φf−φ)ei
√

Θwmwm (φ−φi)

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)

= G+
NW(νf , φf ; νi, φi) , (64)

confirming that G+
NW as given in (43) does obey the non-relativistic composition law

(59). The same result will hold for the negative-frequency function G−NW. On the other

hand, the composition law is spoiled for GNW due to the interference of positive- and

negative-frequency sectors.

4.2. Hadamard function

In the case of the relativistic particle, it is well known that two-point functions in the

relativistic canonical representation, such as the Hadamard, Feynman and causal two-
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point functions, satisfy relativistic composition laws of the form [23]

G̃(x′′|x′) = c

∫

Σ

dσµG(x′′|x)
↔

∂µ G(x|x′) , (65)

where G and G̃ can be different, typically c = ±1 or c = ±i, and Σ is a spacelike surface

in spacetime. In the present case, where the discretization of the ν coordinate breaks

the SO(1, 1) isometry of a continuous (1+1)-dimensional spacetime, we take Σ to be a

surface φ = constant, choose G, and try to verify the formula

G̃(νf , φf ; νi, φi)
?
= c

∑

ν

[

G(νf , φf ; ν, φ)∂φG(ν, φ; νi, φi)−G(ν, φ; νi, φi)∂φG(νf , φf ; ν, φ)
]

(66)

for some G̃. First, taking G = GH, we have to show that the quantity

+∞
∫

−∞

+∞
∫

−∞

dα dα′ [AH(φf − φ;α)∂1AH(φ− φi;α
′) + AH(φ− φi;α)∂1AH(φf − φ;α′)]

×AΘ(νf , νi;α + α′) , (67)

where ∂1 is differentiation with respect to the first argument, is equal to Gc as in the

point particle case, up to an overall factor. Substituting explicit expressions into (67)

we find

(67) =
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

∫

dα dα′
dpφ
2π

dp′φ
2π

eiαp
2
φeiα

′p′
φ
2

eipφ(φf−φ)eip
′
φ
(φ−φi)

(

ipφ + ip′φ
)

×ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1 p
∑

m=1

e−i(α+α′)Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)

= −
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1




p
∑

m=1

ei
√

Θwmwm∆φ − e−i
√

Θwmwm∆φ

2i
√

Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)





= −
∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

×
p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1 p
∑

m=1

sin(
√

Θwmwm
∆φ)

√

Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)

= Gc(νf , φf ; νi, φi) , (68)

where Gc is the causal two-point function (54). This is precisely the composition law

one has for the Hadamard function of the relativistic particle [23],

Gc(x
′′|x′) =

∫

Σ

dσµ GH(x
′′|x)

↔

∂µ GH(x|x′) . (69)
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The reason why the causal two-point function Gc and not GH appears on the left-hand

side is again interference between positive- and negative-frequency sectors.

We conclude that the two definitions used for the inner product in cosmology, the

deparametrized definition (27) and the timeless definition (23), indeed satisfy different

composition laws, one being non-relativistic (after singling out positive or negative

frequencies) and the other relativistic and involving the causal two-point function (54).

4.3. Feynman propagator

For the Feynman Green’s function, the composition law known for the relativistic

particle is [23]

iGF(x
′′|x′) = i

∫

Σ

dσ iGF(x
′′|x)

↔

∂n iGF(x|x′) , (70)

where
↔

∂n is a derivative taken along the normal in the direction of propagation. In

quantum cosmology, its analogue should be (assuming φi < φ < φf ; one has an extra

minus for φf < φ < φi)

+∞
∫

0

dα AH(φf − φi;α)AΘ(νf , νi;α)
?
= i

+∞
∫

0

+∞
∫

0

dα dα′ [AH(φf − φ;α)∂1AH(φ− φi;α
′)

