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ABSTRACT: Reaction classification has often been consid-
ered an important task for many different applications, and
has traditionally been accomplished using hand-coded rule-
based approaches. However, the availability of large
collections of reactions enables data-driven approaches to be
developed. We present the development and validation of a
336-class machine learning-based classification model inte-
grated within a Conformal Prediction (CP) framework to
associate reaction class predictions with confidence estima-
tions. We also propose a data-driven approach for “dynamic”
reaction fingerprinting to maximize the effectiveness of
reaction encoding, as well as developing a novel reaction
classification system that organizes labels into four hierarchical levels (SHREC: Sheffield Hierarchical REaction Classification).
We show that the performance of the CP augmented model can be improved by defining confidence thresholds to detect
predictions that are less likely to be false. For example, the external validation of the model reports 95% of predictions as correct
by filtering out less than 15% of the uncertain classifications. The application of the model is demonstrated by classifying two
reaction data sets: one extracted from an industrial ELN and the other from the medicinal chemistry literature. We show how
confidence estimations and class compositions across different levels of information can be used to gain immediate insights on
the nature of reaction collections and hidden relationships between reaction classes.

■ INTRODUCTION

Reaction classification has been a topic of considerable interest
for many years.1 Applications range from efficient indexing of
reactions in databases and the management of search output,
through to knowledge discovery. In particular, there is a
growing interest in applying artificial intelligence (AI)
techniques to tasks such as reaction prediction, synthesis
planning, and de novo design.2 Until recently, the availability
of large collections of reactions has been restricted to
proprietary electronic lab notebooks (ELNs) and commercially
available databases such as Reaxys, CASReact, and SPRESI,
limiting the possibilities for data mining of reactions. However,
large collections of reactions are now available in the public
domain, following the work of Lowe and colleagues on the
automated extraction of reactions from the U.S. Patent
literature. These data are now being used in a number of
new approaches to retrosynthesis,3−5 reaction prediction,6,7

and reaction classification.8,9

Historically reactions were named according to the type of
product generated, the functional group or reagent used, or the
inventor of the reaction.1 More systematic approaches to

reaction-classification can be divided into model-based and
data-driven approaches. The model-based methods are based
on predetermined definitions of the reaction center. A variety
of models have been generated that vary in the amount of
detail that is encoded. For example, Dugundji and Ugi
developed the BE-matrices, which describe reactions according
to changes in bonds and nonbonded valence electrons.10

Model-based classification methods do not consider changes
beyond the reaction center or subclass.
In data-driven approaches, the classification is generated

automatically by the analysis of sets of reactions. For example,
InfoChem’s CLASSIFY algorithm is an example of a data-
driven approach. It makes use of a reaction mapping algorithm,
which identifies the reaction center as the atoms and bonds
that change in a reaction.11 The level of specificity can be
varied by extending the reaction center in spheres one or two
bonds away from the reaction center, the more extended
descriptions leading to more specific descriptions. Hashcodes
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are then calculated for each level of description of the reaction
center to produce reaction classification codes. A drawback of
this approach is the large number of codes that is generated. A
similar approach has been adopted by Christ and co-workers in
their analysis of the content of an Electronic Lab Notebook
(ELN).12

Broughton et al.13 introduced reaction vectors as a
generalization of the earlier Daylight difference fingerprint,
whereby a reaction is described by the difference between the
Daylight fingerprint of the product molecules and the reactant
molecules, assuming a stoichiometric reaction. Different types
of descriptors were explored in the reaction vector approach
including atom pairs and topological torsions and their relative
performance compared in classification tasks. Ridder and
Wagener14 reported a system for predicting potential
metabolites in biological reactions based on Sybyl atom
types and augmented atom types up to one bond away from
the reaction center. Later, Hu et al. have used reaction
difference fingerprints to assign EC (Enzyme Commission)
numbers to biochemical reactions.15

With the availability of large collections of reactions, the
application of machine learning approaches has become
possible where, given a set of classified training examples, an
algorithm can be trained to generate a classification model.
Thus, Schneider et al. investigated a range of reaction
difference fingerprints for data-driven reaction classification
based on 50 reaction classes.8 They reported their best
performing fingerprint as AP3 (atom pair 3) fingerprints of the
products and reactants together with a feature-based finger-
print to represent the physicochemical properties of the
reaction agents (for example, solvents, catalysts, and reactants
with less than 20% atoms mapped). Their method was used to
classify reactions based on the NameRxn labeling.
Our interest in classifying reactions is 2-fold. First, an

effective reaction classification tool can be very informative for
exploring existing collections of reactions, whether these have
been extracted from the literature or are historical collections
such as those contained in ELNs. The organization of reactions
into classes allows more effective knowledge exploitation; for
example, monitoring the frequency of occurrence of reaction
types or difference in yields can be used to inform decision
making associated with synthesis planning, by, for example,
identifying under-explored reactions or the success or decline
of a particular reaction class over time. Second, the
organization of reactions into classes can be used to improve
de novo design tools, which aim to simulate the behavior of
medicinal chemists by directing the design toward particular
reaction classes. We have previously reported a reaction-based
approach to de novo design in which reaction transforms are
automatically extracted from large collections of reactions and
stored as reaction vectors. The reaction vectors can then be
applied to previously unseen starting materials to generate de
novo product molecules.16 A reaction classification tool that is
based on reaction vectors can be exploited in both fully
automated and augmented de novo design to drive the designs
to areas of greater synthetic interest.
Here, we describe the development of a data-driven reaction

classification tool using machine learning. Our approach is
broadly similar to that described by Schneider et al. but with
some important differences. First, we extend the approach to
classify a much larger set of reaction types than the published
method. Second, we explore the use of descriptors that are
compatible with our de novo design tool. Third, we employ

conformal prediction methods to filter out classifications for
which the model has low reliability. We demonstrate the
application of the model by comparing the composition of two
data sets: reactions extracted from the Evotec corporate ELN
and a set of reactions extracted from the medicinal chemistry
literature. The use of the classification tool to improve the
effectiveness of de novo design will be described in a future
publication.

■ DATA

A large collection of chemical reactions data has been extracted
from United States patents and made publicly available. Two
data sets were selected for this study: USPD Grants 1976−
2016 (referred to here as USPD Grants); and USPD
Applications 2001−2016 (referred to here as USPD Apps).17

USPD Grants and USPD Apps represent reactions extracted
from granted patents and patent applications, respectively, and
were both released in June 2017. The characteristics of the
reactions contained in an earlier version of USPD Grants (i.e.,
1976−2015) have already been reported.18 The USPD Grants
contains approximately 1.8 million reactions, and the USPD
Apps contains approximately 1.9 million reactions. Classi-
fication data generated using NameRxn software (2.0)19 were
obtained from NextMove for the two data sets. NameRxn is a
rule-based approach to reaction classification and adopts a
nomenclature inspired by the RXNO Ontology developed by
the Royal Society of Chemistry20 and earlier classification
system proposals.21,22 Reactions are named using general
descriptions (i.e., such as O-substitution) and specific classes
(i.e., such as 1,2-benzoxazole synthesis). NameRxn assigns a
reaction to one of over 700 distinct reaction types. These are
given a position in a derivative of the hierarchy first published
by Carey et al.21 and later refined by Roughley et al.22 These
positions correspond to either named reactions (e.g., Wittig
olefination) or, where the reaction does not have a trivial
name, a description of the reaction (e.g., piperidine synthesis).
The hierarchy consists of three levels: 11 major reaction
classes, 80 reaction subclasses, and more than 700 reaction
types. For example, bromo Suzuki coupling is classified as
3.1.1, where 3.1 is any Suzuki coupling and 3 is C−C bond
formation. Reaction types are also assigned an identifier in the
RXNO reaction ontology. Not all of the reactions were
successfully classified, and only those reactions for which
classification labels were available were used here.

