

This is a repository copy of *Are alkali activated slag concretes suitable for reinforced concrete structures in chloride environments*?

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/151492/

Version: Accepted Version

Conference or Workshop Item:

Basheer, MPA orcid.org/0000-0002-0835-8029, Yang, K orcid.org/0000-0002-4223-2710, Ma, Q et al. (3 more authors) (2018) Are alkali activated slag concretes suitable for reinforced concrete structures in chloride environments? In: Structural Faults & Repair 2018 and European Bridge Conference 2018, 15-17 May 2018, Edinburgh, UK.

This is an author produced version of a conference presentation presented at Structural Faults & Repair 2018 and European Bridge Conference 2018.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

UNINI MEKSIH MUUNI UEEDIN

Are alkali activated slag concretes suitable for reinforced concrete structures in chloride environments?

Professor P.A. Muhammed Basheer, FREng

Head of School of Civil Engineering Chair in Structural Engineering University of Leeds, Leeds, UK

p.a.m.basheer@leeds.ac.uk

WINNYEKSIN YEVIT LEEUVST

Are alkali activated slag concretes suitable for reinforced concrete structures in chloride environments?

Kai Yang (University of Leeds, UK) Qianmin Ma (Kunming University of Science and Technology, China) Sreejith Nanukuttan (Queen's University Belfast, UK) Changhui Yang (Chongqing University, China) Yun Bai (University College London, UK)

Outline of Presentation

- Need to assess corrosion resistance of alkaliactivated slag cementitious materials
- > Chloride transport in various AAS concretes
- Corrosion of embedded steel in AASC
- Suitability of mixes for chloride exposure environments
- Conclusions and Recommendations

Outline of Presentation

- Need to assess corrosion resistance of alkaliactivated slag cementitious materials
- > Chloride transport in various AAS concretes
- Corrosion of embedded steel in AASC
- Suitability of mixes for chloride exposure environments
- Conclusions and Recommendations

School of Civil Engineering

UNIVERSITY OF LEEDS

Advantages of AASC

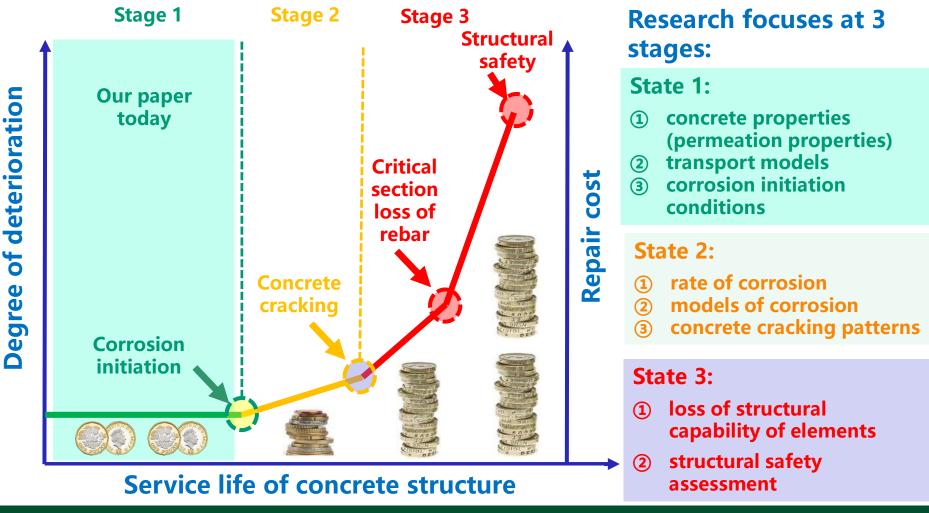
AASC can be considered as a low CO_2 emission cement ($CO_2 20\%$ of PC) and, furthermore, it also:

- Uses industry by-products
- Consumes less natural resources
- Has rapid compressive strength development (more than 68MPa in 24h)
- Has high final strength (can achieve 150MPa at 28 days)
- Has high resistance against chemical attack