+AH(φ− φi;α)∂1AH(φf − φ;α′)]AΘ(νf , νi;α+ α′) , (71)

where ∂1 means differentiation with respect to the first argument. Again, we can

substitute explicit expressions into the right-hand side to obtain, using the Feynman

contour in the complex plane:

rhs of (71) = i

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

+∞
∫

0

dα dα′
+∞
∫

−∞

dpφ
2π

dp′φ
2π

eiαp
2
φeiα

′p′
φ
2

eipφ(φf−φ)eip
′
φ
(φ−φi)

×
(

ipφ + ip′φ
)

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

×
(

∂

∂Θwkwk

)nk−1 p
∑

m=1

e−i(α+α′)Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)

= − i

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

+∞
∫

−∞

dpφ
2π

dp′φ
2π

eipφ(φf−φ)eip
′
φ
(φ−φi)

×
(

ipφ + ip′φ
)

p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1

×





p
∑

m=1

(p2φ −Θwmwm
+ iε)−1(p′φ

2 −Θwmwm
+ iε)−1

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)
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=
1

2

∞
∑

M=0

∑

νM−1,...,ν1
νm 6=νm+1

ΘνfνM−1
. . .Θν2ν1Θν1νi

p
∏

k=1

1

(nk − 1)!

(

∂

∂Θwkwk

)nk−1

×
p

∑

m=1

e−i
√

Θwmwm∆φθ(φf − φ)θ(φ− φi)− ei
√

Θwmwm∆φθ(φi − φ)θ(φ− φf)
√

Θwmwm

∏p
j=1

j 6=m

(Θwmwm
−Θwjwj

)

=

{

iGF(νf , φf ; νi, φi) , φi < φ < φf ,

−iGF(νf , φf ; νi, φi) , φf < φ < φi ,
(72)

in agreement with equation (70).

Choosing the closed contour used to define Wightman functions G± in (50), one

also confirms

G±(x′′|x′) = ±i

∫

Σ

dσµ G±(x′′|x)
↔

∂µ G±(x|x′) . (73)

As we mentioned, the causal two-point function does not have a vertex expansion, but

from its definition (53) one sees that it correctly obeys the same relativistic composition

law.

To conclude, the quantities that we identified as being the analogue of Hadamard,

Feynman, and Newton–Wigner two-point functions for quantum cosmology satisfy the

same composition laws as one has for the relativistic particle in 1+1 dimensions,

independently of the details of the operator Θ.

5. Discussion

In this paper, we have catalogued the possible two-point functions for (loop) quantum

cosmology, for a single homogeneous universe in the presence of a free massless scalar

field, relying heavily on the analogy of this system with the free relativistic particle. For

each of them we have constructed a covariant sum-over-histories representation, in the

form of a vertex expansion in the sense of [7]. Finally, we have derived the composition

laws that such two-point functions satisfy. Our results hold for homogeneous and

isotropic LQC in a flat universe as well as for the traditional Wheeler–DeWitt quantum

cosmology, although only in a more formal sense (due to the continuous nature of volume

eigenvalues∗). Our results hopefully clarify (or at least provide a basis for clarifying)

some issues that have been recently debated in the LQC literature.

The features that characterize the different two-point functions are

(a) the sector of the canonical Hilbert space they refer to (positive- or negative-frequency,

or both),

(b) the relativistic or non-relativistic representation chosen for the quantum states,

(c) their composition law,

(d) their nature as canonical inner products or propagators (Green’s functions).

∗ Indeed, the same ‘vertex expansion’ could be derived for the relativistic particle in flat space, again

with a similar purely formal nature.
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If one restricts to a single sector of solutions, say positive-frequency, then both

the relativistic (positive) Wightman function (50) and the non-relativistic (positive)

Newton–Wigner function (27) provide a satisfactory and physically equivalent definition

of the canonical inner product. In fact, they are positive definite and satisfy an

appropriate composition law (of relativistic and non-relativistic type, respectively). The

Feynman propagator (49), reduced in this case to the retarded propagator, provides

instead the Green’s function that propagates solutions of the constraint equation into

other solutions. Notice that all these functions are complex-valued, and transform into

their complex conjugate under switch of the ordering of their two arguments.