■ METHODS

Data Preprocessing. As stated in the Introduction, as well
as generating a reaction classification tool that could be used in
its own right, which is the subject of this Article, our longer-
term aim is to also use the tool to improve the effectiveness of
de novo design. It is therefore important that the methods
developed are compatible with our de novo design tool, which
is based on reaction vectors.23 The reaction vectors required
for effective de novo design should be derived from
stoichiometric or balanced reactions, that is, reactions that
have the same number of atoms in the reactants as in the
products, so that the reaction center is accurately described.
Given that reaction data are typically messy, for example,
components such as catalysts and reagents may, or may not, be
included in the reaction and some components such as
byproduct molecules may be missing, it was necessary to
“clean” the reactions prior to model building.
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Our reaction cleaning workflow consists of a number of
steps. First, reaction mapping is carried out using the Indigo
Reaction Automapper node in the Indigo Toolkit in KNIME.24

Note that the USPD data sets already contain mappings
generated by Indigo; we recreate them here for convenience
only so that we have a single workflow that can be used on data
sets regardless of whether or not atom mappings already exist.
Also note that the mappings are only used to identify the
components that change during a reaction so that, although
more recent atom mapping methods have been published, we
do not believe that these would impact on the results.25 Next,
components that do not contain any mapped atoms and that
are therefore not involved in the reaction center are removed,
for example, solvents, catalysts, etc. Multiple reactions that

have been assigned the same index are then separated. The
final steps attempt to balance the reactions as described by
Patel et al.23 and consist of two procedures. The first is to
separate reactions that are unbalanced due to the production of
different isomers into separate reaction entries. The second is
to handle reactions that are not fully described due to missing
components by adding the relevant component(s) to the
reaction. Examples of these two categories of reactions are
shown in Figure 1. Reactions that cannot be balanced at this
stage are rejected, as are reactions with more than three
reactants and/or products. The effect on the sizes of the data
sets following the data preprocessing is shown in Table 1.
Similar processing of the USPD Grants data set was performed
by Watson et al.3 in their use of the data for retrosynthesis.

Figure 1. Examples of reaction preprocessing. (a) The reaction is mapped and unmapped components are removed; (b) reactions including
multiple products as isomers as separated into distinct reactions; and (c) reaction balancing is used to insert missing components.
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Following the application of reaction cleaning, reaction
vectors were calculated for the remaining reactions. Reaction
vectors have been described previously and are based on atom
pair descriptors.26 A reaction vector is calculated as follows: a
reactant vector is calculated by summing the atom pairs for the
reactants; a product vector is calculated by summing the atom
pairs for the products; and the reaction vector is then
calculated by subtracting the reactant vector from the product
vector. Our atom pairs have the following general form:

− −

− −

X h p r BO X h p r

X h p r X h p r

AP2: 1( , , ) 2( ) 2( , , );

AP3: 1( , , ) 3 2( , , )

where X1 and X2 are the element symbols of the two atoms; h
is the number of non-hydrogen connections; p is the number
of π bonds incident on the atom; r is the number of rings of
which the atom is a member; and BO is the bond order (1 =
single bond; 2 = double bond; 3 = triple bond; and 4 =

aromatic bond). AP2 atom pairs describe a pair of connected
atoms; AP3 atom pairs describe pairs of atoms separated by
two bonds; and the reaction vector consists of both sets of
atom pairs, that is, AP2+AP3.
Reaction vectors typically consist of a small number of atom

pairs, and in their raw form they are represented as lists of
strings with an associated count. The number of atom pairs in
a reaction vector is variable and depends on the size of the
reaction center, and the count can be negative or positive
depending on whether the atom pair is lost from the reactants
or gained in the products, respectively. For model building, the
reaction vector strings were converted into real vectors by first
separating the atom pair strings from their values, pivoting the
atom pairs into columns, and filling the corresponding cells
with the values. The columns were then sorted alphabetically
for canonicalization purposes. A set of reaction vectors for a
collection of reactions is generated by repeating this process
for each reaction vector to build a matrix where each row
corresponds to a reaction vector, and each column represents a
specific atom pair. New columns are appended to the matrix as
new atom pairs are encountered. If an atom pair does not
occur in a given reaction vector, the corresponding cell is filled
with a zero value. A simplified schematic of the fingerprint
generation process is shown in Figure 2.
The reaction vector is referred to as dynamic because the

number of columns is data set dependent and represents the
minimum number of atom pairs necessary to describe the
reactions within it. This means that different data sets will
return different numbers and types of atom pairs and will not,
therefore, be directly comparable. For supervised machine
learning applications, all of the data (including training and
external data to which the model is applied) must be
represented by vectors consisting of the same number, type,
and order of atom pairs. This is achieved by using the training
data atom pairs as reference and making adjustments to the

Table 1. Effect on Data Set Sizes Shown for Different Steps
of the Reaction Cleaninga

reactions categories classes

USPD
Grants

original data 1808937 64 753

classified reactions 1215355 64 753

six reactants/products
filtering

1149212 64 751

reaction balancing 1114953 64 735

USPD Apps original data 1939253 65 749

classified reactions 1374294 64 748

six reactants/products
filtering

1298809 64 745

reaction balancing 1263602 64 727
aThe number of distinct reaction classes and categories represented is
also reported.

Figure 2. Reaction vectors represented as strings are converted to true vectors. The vector elements are integers with negative values indicating
atom pairs that are lost from the reactants; positive values indicating atom pairs that are gained in the products; and zeros indicating atom pairs that
are not present in the vector.
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test/external data. Atom pairs present in the test data but not
in the training data are removed because they are not
accounted for by the model; and training data atom pairs not
included in the test data are simply added as columns to the
test data, and all of the new cells are filled with zeros. An
example of reaction vector data set adjustment is shown in
Figure 3 where the reference and processed data sets are
indicated as “Master” and “Slave” data sets, respectively.
Model Training. The USPD Grants data set was used for

model training and internal validation, and the USPD Apps
data set was used for external validation.
50-Class Models. We initially developed a 50-class model

to determine the best choice of input descriptors and machine
learning method. This also allowed us to compare results with
Schneider et al. because their published work is based on a 50-
class model.8 Although we had previously established that
AP2+AP3 reaction vectors were most effective for de novo
design, it is not necessarily the case that these descriptors will
be most effective for reaction classification. Therefore, we
investigated the effectiveness of different versions of the atom
pair descriptors. We considered AP2, AP3, and AP4 atom pair
descriptors (AP4 atom pairs describe atom pairs separated by
three bonds) to examine the effect of increasing the
environment encoded along with the reaction center itself
(AP2). We also used the combined AP2+AP3 descriptors,

which are the descriptors used by our structure generation
method.
For each descriptor type, the clean reaction data were

converted to the appropriate descriptors, reaction vectors were
calculated, and duplicates were removed. The “no. of atom
pairs” column in Table 2 indicates the number of unique atom

pairs required to describe the data. As expected, the use of AP2
descriptors alone leads to the greatest reduction in the number
of unique reaction vectors because only the immediate reaction
center is encoded. There is also a small reduction in the
number of reaction classes encoded. AP3 and AP4 descriptors
represent atom pairs separated by two and three bonds,
respectively, and therefore capture more of the environment of

Figure 3. The “Master” data set is the training data, and the “Slave” data set is the test/external data. The atom pairs that are unique to the Master
are shown in blue, those unique to the test data are in green, and those common to both data sets are in orange. The green columns are removed
from the test data and blue columns are added. All of the entries in the blue columns are set to zero because these atom pairs are not present in the
test data.

Table 2. Numbers of Unique Reaction Vectors and the
Reaction Classes Covered for Different Types of Atom Pair
Descriptors

data set (descriptor)
unique reaction

vectors
no. of atom

pairs classes

USPD Grants (AP2) 41726 1592 715

USPD Grants (AP3) 113975 2613 726

USPD Grants (AP4) 112119 2898 726

USPD Grants
(AP2+AP3)

115602 4205 727

USPD Apps (AP2+AP3) 110802 4046 718
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the reaction center. AP2+AP3 descriptors represent the
combination of AP2 and AP3 descriptors. Each of the data
sets in Table 2 was preprocessed as follows. First, the 50 most
populated reaction classes were retained and then randomly
sampled so that they were equally sized according to the
smallest class size, illustrated in Figure 4. Down-sampling was
used to reduce any bias toward the most populated classes
during training. Second, columns containing only zeros were
removed.