Building (UR)

Precast elements (CZ)

Waste management (UK)



Precast walls (AU)

It is believed that:

AAS is a High-Performance binder, AASC is a High-Performance Concrete

Context of Investigating Corrosion of Steel in AAS Concrete

Objectives of Research

- i. To study chloride transport in AAS concretes;
- To investigate the physical and chemical characteristics of the pore structure and the pore solution of AAS; and
- iii. To quantify the time to initiation and rate of corrosion of embedded steel when AAS concretes are exposed to an intermittent chloride ponding regime.

Outline of Presentation

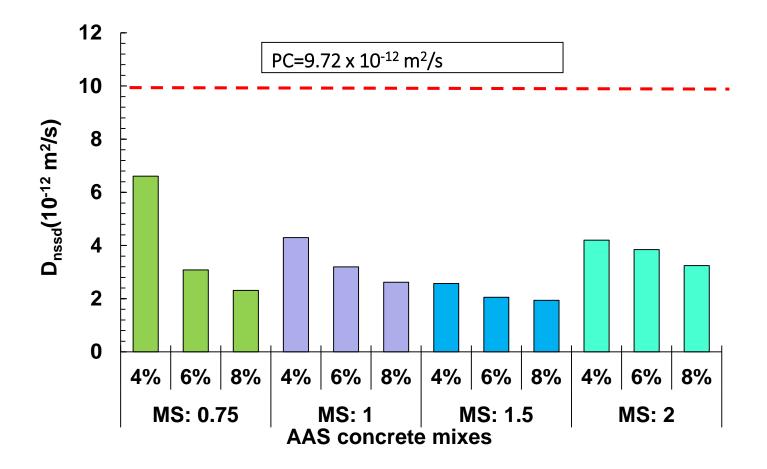
- Need to assess corrosion resistance of alkaliactivated slag cementitious materials
- > Chloride transport in various AAS concretes
- Corrosion of embedded steel in AASC
- Suitability of mixes for chloride exposure environments
- Conclusions and Recommendations