The choice between a relativistic and a non-relativistic representation, when

available, is then purely a matter of practical convenience, and it depends on the physical

issue one is set to address.

The Newton–Wigner function G+
NW, for example, was studied in connection to

the problem of localization for a quantum mechanical particle. Its associated inner

product, in fact, allows one to consider wavefunctions whose modulus squared gives

the probability to find a particle in a volume about a certain spatial point [29]. This

result, however, depends on the choice of a frame because the Newton–Wigner function

is not Lorentz invariant. In the case of G+
NW in quantum cosmology,

∑

ν∈I |Ψ(ν, φ)|2
would be the probability to have a universe with a given matter configuration and with

volume in a certain discrete range I. The frame choice for the relativistic particle now

corresponds to the choice of the scalar field as an internal clock. This interpretation is

apparent in the deparametrized framework. Because of the Lorentz invariance, on the

other hand, the Wightman functions are more commonly used. In the LQC setting, no

such invariance is apparent, though.

The choice of a deparametrized/non-relativistic representation, however, is only

available in the presence of a degree of freedom that could play the role of a clock.

This role is played by the massless scalar field we have also used, but clearly no similar

degree of freedom is present (a) in the pure gravity case and, (b) for interacting (or even

purely massive) matter fields, in the presence of a non-trivial (non-monotonic) scalar

potential with local extrema, if one wants to go beyond the perturbative regime. In

the general case, therefore, the only available option for a covariant definition of the

canonical inner product is the (complex) Wightman function defined through a group

averaging procedure.

If one does not (or cannot) restrict the attention to a single sector of solutions, and

wants (or needs) to include both of them in the dynamics, then the situation is much

trickier for canonical quantization. One simply does not have a two-point function

that can be used as an adequate physical inner product. In fact, the only two-point

function that defines a positive define inner product in the relativistic representation

of the canonical theory, the Hadamard function (31), does not satisfy the appropriate

composition law, and the same is true for the Newton–Wigner two-point function (27)

in the non-relativistic representation. On the other hand, the only two-point function

that could, in principle, define a canonical inner product (since it is a solution of the
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constraint equations) and that satisfies the needed composition law is the causal two-

point function (53), which is not positive definite and thus not viable either. The

Feynman propagator, which also satisfies a good composition law, is not a solution of

the constraint equation, but a Green’s function (true propagator) for the same. Of

course, this is well known for the relativistic particle [23], and the same issues have been

discussed at the formal level in the full quantum gravity case [25, 32].

Clearly, the notion of ‘frequency’ is tied to the presence of a scalar field and is not

available in the pure gravity case, or generically whenever pφ is not a Dirac observable.

The natural background-independent analogue of the notion of positive/negative

frequencies, available also in the absence of matter fields as well as in the full (non

symmetry-reduced) theory is that of spacetime orientation [10, 11, 12, 13, 14, 25, 32].

The question then becomes whether there is a consistent way of dealing with

superpositions and interactions between degrees of freedom corresponding to the two

orientation sectors, in the case in which one cannot specialize to one, in a canonical

framework. The natural suggestion, also in the light of the particle analogy, is

to move to a second-quantized formalism, in which both the number of degrees of

freedom being excited at different times and their associated frequencies/orientations

are allowed to fluctuate. In fact, when considering relativistic quantum particles, one

notices that conservation of the particle number is incompatible with Lorentz symmetry

and the field theory formalism is naturally invoked. Then, the relativistic scalar

product for the field is not only well defined but also uniquely so. Even though the

cosmological or quantum gravity analogue of this symmetry argument is unclear to us,

at present, this would suggest that also in the quantum cosmology case, as soon as more

gravitational and matter degrees of freedom enter the picture (including anisotropies and

inhomogeneities), and thus one moves closer to the full theory, the natural formalism is

that of a field theory on (symmetry-reduced) superspace, a third quantization [33]. This

had been considered also in the full theory [25, 32]. This formalism would accommodate

also another possible generalization of the framework considered in this paper, that is,

the possibility of topology change. This entails the creation/annihilation of (possibly

homogeneous and isotropic) universes, quanta of the superspace field naturally carrying

both orientations (in analogy with the particle/antiparticle distinction). This framework

would represent a rather important generalization of the quantum cosmology setting