Table 3 shows the number of reaction vectors and atom
pairs for each descriptor-type where it can be seen that the data

set contents vary in the number of reaction vectors in each
class, and therefore the total number of examples. The data
sets also vary in the coverage of reaction classes, as shown in
Figure 5. The AP2 fingerprint data set is characterized by a
significantly lower number of unique reaction vectors as
compared to the other data sets. This is due to the descriptor
encoding the reaction center only, so that it is much less
discriminating than the descriptors that encode more of the
reaction environment, and a much smaller number of unique
reaction vectors are produced. Also, the coverage of reaction
classes is different from the other descriptors. The extended
reaction vector descriptors cover the same number of reaction
classes; however, six of the classes represented by these
descriptors are omitted for the AP2 descriptors, and replaced
by other reaction classes, due to AP2’s focusing on the reaction
center only. For example, the reaction class “ketone to alcohol
reduction”, which describes a CO group reduced to a CH−
OH group, is represented by a small number of unique
reaction vectors when only the reaction center itself is encoded
and it does not appear in the top 50 populated classes.
The four data sets were then used to train and validate the

models as follows. Each data set was partitioned into a training

set (40%) and a test set (60%) using stratified sampling on the
reaction classes to preserve the distribution of examples across
the classes. For the AP2+AP3 data set, the training set was
arbitrarily fixed at 10 000 reactions (∼40%) to reproduce
conditions similar to those reported by Schneider et al.8 The
results of the partitioning process are shown in Table 4. The

training sets then formed the input to the classifiers, and the
resulting models were used to infer the NameRxn reaction
classes for the entries in the corresponding test sets.
The USPD Apps data were used as an external test set for

the models built using AP2+AP3 descriptors and were
prepared by retaining only those classes contained in the
USPD Grants AP2+AP3 training data set. AP2+AP3
descriptors were calculated, and the atom pairs were adjusted
to be compatible with those in the training data. Reaction
vectors, which were already described in the USPD Grants data
set, then were excluded so that there was no overlap between
the external test set and the training set. The final USPD Apps

Figure 4. Creation of a balanced collection of 50 reaction classes from
the USPD Grants data set: (a) 727 unbalanced classes; (b) selection
of 50 most populated classes; and (c) balanced down-sampling
according to the minority class.

Table 3. Total Number of Unique Reaction Vectors
(Number of Rows in the Input Data) Shown for the
Different Types of Reaction Vector Descriptors, along with
the Number of Unique Atom Pairs (Number of Columns in
the Input Data), and the Number of Unique Reaction
Vectors in Each Class, for the Fifty Most Populated
Reaction Classes

descriptor
total number of reaction

vectors
retained atom

pairs
reaction vectors

per class

AP2 10000 1167 200

AP3 25650 2103 513

AP4 25500 2292 510

AP2+AP3 25700 3146 514

Figure 5. Reaction class representation. Represented classes are
represented in blue, and missing classes are in white.

Table 4. Training Set and Test Set Sizes Shown for the
Different Types of Reaction Vector Descriptors, along with
the Number of Unique Reaction Vectors in Each Class, for
the Fifty Most Populated Reaction Classes

USPD
Grants

training
set

reaction vectors
per class test set

reaction vectors
per class

AP2 4000 80 6000 120

AP3 10660 205 14990 308

AP4 10200 204 15300 306

AP2+AP3 10000 200 15700 314
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data consisted of 15 193 reaction vectors. Note also that classes
were not down sampled due to the low number of examples in
the minority classes in the USPD Apps.
Hierarchical Reaction Classification System. Our

reaction vector approach is not fully compatible with
NameRxn. For example, some reactions that fall into different
categories in NameRxn are indistinguishable using reaction
vectors, such as reactions that vary according to the reagent
used or stereochemical effects. Furthermore, although
NameRxn adopts a three-level classification system, it is
based on traditional nomenclature, which is not optimal for
browsing because subclasses and reaction types are often
described by the names of the scientists who discovered the
reactions. In addition, NameRxn labels are not optimal for
alphabetic sorting because they often contain redundant
information. For example, Heck, Negishi, Stille, Suzuki, and
Sonogashira couplings are all cross-coupling reactions that
involve the formation of a carbon−carbon bond, and, although
they are all placed into the major class “C−C bond formation”,
they are then assigned to separate subclasses such that the
relationship between them, that is, that they are all couplings, is
lost.
The NameRxn ontology was, therefore, replaced by a novel,

manually curated, four-level Hierarchical Reaction Classifica-
tion System, which we call SHREC (Sheffield hierarchical
reaction classification system) and which is more consistent
with the reaction vector de novo design framework and which
is a true hierarchy. For each NameRxn class, multiple examples
of reactions were evaluated to identify the general cores of
their transformations and thus produce a new set of reaction
classes. Reaction classes that describe transformations that
could not be processed using reaction vectors (e.g., stereo-
chemistry inversions, resolutions, etc.) were not considered.
The procedure condensed the NameRxn specific classes into
598 new classes. The SHREC System is distributed across four
levels ranging from general reaction categories to increasingly
more specific subclasses and allows the most specific reaction
classes to be merged into more generic categories (e.g., “C−C
bond formation (condensation)” and “C−C bond formation
(coupling)” can be merged into “C−C bond formation” by
moving up a level in the hierarchy and vice versa). The
different levels in the hierarchy are shown by the use of
parentheses. The hierarchical arrangement enables the
classification algorithm to be run once only while allowing
the results to be investigated across different levels of
generalization according to the selected level. The first level
in the hierarchy describes the transformation according to
some basic chemistry definitions (e.g., C−C bond formation,
functional conversion, protection, etc.); the second level
describes the type of the transformation (e.g., coupling), or,
in some cases, a specific substrate involved in the reaction (e.g.,
alcohol to alkene). The third and fourth levels contain
additional information on the substrates/products (e.g.,
isocyanate + amine), reaction inventors (e.g., Suzuki), or
functionalities (e.g., Bromo). Examples are given in Table 5 for
the C−C bond formation reaction described above.
Note that the four-level hierarchical labeling in SHREC is

not exhaustive in terms of nomenclature due to its bias toward
the USPD and NameRxn. A table showing the mapping of the
original NameRxn labels to the four-level SHREC is shown in
the Supporting Information.
336-Class Classification Models. Following validation on

50 reaction classes, the approach was extended to include a

much larger range of reaction classes. The cleaned USPD
Grants data set was converted to unique AP2+AP3 reaction
vectors as before. The reactions were then mapped to the
SHREC labeling system. This time, all reaction classes
containing at least 30 examples were retained. This resulted
in 336 classes being represented with a median of 129.5
examples per class; see Table 6. The data were then partitioned

into 40% training and 60% test data using stratified sampling to
preserve the distribution of examples across the classes. This
resulted in 44 792 unique reaction vectors in the training set
with a median number of 52 examples per class; and 67 189
unique reaction vectors in the test set with a median of 77.5
examples per class. Note that the training data now consist of
unbalanced classes, unlike for the 50 class model.
The cleaned USPD Apps data set was also preprocessed to

produce an external test compatible with the extended model.
The reaction classes in the USPD Apps were mapped to the
SHREC labels, and reaction vectors, which were already
described in the USPD Grants data set, were excluded. One
class present in USPD Grants was missing in USPD Apps, the
“C−C bond formation (methylation) (Blanc chloromethyla-
tion)” class, which was not therefore evaluated externally. The
characteristics of the two data sets are shown in Table 6.

Evaluation Measures. The performance of the models
was assessed using recall, precision, and the F1-score, all of
which can be derived from the numbers of true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN); see Table 7. Macro-averages of recall, precision, and the
F1-score were calculated by first calculating the values for each
class independently and then taking the unweighted means.
Macro-averages are appropriate for balanced classes because all
classes are treated equally. Micro-averages were calculated

Table 5. Mapping of NameRxn Labels to SHREC Labels for
a Set of C−C Bond Formation Reactions

SHREC

NameRxn class level-1 level-2 level-3 level-4

bromo Heck
reaction

C−C bond
formation

coupling Heck bromo

Negishi coupling C−C bond
formation

coupling Negishi

chloro Stille
reaction

C−C bond
formation

coupling Stille chloro

iodo Sonogashira
coupling

C−C bond
formation

coupling Sonogashira iodo

iodo Suzuki
coupling

C−C bond
formation

coupling Suzuki iodo

Table 6. Total Number of Unique AP2+AP3 Reaction
Vectors (Number of Rows in the Input Data) Shown for the
Different Types of Reaction Vector Descriptors, along with
the Number of Reaction Classes, the Median Number of
Reaction Vectors Per Reaction Class, and the Number of
Atom Pair Descriptors for the USPD Grants and USPD
Apps Data Sets

classification
system data set

number
of

reaction
vectors

number
of

reaction
classes

median
number of
examples per

class
number of
descriptors

SHREC USPD
Grants

111981 336 129.5 4119

USPD
Apps

25026 335 29 4119
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from the global counts of TPs, FNs, and FPs and are more
appropriate when the classes are unbalanced because they give
more emphasis to the majority classes. Weighted macro-
averages were also calculated to account for unbalanced classes
by weighting the individual class values according to the
relative number of examples available in the class.
Confidence in Predictions. The Random Forests (RF)