9 NIIWEKSII MAYE LEEDST

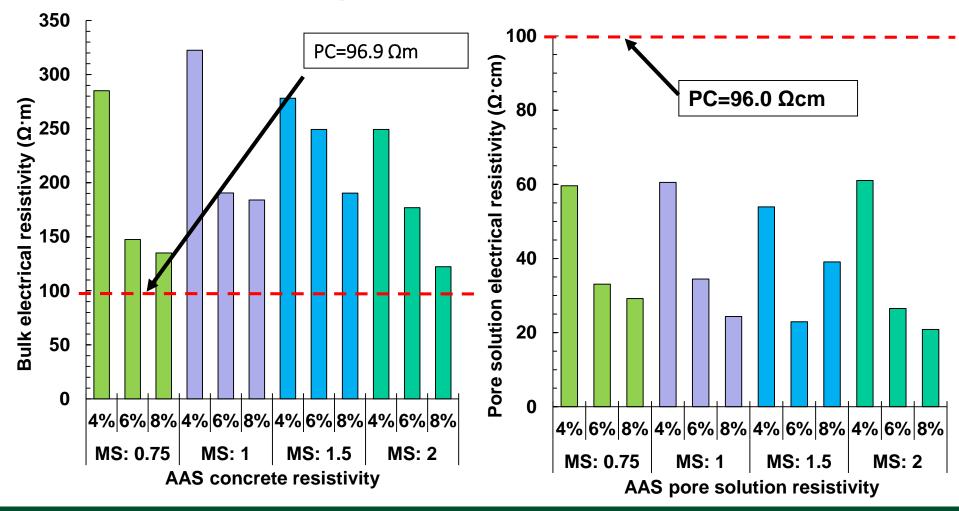
Concrete Mix Proportions

Mix NO (Na ₂ O-MS)	Na ₂ O (%)	Ms	Binder (kg/m³)	Sodium silicate (kg/m³)	NaOH (kg/m ³)	Retarder (kg/m ³)	Sand (kg/m³)	Coarse aggregate (kg/m ³)
4%-0.75		0.75	371	34.6	13.6	1.11	654	1163
4%-1.00	4	1.00	368	45.8	11.6	1.10	655	1164
4%-1.50	•	1.50	362	67.7	7.8	1.08	656	1167
4%-2.00		2.00	357	88.9	4.2	1.07	658	1170
6%-0.75		0.75	358	19.7	19.7	1.07	654	1163
6%-1.00	6	1.00	354	16.8	16.8	1.08	655	1165
6%-1.50	Ŭ	1.50	346	11.2	11.2	1.06	658	1169
6%-2.00		2.00	339	5.9	5.9	1.04	660	1173
8%-0.75		0.75	346	25.4	25.4	1.02	654	1163
8%-1.00	8	1.00	341	21.6	21.6	1.04	656	1166
8%-1.50		1.50	332	14.3	14.3	1.02	658	1171
8%-2.00		2.00	322	7.5	7.5	0.97	661	1175
PC	-		400	-	-		686	1220

Note: AASC (w/b = 0.47), Normal Concrete (NC) (w/b = 0.42); Retarder in AASC: Barium based YP-1



Properties Measured and Test Methods Used: Part 1: Chloride Resistance of AAS Concretes


Properties measured	Details of Tests
Permeation properties	NT BUILD 443 (1995), non-steady state chloride penetration test on 100mm dia. x 50mm thick cores
Electrical resistivity	Bulk resistivity of 100mm dia. x 50mm thick cores
Pore solution	Pore fluid expression from 10mm thick concrete
characterisation	slices, followed by the measurement of pH and
	conductivity of the pore solution
lon analysis	Using inductively coupled plasma-optical emission mass spectrometer (ICP-MS)
Slump	BS EN 12350-2 (2009), Part 2: Slump-test
Compressive Strength	BS EN 12350-3 (2009), Part 3: Compressive strength of test specimens

Chloride Diffusivity: D_{nssd} after 90 Days of Immersion

Electrical Resistivity of Concretes and the Pore Solutions

pH, Na ⁺ and S ²⁻ of the Pore Solution of AAS Concretes					
Mix ID (Na ₂ O-MS)	рН	Na+ (ppm)	S²- (ppm)		
4%-0.75	11.7	2154	2458		
4%-1.00	11.9	4740	1953		
4%-1.50	10.5	58.96	3786		
4%-2.00	9.9	121.2	4348		
6%-0.75	11.9	96.26	5661		
6%-1.00	11.9	69.19	6210		
6%-1.50	11.4	42.18	6245		
6%-2.00	9.9	18.20	6292		
8%-0.75	12.4	202.0	664.0		
8%-1.00	12.2	244.0	590.0		
8%-1.50	10.8	185.3	618.3		
8%-2.00	11.9	64.34	608.0		
PC	12.5	1234	329.6		