(possibly useful in addressing issues like the origin of the cosmological constant [33, 34]).

Any further discussion of this possible generalization would go beyond the scope of this

paper. However, it is natural to draw the lesson of the relativistic many-particle system

and ask ourselves the fate of the cosmological two-point functions in a multiverse picture.

In this case, the single-particle/single-universe two-point functions do not need to satisfy

any positive definiteness requirement (since they do not play the role of inner products),

the non-relativistic representation of canonical states would simply not be available, and

we would expect the Feynman propagator to be elected over the other choices by the

requirements of causal propagation (positive proper time/lapse, ordering of arguments)

and correct composition law. The causal two-point function would also play the useful
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role of the mean value of the commutator of (super-)field operators in the Fock vacuum.

Thus, it would encode correlations on superspace, rather than being the propagator of

particle/single-universe states. Work on such third quantized (loop) quantum cosmology

is in progress [35].

To conclude, from our results in the symmetry-reduced setting, let us collect some

lessons and suggestions for quantum gravity and for the group field theory (GFT)/spin

foam approach in particular. Clearly, the step from symmetry-reduced models to full

theory is huge, both technically and conceptually. Therefore, any insight we try to

import from the former to the latter should be taken cum grano salis and treated only

as a suggestion to be explored further.

First, we have seen how important the choice of relativistic versus non-relativistic

representation is for the quantum theory. In the covariant setting, the analogue of

the spin foam constructions, this is reflected in the form of boundary states appearing

in the sum-over-histories and in the composition law chosen for the same. We have

pointed out that the non-relativistic formalism, although physically equivalent to

the relativistic one, is only available in very special cases, and thus a relativistic

representation is to be preferred. At the covariant level, this implies that one should

try to construct relativistic transition amplitudes/inner products which compose by

means of a relativistic composition law. The relativistic nature is characterized by the

presence of ‘embedding information’, i.e. of the normal to the ‘canonical surface’, in

both the definition of the decomposition of the identity and the composition law for

transition amplitudes/inner products. This is required for the correct implementation

of covariance properties as well as for the correct composition of boundary data in the

two-point functions. It is natural to conjecture that something similar happens in the

full LQG theory and in the related spin foam models, and that the needed ‘embedding

information’ is to be represented by similar extrinsic data, in particular by the normal

vector to the canonical hypersurface, in turn characterizing the extrinsic, i.e. boost

component of the gravitational connection. A generalization of LQG states to include

such data has been proposed [36, 37, 38, 39] and has proven crucial also in covariant spin

foam constructions [40, 41, 42, 43]. So our results seem to support such generalization.

Second, we have pointed out that the presence of matter fields always leads to a

non-local vertex expansion. This non-locality is defined in contrast to the factorized

form, in terms of single simplex contributions, that usual spin foam models take [5, 31].

In turn, this local form translates naturally in (or can be seen as a direct consequence

of) the underlying GFT formulation of the same models [51]. There are several attitudes

one can take with respect to this fact: (a) One could expect a similar loss of locality

in spin foam models coupled to matter, and thus the impossibility of a corresponding

GFT formulation; (b) one can consider this non-locality as an artefact of the symmetry-

reduced context (also considering that symmetry reduction is itself a rather non-local

procedure) or of the specific type of matter considered. The second attitude is based

also on the fact that the locality of spin foam models and GFTs has a clear spacetime

interpretation, in that spin foam vertices or their dual simplices represent regions or
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events in a discrete spacetime, while the vertex expansion in cosmology lacks such

interpretation exactly because of the prior symmetry reduction. The available examples

of spin foam models and GFTs for gravity coupled to matter [44, 45, 47, 46, 48, 49] seem

to support the second possibility, although the issue should be considered as still open.