classifier implemented in scikit-learn infers class probabilities
using the soft-voting method, which averages the probabilities
associated with each class and assigns the class with highest
average probability. To assess the level of confidence in the
predictions, the best model identified during training was
retrained using the entire USPD Grants data, and predictions
were made on the USPD Apps data. For each reaction class,
the ratios of true and false predictions were calculated for
increasing probability scores to determine a confidence level
for a given prediction.
The RF probability scores are the direct outputs of the

model and reflect the variability of the model itself. We also
investigated the use of conformal prediction (CP) to assign
reliability scores.27 Conformal predictors are built on top of
machine learning algorithms and make use of calibration data,
which are used to determine nonconformity scores for each
class, for example, class probabilities given as the percentage of
trees that assign the correct class. When applied to bioactivity
prediction of compounds consisting of two classes, active and
inactive, the usual approach to determining which class to
assign is to calculate a p-value for each class as the number of
nonconformity scores with lower values than the compound to
be predicted, divided by the total number of calibration
compounds in the class. To be assigned to a particular class,
the p-value should be greater than a user-defined significance
level.28−30 Thus, a new compound can be predicted as
belonging to just one class, both classes, or neither of the
classes.
Here, the problem is a multitask classification where the aim

is to assign a reaction to a single reaction class, which is one of
many possible reaction classes. We assign the reaction class as
the one with the highest p-value and assess the reliability of the
prediction using the highest p-value as a confidence score; and
the difference between the two highest p-values as a credibility
score. Thus, the credibility score indicates the separation
between the class associated with the highest p-value and the
class associated with the second highest p-value. The ideal case
would be when, for a given instance, the resulting confidence
value is high (i.e., the prediction is close to the likely
observations) and the credibility score is also high (i.e., the
second highest p-value is very low, and the separation between
the two highest p-values tends to 1).
The USPD Grants data set was split into 90% for training

and 10% for the calibration set using a stratification algorithm
on the reaction class column. Although a higher percentage of

the training set is usually recommended when using CP for
QSAR prediction, for example, 30%,28 increasing the accuracy
of the conformal predictor by decreasing the accuracy of the
underlying algorithm was not thought to be desirable. (It will
become evident in the Results that >80% of the training data
were required to achieve a good model.) The training data in
this case consisted of 100 782 unique reaction vectors with a
median number of 116.5 reaction vectors per class. The
calibration set consisted of 11 199 unique reaction vectors and
a median of 13.0 per class.

Implementation. The machine learning classifiers from
the scikit-learn package were used: Random Forests (RF), K-
Nearest Neighbors (k-NN), Support Vector Machine (SVM),
and Gradient Boosted Tree (GB). Default parameters were
used for the 50-class models as shown in Table S1. The
hyperparameters of the RF classifier were optimized (results
not shown) for the 336-class model and are reported in Table
S2. A Python implementation of the Inductive Conformal
Prediction (ICP) framework (https://github.com/donlnz/
nonconformist) was integrated with the optimized Random
Forests (RF) classifier for the CP-augmented classification
algorithm (RF-CP).

■ RESULTS

Data Characteristics. From Tables 1 and 2, it can be seen
that around 30% of the reactions in each data set did not have
classification labels. When the classified reactions were
transformed to descriptors and only the unique reaction
vectors retained, there was an approximately 90% reduction in
the number of data points (for example, considering the USPD
Grants data, 1 114 953 cleaned and classified reactions result in
115 692 unique AP2+AP3 reaction vectors). This indicates
that both data sets (Grants and Applications) contain a high
degree of redundancy in terms of unique reaction centers. The
high redundancy reflects the nature of pharmaceutical patents,
which are aimed at covering specific regions of the chemical
space exhaustively, often by combining very similar molecules
with similar reagents. The mapping of reactions to unique
reaction vectors is also highly skewed as shown in Figure 6
with a small number of reaction vectors associated with
thousands of reactions and a long tail, where the majority of
the reaction vectors are associated with fewer than 10 reactions

Table 7. Performance Measures Used To Evaluate the
Models

performance measure

=
+

recall
TP

TP FN

precision = TPTP + FP

= ×
×

+
F1 2

recall precision

recall precision

Figure 6. Number of reactions (log 10 format) represented by each
AP2+AP3 reaction vector in the USPD Grants and USPD Apps data
sets, respectively.
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and 40% of the reaction vectors are associated with a single
reaction only.
The distribution of unique reaction vectors across the

reaction classes is also high skewed (Figure 7). Fewer than 5%

of the reaction classes are associated with more than a
thousand unique reaction vectors, while ∼20% of the reaction
classes contain 5 or fewer examples, thus evidencing the
presence of very unbalanced data.
The overlap between the reaction vectors for the USPD

Grants and USPD Apps data sets is shown in Figure 8.

50-Class Models. Table 8 presents the performance of the
50-class classification models on the USPD Grants test set
based on the four different descriptors and the four different
machine learning methods. The Random Forests (RF)
classifier performed slightly better than the other models in
all cases except the AP4 descriptor data set. The Gradient
Boosted Trees (GB) and Support Vector Machine (SVM) also
performed well in most cases. The best of the single descriptors
was AP3, indicating that it is necessary to encode some of the
environment of the reaction to improve discrimination
between reactions, as would be expected for reaction classes
that differ by features that are external to the reaction center.
The reduced performance of the AP4 descriptors can be
rationalized as an increase in noise with the extended
environment not being relevant for class discrimination. The
AP2+AP3 combined descriptors performed better than any of
the single descriptors, and the performance is comparable to
that of Schneider et al.8

The normalized confusion matrix for the RF and AP2+AP3
is shown in Figure 9. The lowest scores are reported for classes

that cannot be distinguished effectively using reaction vectors.
Examples include “bromo Suzuki coupling” and “bromo
Suzuki-type coupling”; and “N-methylation” and “iodo N-
methylation”. The first pair differs only in the reaction
conditions through which the reactions occur, which are not
encoded by reaction vectors, whereas the second pair
represents the same reaction class in a generic and in a more
specific form. These findings led to the introduction of the
SHREC hierarchical classification scheme as described in the
Methods.
Classes with small reaction centers such as “methylation” or

“alcohol + amine condensation”, where extended environments
are characterized by significantly different atom pair features,

Figure 7. Reaction vector class distributions for the filtered USPD
Grants and USPD Apps sets. Classes are sorted in descending order
according to their numbers of vectors.

Figure 8. Overlap between unique AP2+AP3 reaction vectors in the
USDP Grants and USPD Apps data sets.

Table 8. Macro Averages of Precision, Recall, and the F1-
Score for Different Descriptors and Different Machine
Learning Methods for the Fifty Class Modelsa

descriptor classifier precision recall F1-score

AP2 RF 0.80 0.80 0.80

k-NN 0.61 0.59 0.59

SVM 0.77 0.76 0.76

GB 0.80 0.78 0.79

AP3 RF 0.87 0.87 0.87

k-NN 0.76 0.75 0.75

SVM 0.87 0.87 0.87

GB 0.86 0.85 0.85

AP4 RF 0.80 0.80 0.79

k-NN 0.67 0.65 0.65

SVM 0.81 0.81 0.81

GB 0.77 0.76 0.76

AP2+AP3 RF 0.90 0.90 0.90

k-NN 0.80 0.79 0.79

SVM 0.89 0.89 0.89

GB 0.90 0.89 0.90
aPerformance is shown on the internal validation data (i.e., the test
data set extracted from USPD Grants as shown in Tables 3 and 4).

Figure 9. Normalized confusion matrix for the RF and the 50 reaction
classes.
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also contribute negatively to the model performance. In these
cases, the large difference between examples can lead the
classifier toward a misclassification of the unseen examples.
An external validation was carried out using the 15 193

USPD Apps data set to confirm the selection of AP2+AP3 as
the default descriptor-type for reaction classification. The
distribution of examples in this data set is unbalanced, and
these data are therefore a more realistic reflection of the
distributions of reactions in real data sets to which the model
might be applied. The prediction performances were evaluated
using micro-average and macro-weighted recall, precision, and
F1-scores. Near identical results were found for both the
micro- and the macro-weighted scores, and only micro-average
results are shown in Table 9.