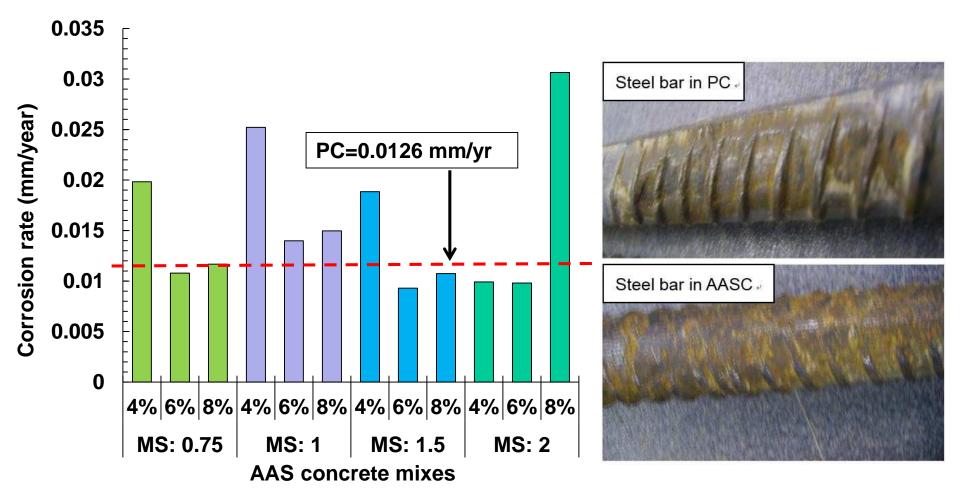
Outline of Presentation

- Need to assess corrosion resistance of alkaliactivated slag cementitious materials
- > Chloride transport in various AAS concretes
- Corrosion of embedded steel in AASC
- Suitability of mixes for chloride exposure environments
- Conclusions and Recommendations

Properties Measured and Test Methods Used: Part 2: Corrosion Resistance of AAS Concretes

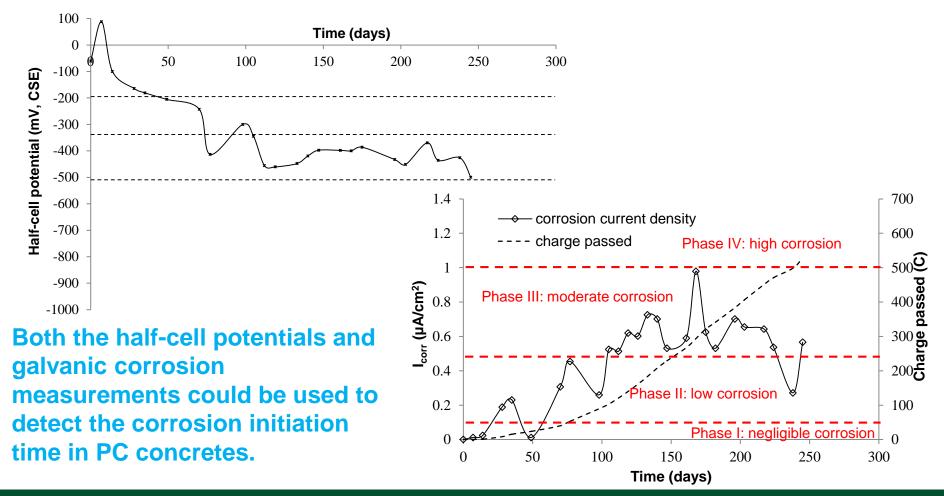
Variable	Parameters investigated		
Corrosion rate	Rebar mass loss		
Corrosion distribution	Rebar topography analysis		
Corrosion rate vs Different parameters	Diffusivity of AAS concrete Electricity of AAS concrete Na ⁺ in pore solution S ²⁻ in pore solution		