Note also that non-locality is indeed due to the presence of a matter field, and not to its

use as internal time, since two-point functions are non-local both in the deparametrized

and timeless frameworks. Perturbative inhomogeneities often appear in the dynamics

in a form similar to matter fields (e.g. [50]), so that also they might lead to non-local

expressions; however, this is speculative as the two-point function classification is clear

only in purely homogeneous models.

Third, we have stressed that the crucial difference in constructing and

understanding two-point functions in quantum cosmology is whether one restricts to

positive or negative-frequency solutions or keeps both, and that the analogue of this

frequency condition in full quantum gravity would be the spacetime orientation. In spin

foam models and GFTs, one has to specify orientation data for all the discrete elements

of the spacetime substratum used in the quantum theory, i.e. edges and faces of the spin

foam 2-complex, or simplices and sub-simplices of the dual triangulation. Moreover,

opposite orientation data for all these elements have to be included for consistency

of composition properties. This seems to suggest that no analogue of the frequency

restriction is available in the full theory (as in the case of general inhomogeneous or

anisotropic cosmologies, or for generic matter fields). Of course, one can still consider

amplitudes that either are symmetric under spacetime orientation (parity or time)

reversal (in analogy with the Hadamard function) or transform into their own complex

conjugate under reversal (in analogy with Feynman or causal two-point functions).

Known spin foam models [5], based on constraining quantum BF theory, seem to be

naturally of the symmetric type. On the other hand, constructions of non-symmetric

(complex) and causally restricted transition amplitudes♯ for LQG states have been

considered in the spin foam framework [12, 13, 14], and could be useful to investigate

this issue further. In fact, quantum BF theory itself gives rise to symmetric (real)

transition amplitudes that can be consistently interpreted as covariant definitions of

the inner product of topological gravity. In contrast, causally restricted models are

associated with true propagators or transition amplitudes that have an inbuilt notion

of in- and out-states consistent with background independence (inasmuch as this notion

is encoded in orientation data only and no time variable is needed). The situation in

the full theory seems thus to be at odds with the results in the quantum cosmology

setting: while the latter would suggest that a symmetric transition amplitude that

is both positive definite and includes both sectors of solutions would fail to compose

properly, this seems not to be the case for BF spin foam models. On the other hand,

one could be tempted to attribute this situation to the triviality, in terms of dynamical

degrees of freedom, of BF theory itself. However, a similar orientation independence is

♯ That is, amplitudes obtained by restricting the range of proper time/lapse integration.
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present in the Barrett–Crane model which, if coming from a BF-type construction, is

not a topological model. Similarly puzzling is the situation, concerning this orientation

business, from the GFT perspective. GFTs are third quantized frameworks [51] where

the fundamental field is defined on simplicial superspace, the space of geometries for a

single simplex (a building block of a discrete space), and in which creation/annihilation

of simplices and topology change are naturally described. Hence, one would expect that

the corresponding Feynman amplitudes be naturally complex and interpreted as built

out of propagators, rather than solutions, to the canonical constraints. This is, again,

not the case for current GFT models, that generate the symmetric spin foam amplitudes

we have just discussed. On the other hand, it would be the case for any effective GFT

dynamics around non-trivial background configurations [52, 53, 54], which naturally

translates into non-trivial (and singular) free propagators, analogous to the Feynman

two-point function of ordinary quantum field theory.

Much remains to be understood about these issues, and the simplified quantum

cosmology setting could be a very useful ground for clarifying them, leading to a better

development and understanding of a full quantum theory of gravity.
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