Similar trends were seen as for the internal validation. k-NN
was the lowest performing classifier (although no attempt was
made to optimize the performance of the k-NN), whereas the
scores reported for RF, SVM, and GB are almost comparable
to those found in the internal validation. These results support
the selection of the AP2+AP3 as an appropriate descriptor for
classification and RF as the best choice of machine learning
method, taking both effectiveness and efficiency into account.
336-Class Classification Models. Having established the

suitability of the AP2+AP3 descriptors for reaction classi-
fication, the approach was extended to a much large data set
consisting of a much large number of reaction classes, as shown
in Table 6. The NameRxn reaction classes were converted to
the SHREC classes described in the Methods. Note that the
hyperparameters of the RF were optimized with the final
parameters shown in the Supporting Information. Finally, the
best performing model was further explored using the built-in
probability estimation method in RF and CP.
Models were trained using the RF and AP2+AP3

descriptors, and the performance based on macro-weighted
F1-scores is shown in Table 10, for both the internal validation

(USPD Grants test set) and the external validation (USPD
Apps). The reaction vector descriptors are also compared to
4096 bit RDKit reaction fingerprints, which are conceptually
similar to reaction vectors, although they are fixed-length
hashed fingerprints. The reaction vector descriptors performed
slightly better than the RDKit fingerprints.

The relationship between model performance and number
of training examples was investigated by examining the F1-
scores for the individual classes for both the internal and the
external validations. The recall, precision, and F1-scores
plotted against training class size are shown in Figure 10. As

expected, the scatter plots show slightly improved performance
in the internal validation as compared to the external
validation, and they confirm that the three metrics are highly
correlated. Each plot shows a very broad variance in
performance when the number of training examples in a
class is lower than 100, which is the case for the majority of the
classes, because the median number of examples is 52.
This variation can be explained by the intrinsic nature of

each reaction class and the varieties of reaction centers it
potentially describes. For example, although the “synthesis
(1,2,4-triazole)” class contains only 13 examples in the training
data, the F1-score for 19 unseen examples in the internal
validation set is 0.97. This class performed well because the
variety of its extended reaction centers is generally very narrow
(Figure 11). Conversely, an F1-score of 0.7 is reported for the
“C−C bond formation (methylation)” class for 1094 example
reactions in the internal validation set, even though its
corresponding training set contains 729 examples. This is
because the reaction center itself, a simple methylation, is
small; however, it occurs in many different extended
environments and is, therefore, not an easy class to match
using the current implementation of reaction vectors. All
classes that are described by a small number of AP2 descriptors
and a high variety of AP3 descriptors are affected by this issue.
The scatter plots also highlight that the variance in

performance is strongly reduced when the number of training
examples increases. A minimum threshold of 150 examples per
class returns a lowest F1-score equal to 0.59 for the “C−N
bond formation (amination)” class (internal validation), which,
as for methylation, consists of a small reaction center presented
in a wide variety of extended environments. A threshold of 250
examples per class returns lowest and median F1-scores equal
to 0.70 and 0.93, respectively. Therefore, the use of a bigger
and more curated source of training data is expected to yield
better performing models in the future.
The F1-score represents a global measure of model

performance, which can mask the negative effect caused by a
very small number of poor performing classes, in particular for
those models that are assessed using large test sets with a
strongly unbalanced distribution of examples per class. As
shown above, in general the performance improves with the
number of training examples within a class. Therefore, the use

Table 9. External Validation Set Consisting of 15 193
Reaction Vectors; “Micro” Classification Report

classifier
micro

precision
micro
recall

micro
F1-score

external validation
F1-score

RF 0.86 0.86 0.86 0.90

k-NN 0.69 0.69 0.69 0.79

SVM 0.85 0.85 0.85 0.89

GB 0.85 0.85 0.85 0.90

Table 10. Performance of the RF Model Trained on 336
Reaction Classes Reported As Macro-Weighted F1-Scoresa

data set RDKit 4096 Sheffield AP2+AP3

USPD Grants test set 0.87 0.90

USPD Apps 0.82 0.85
aThe test set is the internal validation, whereas the USPD Apps
represents an external validation consisting of reaction vectors that are
not present in the training data.

Figure 10. Distribution of model performance across the reaction
classes is shown for both the internal validation (USPD Grants test
data, blue) and the external validation (USPD Apps, orange). The x-
axes represent the number of examples in each class in the training
data.
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of class weights was explored to investigate if biasing the
classifier toward the less populated classes would result in
improved overall performance. Three sets of weights were
tested: default settings of 1.0 (i.e., all classes weighted equally)
as a control; balanced weights; and empirical weights. Balanced
weights were calculated in scikit-learn according to the
heuristic shown in eq 1 inspired by King et al.,31 where the
weight (wy) associated with a given class y is calculated by
dividing the total number of examples (n_samples) by the
product of the total number of classes (n_classes) and the
number of examples in the class y (y_samples):

=
_

_ × _
w

n

n y

samples

( classes samples)
y

(1)

Empirical weights were determined by inspecting the
internal validation results to identify classes that produced a
high number of false positives. This was achieved as follows.
The classes were sorted in descending order of the number of
false positives. The 10 classes with the highest number of false
positives are shown in Table 11 with their corresponding F1-
scores. Three classes with relatively large numbers of false
positives and low F1-scores were selected for the manual
weight tuning: “C−N bond formation (methylation)”, “C−N
bond formation (amination)”, and “C−N bond formation (N-
arylation) (bromo)”.
Results are shown in Table 12. All weighting schemes

resulted in the same global performance except the balanced
weights, which showed slightly worse results as compared to

the default (all classes weighted equally). This may be due to
the unbalanced nature of the validation sets: a classifier trained
with some bias toward the most populated classes might
actually perform better than an unbiased classifier in these
contexts. Although the manually assigned weights did not
affect the global performance of the model, some reduction
was seen in the numbers of false positives for the classes where
these were most prevalent and the false positives were more
evenly spread across classes instead of being concentrated in
one or two classes, Figure 12. For this reason, weighting
scheme 4 was chosen for the final model.

Effect of Training Data Size. The optimized RF classifier
was trained with increasing proportions of the USPD Grants
data set and performance reported on the USPD Apps. The
training set size was varied from 2% to 100% in 2% intervals
using stratified sampling with three data sets produced for each
size by varying the seed in the stratification algorithm.
“Weighted” and “micro” F1-scores on the external data set
are reported in Figure 13.

Figure 11. Examples of classes involving more (“C−C bond
formation (methylation)”) or less (“synthesis (1,2,4-triazole)”)
variable reaction centers.

Table 11. Ten Classes with the Highest Number of False
Positives in the Internal Validation Data Set

reaction class
false

positives F1-score

C−C bond formation (methylation) 538 0.68

C−C bond formation (condensation)
(carboxylic acid + amine)

210 0.93

C−N bond formation (N-alkylation) (bromo) 203 0.94

functional conversion (hydrogenation)
(alkene to alkane)

190 0.94

C−N bond formation (N-methylation) 173 0.90

C−N bond formation (N-arylation) (chloro) 172 0.90

C−N bond formation (amide formation)
(Schotten−Baumann)

166 0.93

C−N bond formation (amination) 141 0.56

C−N bond formation (N-arylation) (bromo) 138 0.78

C−O bond formation (etherification) (Williamson) 136 0.91

Table 12. Performance of Models Trained Using Different
Weighting Schemesa

classifier weights

validation set
weighted
F1-score

external data
weighted
F1-score

1 none 0.90 0.85

2 balanced 0.87 0.82

3 C−N bond formation
(N-arylation) (bromo):
0.8

0.90 0.85

C−C bond formation
(methylation): 0.3

C−N bond formation
(amination): 0.6

4 C−N bond formation
(N-arylation) (bromo):
0.6

0.90 0.85

C′−C bond formation
(methylation): 0.1

′C−N bond formation
(amination): 0.4

5 C−N bond formation (N-
arylation) (bromo): 0.8

0.90 0.85

C′−C bond formation
(methylation): 0.1

C′−N bond formation
(amination): 0.8

aNote that the micro F1-scores were identical to the weighted scores.
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Both plots show consistent trends, demonstrating that the
combination of RF and reaction vectors produced efficient
models at almost any percentage of the training data, even
close to zero percent. “Micro” and “weighted” F1-score trends
are closely comparable, except for very low amounts of training
data (i.e., lower than 10%) where the “weighted” scores are
slightly worse than the “micro” scores. The best “micro” F1-
scores were found using a percentage of training data higher
than 86%, whereas the best “weighted” F1-scores were found
with a percentage of training data higher than 92%. The
general performance trends show that after a steep increase in
performance between 0% and 20%, the curve reaches a plateau
beyond which there are diminishing gains.
Confidence in Predictions. The model was trained using

the entire USPD Grants data, and predictions were made on
the USPD Apps data. The confidence levels associated with
true and false predictions were then evaluated for each reaction
class as follows. The data were sorted on ascending probability

score and then binned into 98 bins ranging from 0.03 to 1.00.
The absolute numbers and ratios of true and false predictions
were calculated for each bin/probability level and are shown in
Figure 14. The left graph shows that the number of correct

predictions increases steadily as the probability scores increase;
however, it does not show how the false predictions change
due to their lower absolute numbers as compared to the true
predictions. The right graph shows the ratios of true
predictions to false predictions where it can be seen that a
probability of 0.22 results in 49% true and 51% false
predictions.
Table 13 shows how the classification performance improves

by removing entries with low probability values. When the
model was trained on the entire USPD Grants set (∼111 K
examples), the “weighted” F1-score was 0.88 even without
applying any confidence score filtering, which can be already
be considered good performance for the classification of an
external data set. The performance of the model increases as
the probability cut-off is increased, by sacrificing an increasing

Figure 12. Frequency distribution of false positives across the reaction classes in the external validation set.