Test Setup to Study Corrosion Resistance

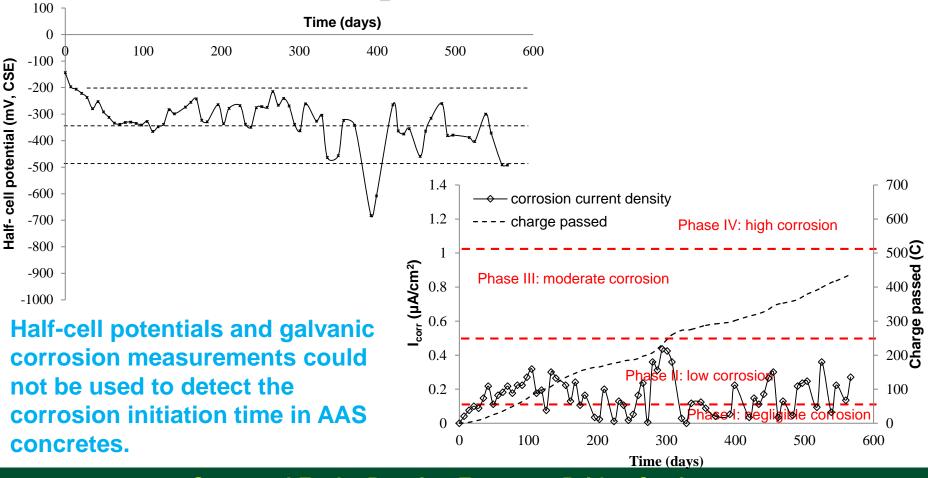

Stainless steel electrodes at 15mm, 25mm, 35mm and 45mm depths for electrical resistance measurements

Top bar to act as anode and the bottom three bars together to act as cathode, connected by a 10Ω resistance

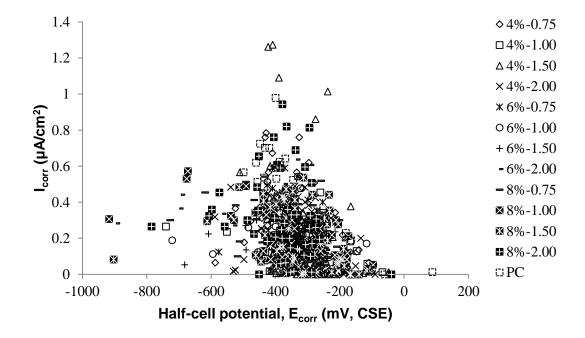
Weekly cyclic ponding regime with 0.55M chloride solution ponded for 1 day followed by 6 days of drying at 20°C



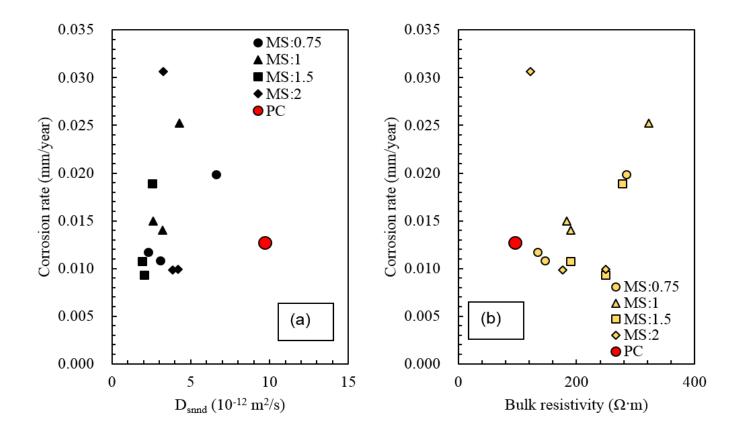
Rate of Corrosion in AAS Concretes

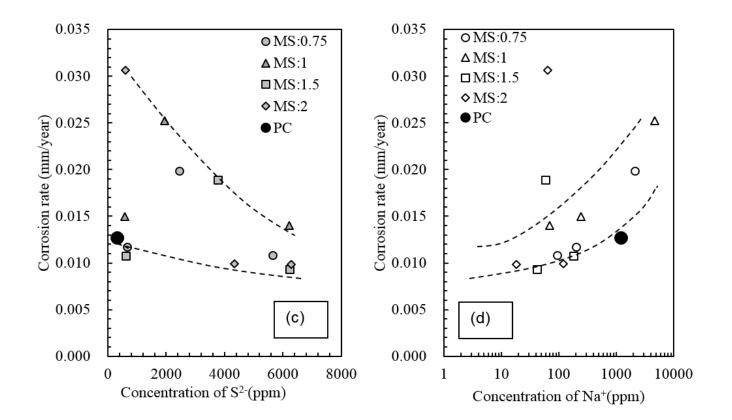


Half-Cell Potentials and Galvanic Corrosion Data for PC



Half-Cell Potentials and Galvanic Corrosion Data for AASC (Na₂O%: 6, Ms: 5.0)