Figure 13. “Micro” (left) and “weighted” (right) F1-scores trends at
increasing amounts of training data on the prediction of the external
data set.

Figure 14. Absolute numbers (left) and ratios (right) of true and false
predictions associated with each level of probability.
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percentage of reactions for which predictions are not reported.
The performance improves even for low cut-off values, ranging
from 0.15 to 0.35, where the percentage of filtered reactions is
under 15%. The results provide insights on how to set
numerical cut-offs to enhance the reliability of the model, for
example, by only assigning classes to reactions that have a high
chance of being correctly predicted. It should be noted,
however, that these specific values are not directly transferable
to other data sets because they will vary according to the
composition of the test set.
For the CP, the classifier, referred to as RF-CP, was trained

and calibrated using 100 782 and 11 199 unique reaction
vectors, respectively, and confidence and credibility scores
were inferred on the entries of USPD Apps. Two separate
binning processes were carried out: the confidence scores were
binned into nine bins ranging from the values 0.92 to 1.00; and
the credibility scores were binned into 93 bins ranging from
0.08 to 1.00. The absolute numbers and ratios of true and false
predictions associated with each confidence and credibility
level are plotted on the left of Figure 15; ratios are plotted on
the right.
The top-left chart shows a trend similar to that in Figure 14,

although in this case the range of scores is significantly smaller.

The top-right plot shows how a satisfactory separation between
true and false predictions is achieved only when the confidence
score tends to the value 1. These results are supported by the
theory of conformal prediction: the highest p-value indicates
how close the observed prediction is to the typical distribution
of results for a given class, but it does not provide information
on the presence of other high p-values associated with other
classes. This effect was verified by plotting the credibility
scores, which show how far the predicted class is from the rest
of the possible class predictions. The bottom-left and the
bottom-right plots report a much broader separation between
true and false predictions. Both plots show that the percentage
of wrong predictions remains very low for a credibility score
higher than 0.3.
Different credibility scores were then used as threshold

values to filter the predictions. Table 14 shows the trade-off

between F1 score and number of entries filtered out as the
credibility cut-off increases. The trends obtained using CP are
comparable to those seen using the probability scores in RF,
with the performance improving notably even for low cut-off
values ranging from 0.09 to 0.12, where the percentage of
filtered entries remains under 15%. Although these results are
also dependent on the composition of the test data set as for
the RF probability scores, the statistical basis of CP is such that
this is our preferred approach to assessing prediction reliability.

Applications. This section reports on the application of the
reaction classification model on two unseen data sets for which
classification data were not available, a subset of the Evotec
ELN and a collection of reactions extracted from the medicinal
chemistry literature. In general, these data sets are not curated,
and therefore the first step was to prepare them using the same
protocol as used when training the model. The reactions were
then classified using the RF-CP classifier with credibility scores
used to enhance the reliability of the predictions, and the
composition of each data set was examined and compared.
The reactions extracted from the medicinal chemistry

literature are expected to be more diverse as compared to in-
house pharmaceutical data, and to consist of a greater variety
of syntheses with no necessary prerequirement for robustness.
Syntheses reported in the literature usually involve the
formation of new scaffolds, which are relevant for drug
discovery use, thus describing novel reaction environments
that can be used to evaluate the classification model flexibility.

Evotec Electronic Laboratory Notebook (ELN). The
170 770 reactions deposited between September 9, 2009 and
February 27, 2018 were extracted from the Evotec (UK) ELN
server. The reactions were described by reactants, reagents,
products, yields, and time information. Entries were then
cleaned and balanced using the reaction standardization

Table 13. Variations in Performance (Left) and Percentage
of Filtered Reactions (Right) Associated with Different
Probability Cut-Off Levels

probability cut-off weighted F1-score percentage of filtered reactions

0.0 0.88 0.0

0.15 0.90 3.65

0.25 0.93 7.81

0.35 0.94 13.37

0.45 0.96 17.05

0.60 0.97 25.26

0.80 0.99 39.76

Figure 15. Absolute numbers (left) and ratios (right) of true and false
predictions associated with each level of confidence (top) and
credibility (bottom).

Table 14. Variations of Performance (Left) and Percentage
of Filtered Reactions (Right) Associated with Different
Credibility Cut-Off Levels

credibility cut-off “weighted” F1-score percentage of filtered reactions

0 0.88 0

0.09 0.91 4.73

0.10 0.93 8.04

0.12 0.95 12.43

0.15 0.96 17.72

0.20 0.98 24.74

0.25 0.99 36.94
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protocol: reagents were filtered out as were entries with more
than six reactants or six products, which left 168 375 entries;
the reactions were mapped using the Indigo Reaction
Automapping tool, and reaction components, which did not
contain any atom mapping information, were removed to
preserve only the components involved in the reaction center,
and the reactions were balanced. 136 240 entries were retained
after this process, and a total of 144 330 single-step reactions
were generated. Entries identified with the label “test” were
filtered out because they did not represent real experiments.
The final set of reactions consisted of 144 014 entries.
Reaction vectors were then generated with 144 008 entries

processed successfully, yielding a table described by 3305 atom
pairs. For comparison, the numbers of atom pairs necessary to
describe the original USPD Grants (115 602 entries) and
USPD Apps (110 802 entries) data sets is 4205 and 4046,
respectively. Thus, although the ELN data set contains almost
25% more entries as compared to the USPD Grants data set,
21% fewer atom pairs are required to represent it using
reaction vectors. This indicates that the ELN data are less
diverse than the USPD Grants data, which is to be expected.
The reaction vectors were adjusted according to the USPD
Grants data set by removing atom pairs present in the ELN set
but missing from the training data, and adding columns filled
with zeros to the ELN set for atom pairs present in the training
data but not in the ELN data. The procedure yielded a table of
144 008 entries and 4119 features. The RF-CP classifier was
then used to classify the ELN entries including assigning
confidence and credibility scores to the predictions. The
distributions of scores are plotted in Figure 16.

The plots are similar to those reported on the USPD Apps
data. The confidence scores fall within a narrow range of values
(0.924−1.000) and are mostly concentrated between 0.98 and
1.0. This indicates that the model identifies most of the
examples as being very similar to those used in the calibration
set. The credibility scores fall within a larger range of values
(0.075−1.000) with an intense peak on the lower bound. This
suggests that some examples have high p-values for more than
one reaction class. Different credibility thresholds were then
applied to determine the absolute numbers and percentages of
entries filtered out at each cut-off level. Results are reported in
Table 15.
A minimum credibility threshold of 0.12 was applied to

remove the entries with very low chances of being correct
predictions, in this case, 17.5% of the reactions in the ELN.
This value was chosen on the basis of the analysis of the USPD
Apps data where the same credibility threshold resulted in

12.4% of the entries being removed while the F1-score for the
remaining reactions increased to 0.95.
The classification data were then analyzed at different levels

of the classification hierarchy. Level-1 labels (e.g., “C−C bond
formation”) were grouped to produce a pie chart for
comparison with the statistics on reaction superclasses
identified in the USPD data18 (Figure 17). Level-2 labels

(e.g., “C−C bond formation (coupling)”) and level-4 labels
(e.g., “C−C bond formation (coupling) (Suzuki) (bromo)”)
were grouped to examine the most frequent reaction classes,
Tables 16 and 17, respectively. Level-3 labels were ignored
because they produced statistics very similar to the level-4
labels.
The level-1 classification provides a general description of

the ELN composition. C−N, C−C, and C−O bond formations
constitute almost 55% of the total composition of the data set.
This result is in accord with expectations because medicinal
chemistry synthetic strategies are usually bottom-up, that is,
start with small fragments, which are “grown” into drug-like
molecules. Functional conversions describe almost 16% of data
set. This percentage is comparable to the sum of the
reductions, functional group interconversions (FGI), and
oxidations percentages (17.3%) found in the U.S. patent
literature (these classes are all grouped into a single class in the
hierarchical classification system).
The proportion of functional introductions (∼4.7%) is also

similar to that reported for the USPD literature (3.4%). The

Figure 16. Confidence (left) and credibility (right) scores of the
Evotec ELN data reaction classification.