Relationship Between Half-Cell Potentials and Galvanic Corrosion in AAS Concretes


URHIYEKSHI YEVE LEEVS -

Corrosion in AAS Concretes vs Chloride Diffusivity and Bulk Resistivity

Dependence of Corrosion in AAS Concretes on Sulphide and Sodium Ions in the Pore Solution

Outline of Presentation

- Need to assess corrosion resistance of alkaliactivated slag cementitious materials
- > Chloride transport in various AAS concretes
- Corrosion of embedded steel in AASC
- Suitability of mixes for chloride exposure environments

Conclusions and Recommendations

Exposure Classes from BS EN 206-1

Corrosion induced by chlorides other than from seawater						
XD1	Moderate humidity Concrete surfaces exposed to airborne chlorides					
XD2	Wet, rarely dry	Swimming pools, Concrete exposed to industrial water containing chlorides				
XD3	Cyclic wet and dry	Parts of bridges exposed to spray containing chlorides Pavements, Car park slabs				
Corrosion in	Corrosion induced by chlorides from seawater					
XS1	Exposed to airborne salt but not in direct contact with seawater	Structures near to or on the coast				
XS2	Permanently submerged	Parts of marine structures				
XS3	Tidal, splash and spry zones	Parts of marine structures				

School of Civil Engineering

Suitability Based on Slump and Compressive Strength

-		-	-	-	
Mix ID Slump		Compressive strength (MPa)			
(Na ₂ O-MS)	(mm)	3d	28d	91d	
4%-0.75	55	22.3±0.1	44.7±0.2	46.4±1.0	
4%-1.00	55	21.8±0.1	46.7±1.0	55.6±0.6	
4%-1.50	55	1.7±0.0	49.5±0.2	52.6±2.3	
4%-2.00	55	1.4±0.0	33.3±0.4	44.1±0.1	
6%-0.75	65	31.7±0.7	47.3±0.0	51.8±2.4	
6%-1.00	65	37.3±0.2	53.6±0.0	59.1±0.8	
6%-1.50	65	20.3±0.7	60.8±0.1	67.4±2.6	
6%-2.00	75	8.0±0.0	59.6±0.2	68.7±2.1	
8%-0.75	70	32.3±0.0	51.9±0.1	56.2±0.2	
8%-1.00	105	32.7±2.4	53.6±0.1	67.1±0.6	
8%-1.50	145	34.1±0.7	59.3±3.2	70.5±2.5	
8%-2.00	180	11.7±0.2	55.4±0.2	65.0±0.8	
PC	50	35.4±1.2	58.9±1.8	66.3±2.3	

Slump Classes: S1 10-40mm; S2 40-90mm; S3 100-150mm; S4 160-210mm Strength Classes: XS1 C37, XS2 C45, XS3 C45, XD1 C37, XD2 C37 and XD3 C45:

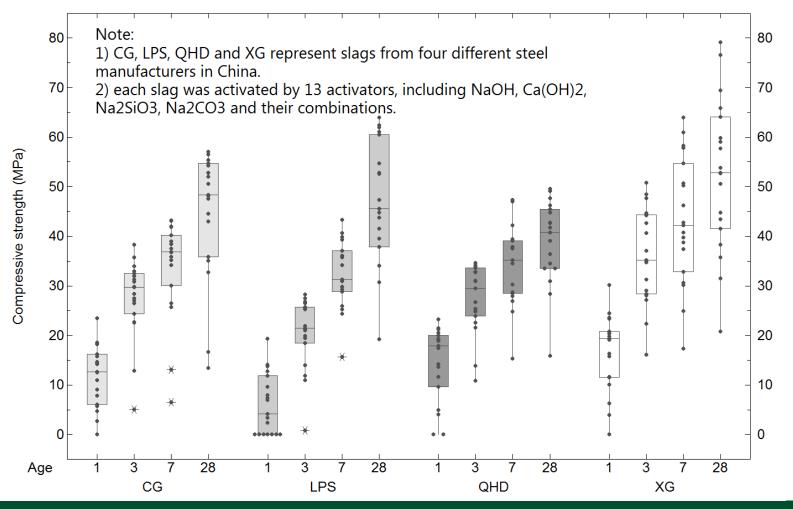
School of Civil Engineering

Suitability Based on D _{nssm} , pH, Corrosion Rate and S ²⁻					
Mix ID (Na ₂ O-MS)	D _{nnsd} (x 10 ⁻¹² m²/s)	pH (use 11 for qualifaction)	Corrosion Rate (mm/year)	S²- (ppm)	
4%-0.75	6.59	11.7	0.020	2458	
4%-1.00	4.25	11.9	0.025	1953	
4%-1.50	2.54	10.5	0.019	3786	
4%-2.00	4.14	9.9	0.010	4348	
<mark>6%-0.75</mark>	3.07	11.9	0.011	5661	
6%-1.00	3.18	11.9	0.014	6210	
<mark>6%-1.50</mark>	2.01	11.4	0.009	6245	
6%-2.00	3.76	9.9	0.010	6292	
<mark>8%-0.75</mark>	2.24	12.4	0.012	664.0	
8%-1.00	2.58	12.2	0.015	590.0	
8%-1.50	1.88	10.8	0.011	618.3	
8%-2.00	3.26	11.9	0.030	608.0	
PC	9.70	12.5	0.012	329.6	

Outline of Presentation

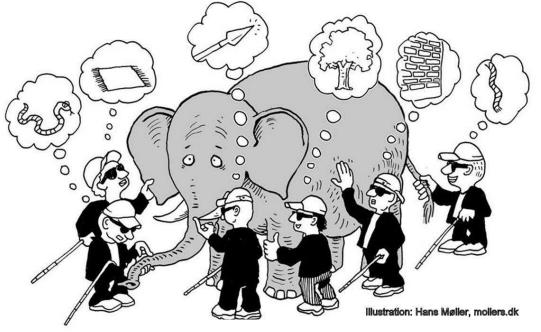
- Need to assess corrosion resistance of alkaliactivated slag cementitious materials
- > Chloride transport in various AAS concretes
- Corrosion of embedded steel in AASC
- Suitability of mixes for chloride exposure environments

Conclusions and Recommendations


wikiiwickomini wyr uccewo

Conclusions

- 1. Compared to PC concrete, the AAS concretes achieved lower non-steady state diffusion coefficient.
- The lower chloride diffusivity was accompanied by higher electrical resistivity, but not in all cases by lower rate of corrosion.
- 3. The galvanic corrosion of steel in AAS concretes depended on a number of factors, including the concentration of sodium and the molar ratio of the water glass used as the activator.
- It is important to ensure that there is no outward leaching of alkalis for AAS concretes to perform well in chloride exposure environments.


Unpublished Data From an On-going Research

Recommendation

Further research on the influence of pore solution of AAS concretes on corrosion is needed before their widespread use in chloride environments.

Truth is an elephant

Notification of a Forthcoming Event

SIXTH INTERNATIONAL CONFERENCE ON DURABILITY OF CONCRETE STRUCTURES (ICDCS2018) &

NEVILLE SYMPOSIUM ON ADVANCES IN CONCRETE TECHNOLOGY

18 – 20 JULY 2018

UNIVERSITY OF LEEDS, UK

116 presentations from 25 countries provisionally accepted for oral presentations. Sponsored by: the Institution of Civil Engineers, Institute of Concrete Technology, the Concrete society, RILEM and the American Concrete Institute.

- UNIVIERSIII MEURICE LEELUS

Thank You

Any Questions?

Professor P.A. Muhammed Basheer, FREng Head of School of Civil Engineering Chair in Structural Engineering University of Leeds, England, UK p.a.m.basheer@leeds.ac.uk