Table 15. Credibility Score Threshold Filtering Tests
Applied to the Evotec ELN Data

credibility
threshold

absolute number (percentage)
of retained entries

absolute number
(percentage) of filtered

entries

0 144008 (100%) 0 (0%)

0.09 129679 (90.05%) 14329 (9.95%)

0.10 124103 (86.18%) 19905 (13.82%)

0.12 118754 (82.46%) 25254 (17.54%)

0.15 114120 (79.25%) 29888 (20.75%)

0.20 105680 (73.38%) 38328 (26.62%)

0.25 100569 (69.84%) 43439 (30.16%)

Figure 17. Level-1 classification of the Evotec ELN data.
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high percentage of functional group interconversions and
additions can be explained by their use in both molecule
construction and molecule optimization phases. Deprotections
(∼12.5%) are more frequent as compared to protections
(∼0.5%), suggesting the use of protected building blocks as
starting materials for the syntheses. A similar result is also
reported for the U.S. patent data. “Synthesis” (∼7.2%) is
another frequent class, and describes reactions related to the
preparation of particular scaffolds such as thioethers,
imidazoles, pyrazolamines, thiazoles, and similar heterocycles.
This class can be compared to the “heterocycle formation”
class in the U.S. patent analysis, which represents a smaller
percentage (1.4%) of that data. This suggests the frequent use
of smaller building blocks and robust reactions for the
preparation of larger scaffolds, as an alternative to the use of
commercially available functionalized building blocks. These
statistics are also supported by the analysis of the number of
reactants in the data set: 63.2% of the entries were described
by two reactants (i.e., C−C, C−N, C−O bond formations, and
scaffold syntheses), 35.8% by only one reactant (i.e., functional
introductions, conversions, and deprotections), and the
remaining 1% of reactions were split between 3-, 4-, and 5-
reactant reactions.

Other classes report lower percentages because of their
minor efficacy in the synthesis of compounds of pharmaceut-
ical interest (e.g., other bond formation), because of their
unsuitable involvement in molecule construction (e.g., cleavage
or functional elimination), or because of the use of already
functionalized reagents that allowed those classes to be skipped
(e.g., cyclization and C−S bond formation).
The level-2 ranking drills down to show how the broader

classes are distributed across more specific examples. The C−
N bond formation class is strongly supported by the subclasses
“condensation” and “N-arylation”, which consist of almost
29 000 reaction examples (∼24% of the total ELN set). This
means that one in four reactions in the data set is a “C−N
bond formation (condensation)” or a “C−N bond formation
(N-arylation)”. The remaining classes (“C−N bond formation
(N-alkylation)”, “C−N bond formation (amide formation)”,
“C−N bond formation (amination)”, and “C−N bond
formation (carboxylic ester + amine)”) represent an additional
almost 16 000 examples confirming that the creation of C−N
bonds is a typical strategy in medicinal chemistry due to the
general robustness and versatility of these reactions in the
construction of pharmaceutically relevant structures. It is
important to point out that the class “C−N bond formation
(amination)” is not considered as a functional introduction in
the SHREC because reaction vectors do not encode chemical
environments outside the reaction center; thus reactions that
involve building blocks containing an amine group are often
indistinguishable from secondary or tertiary amine group
introductions. The “C−C bond formation (coupling)” is
represented by more than 10 000 examples, indicating the high
efficiency of this reaction class as well. A large number of “C−
O bond formation (etherification)” examples also indicate the
relevance of structures linked as ethers (i.e., R1−O−R2, where
R is a hydrocarbon group) as an alternative to the “C−N” and
“C−C” bond formations.
Although the other bond formation class is not included

among the majority classes in the level-1 classification, the
specific “other bond formation (sulfonamide formation)” class
is represented by more than 3100 examples of reactions,
indicating its particular efficacy in the creation of S−N bonds
between amines and sulphones. Despite its relatively high
frequency in the level-1 classification, the “functional
conversion” is represented by only one class in the top 15 of
the level-2 classification ranking, which is the “functional
conversion (nitro to amino)” class with approximately 2100
examples. This suggests the presence of many different
functional conversions that contribute to the broader class,
but that, with the exception of “nitro to amino”, there are no
particular preferred subclasses. In fact, functional conversions
are commonly used to make small modifications to molecules
to prepare them for bond formation reactions. The opposite
effect is seen for the “functional introduction” level-1 class,
which is not very frequent as compared to the other level-1
classes even though the “functional introduction (bromina-
tion)” subclass is represented by more than 2300 examples in
the level-2 classification.
Deprotections are dominated by three specific examples with

the protective agents of t-butyloxycarbonyl (BOC), COO-
methyl, and COO-ethyl groups used in more than 11 000
examples. The high number of deprotections suggests the use
of protected building blocks to enforce selective reactivity or to
avoid catalyst poisoning as suggested in the U.S. patent
analysis.

Table 16. Top Fifteen Reaction Classes in the ELN Data
According to the Level-2 Labeling

level-2 classification count

C−N bond formation (condensation) 15995

C−N bond formation (N-arylation) 12667

C−C bond formation (coupling) 10198

deprotection (N-t-butyloxycarbonyl) 6293

C−N bond formation (N-alkylation) 6024

C−O bond formation (etherification) 4401

C−N bond formation (amide formation) 4013

C−N bond formation (amination) 3947

functional conversion (reduction) 3276

other bond formation (sulfonamide formation) 3106

deprotection (COO-methyl) 2984

functional introduction (bromination) 2359

functional conversion (nitro to amino) 2133

C−N bond formation (carboxylic ester + amine) 1985

deprotection (COO-ethyl) 1796

Table 17. Top Fifteen Reaction Classes in the Evotec Data
According to the Level-4 Labeling

level-4 classification count

C−N bond formation (condensation) (carboxylic acid + amine) 14211

C−N bond formation (N-arylation) (chloro) 8220

deprotection (N-t-butyloxycarbonyl) (N-Boc) 6293

C−C bond formation (coupling) (Suzuki) (bromo) 4820

C−N bond formation (amide formation) (Schotten−Baumann) 3874

C−N bond formation (N-alkylation) (bromo) 3229

other bond formation (sulfonamide formation)
(Schotten−Baumann)

3106

deprotection (COO-methyl) (COO-Me) 2984

C−O bond formation (etherification) (Williamson) 2937

C−N bond formation (N-arylation) (bromo) 2429

functional introduction (bromination) 2359

functional conversion (nitro to amino) 2133

C−N bond formation (carboxylic ester + amine) 1985

C−N bond formation (N-alkylation) (chloro) 1828

deprotection (COO-ethyl) (COO-Et) 1796

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00537
J. Chem. Inf. Model. 2019, 59, 4167−4187

4181

http://dx.doi.org/10.1021/acs.jcim.9b00537


The most frequent classes based on the most detailed (level-
4) classification, shown in Table 17, more or less preserve the
same order as compared to Table 16. However, some reaction
classes, such as “C−C bond formation (coupling)” and “C−N
bond formation (amination)”, lose their positions due to being
split into smaller subclasses; for example, “C−N bond
formation (amination)” is split into four subclasses, none of
which are present in Table 17.
On the other hand, classes such as “C−N bond formation

(amide formation)” do not drop in numbers significantly after
adding subclass information because most of the examples
belong to a single subclass. The “C−N bond formation (N-
arylation)” is split into more specific subclasses such as “C−N
bond formation (N-arylation) (bromo)” and “C−N bond
formation (N-arylation) (chloro)”, with the latter at position

two in level-4 table. Similarly, “C−N bond formation (N-
alkylation)” is split into “C−N bond formation (N-alkylation)
(bromo)” and “C−N bond formation (N-alkylation) (chloro)”.
The addition of more detailed classification levels does not

affect several class counts at all for two reasons: first, some
classes such as “functional conversion (nitro to amino)” or
“functional introduction (bromination)” are not discriminated
further by passing from level-2 to level-4 in the hierarchy, so
they preserve the same labels and counts; and, second, the
“other bond formation (sulfonamide formation)” is trans-
formed into “other bond formation (sulfonamide formation)
(Schotten−Baumann)” and preserves the same count because
it is the only sulfonamide formation class in the data set.
Table 18 and Figure 18 show the results following a time

series analysis, which can be useful if, for example, focused on

Table 18. Number of Reactions per Year in the ELN

year 2010 2011 2012 2013 2014 2015 2016 2017

number of reactions 7082 9760 14695 16075 20407 19879 15839 12041

Figure 18. (a) Absolute and (b) normalized count time series of the level-1 class labels.
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the correlation between classes and financial (e.g., company
profits or project lengths) or scientific (e.g., molecule activities
or successful properties) parameters. In particular, this type of
analysis can be used to remove the human bias on certain
reaction classes, and identify ones that are more successful.
The analysis presented here is restricted to a correlation study
between classes due to a lack of accessibility to the company
financial data. The time series analysis considered counts and
yields associated with each reaction class. The results are not
supposed to be exhaustive; rather they are intended to provide
some hints on how reaction classification can bring useful
information for decision making in drug discovery. Level-1
classification labels were selected due to their more generalized
nature and the lower number of classes. Values (i.e., counts or
yields) were split by year, then retained only for the years
between 2010 and 2017, inclusive (years 2008 and 2018 were
excluded due to their partial contents). A total of 115 778
reactions were retained, and class counts were normalized by
total counts per year.
Table 18 shows a steady increase in the total number of

reactions since the introduction of the corporate ELN. The
growth reaches a peak in 2014 and then gradually drops by the
end of 2017. This behavior can be explained by the
introduction of client ELNs, which are private notebooks
that cannot be accessed internally. The use of private databases
could have affected the composition of the classes as well,
although this hypothesis was not tested. Time series plots of
absolute and normalized counts are reported in Figure 18, for
the 15 classes identified by level-1 labels.
The overwhelming presence of “C−N bond formation”

compresses slightly the other classes, although many of their
trends are still clearly visible. The absolute counts plot shows
an increasing trend for almost every class with most peaking in
2014−2015, followed by a rapid decrease. Exceptions are “C−
C bond formation”, “functional introduction”, and “other bond
formation”, which are characterized by earlier peaks (i.e.,
2011−2012), and increasing trends in 2017. The normalized
data provide a different perspective of the same scenario: the
“C−N bond formation”, “deprotection”, and “synthesis” classes
show an increase moving from early (2010 to 2012) to late
years (2014 to 2016 excluding 2017). This general increase is
obtained at the expense of the other classes such as “C−C
bond formation”, “C−O bond formation”, and “other bond
formation”, which regain some positions only in 2017. As was
already reported in the literature,32−34 this result indicates a
higher propensity toward the use of C−N bond formations due
to their simplicity and robustness.
The correlation between normalized class counts was

inspected by calculating the Pearson correlation coefficient
(R) for each pair of classes, shown graphically in Figure 19. In
general, the molecular growth classes such as “C−C bond
formation”, “C−O bond formation”, and “other bond
formation” show positive correlations with “cleavage” and all
of the functional-related class, whereas they are negatively
correlated with “C−N bond formation”, “cyclization”,
“deprotection”, and “synthesis”. Conversely, “C−N bond
formation” shows opposite trends, suggesting that the
substrates involved in these reactions do not need to be
prefunctionalized in situ (i.e., functional introduction or
conversion) to react correctly with each other. This can
produce a decrease in the number of steps required to obtain
the final products, thus explaining the growing success of this
class over time. This hypothesis could be further tested by

comparing the average number of steps in routes with and
without “C−N bond formation”, although this was not done
here. Furthermore, “C−N bond formation” and “deprotection”
show a positive correlation with each other, suggesting the
deprotection of the products after the union of two building
blocks through the formation of a C−N bond. “Synthesis”
shows a positive correlation with “deprotection” probably for
the same reason. “Functional elimination” and “deprotection”
show a strongly negative correlation. Deprotections are
comparable to functional eliminations that remove protective
groups from the molecules; thus it would be unlikely to
observe an increasing occurrence of these two classes at the
same time. Interestingly, “C−S bond formation”, “cyclo-
addition”, “protection”, and “rearrangement” do not show
relevant relationships with the other classes. This can be a
consequence of their lower popularity in the data set.
Figure 20 shows how the yields of the reactions vary over

time. The data were processed as follows. When multiple yields
were reported for a single reaction, they were averaged and
reactions for which no yield was reported were filtered out.
The yields were then averaged to produce a mean yield for
each reaction class for each year. Reaction classes described by
fewer than 250 entries in the years between 2010 and 2017
were not analyzed, leaving a total number of 83 343 entries.
The plot shows three different trends: increasing, decreasing,
and stable yields. The yields of “deprotection” and “C−C bond
formation” reactions increase over time, whereas they decrease
for “functional elimination” and “functional introduction”
reactions. The remaining classes show stable yields charac-
terized by either low variance (i.e., “functional conversion”,
“synthesis”, and “C−N bond formation”) or high variance (i.e.,
“cyclization”, “other bond formation”, and “C−O bond
formation”). This type of analysis could be readily
implemented in the ELN framework to monitor how each
different class performs over time with the aim of maintaining a
high global efficiency. For example, it could be used to assess
the performance of the medicinal chemists in a specific time
range, or to highlight differences in yield due to the impurity of
the reagents, after the introduction of a new chemical supplier.

Medicinal Chemistry Literature Reactions. The medic-
inal chemistry data set consists of reactions from the Journal of

Figure 19. Heatmap that describes the lower triangular pairwise
matrix of the level-1 class correlation coefficients.
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Medicinal Chemistry from the year 2008 and was originally
prepared to test the performance of our de novo design tool.16

Around 24K reactions were compiled by first collecting all
reactions with yields of 100%, 75%, and 50% and excluding
those consisting of solid-phase chemistry. The data set was
reduced to 19 209 single-step reactions after cleaning, etc.,
using the same procedure as reported for the ELN. The data
set is referred to here as JMC. When converted to reaction
vectors, these were described by a total of 12 242 reaction
vectors and 5331 atom pairs. This relatively high number of
atom pairs for a relatively small data set already suggests that a
large variety of reaction centers are described within it:
although it is represented by 90% fewer unique reaction
vectors as compared to the original USPD Grants data set, it
requires almost 27% more atom pairs to be fully described.
This preliminary result suggests that the data are more diverse
than the patent data, which is perhaps not surprising given that
the patent literature is aimed at capturing local regions of
chemical space, whereas the medicinal chemistry literature is
more likely to consist of a greater variety of syntheses with no
necessary prerequirement for robustness or coverage of
particular regions of chemical space.
The JMC reaction vectors were adjusted to be compatible

with the reaction classification model, and the RF-CP classifier
was used to classify the entries and to assign confidence and
credibility scores, which are plotted in Figure 21. The
confidence scores fall into a narrow range of values (0.924−

1.000) that is similar to the ELN data and are similarly
characterized by a peak on the left, but they are more spread.
This indicates that the classifier identified the majority of the
JMC reactions as very similar to the reactions contained in the
calibration set, although they presented lower similarities as
compared to the ELN reactions. The JMC credibility scores
show a range of values identical to that found for the ELN data
(0.075−1.000); however, the majority of the reactions are
associated with lower scores. This means that the JMC data
generally consist of examples with higher ambiguity as
compared to the ELN distribution, causing a decrease in
distance between the first and second best p-values computed
by the CP. Different minimum thresholds on the credibility
score were applied to determine the absolute numbers and
percentages of filtered entries at each level as reported in Table
19. The threshold of 0.12 results in 49.09 of the JMC reactions

being filtered out, as compared to only 17.54 of the ELN
reactions. A manual inspection of the filtered entries confirmed
that most were not classified correctly. Two conclusions were
drawn from these results. First, data from the scientific
literature tend to be more difficult to classify due to their
higher diversity in terms of (extended) reaction centers.
Second, the use of the credibility score thresholds in a more
difficult classification problem highlights the practical advan-
tages of integrating the classification model within a CP
framework to improve model reliability.
The 9779 reactions (50.9%) retained at the 0.12 credibility

level were analyzed as for the ELN data. Results are reported in

Figure 20. Variation in yields over time.

Figure 21. Confidence (left) and credibility (right) scores of the JMC
data set reaction classification.

Table 19. Credibility Score Threshold Filtering Levels
Applied on the JMC Data Set

credibility
threshold

absolute number (percentage)
of retained entries

absolute number
(percentage) of filtered

entries

0 19209 (100%) 0 (0%)

0.09 13335 (69.42%) 5874 (30.58%)

0.10 11632 (60.55%) 7577 (39.45%)

0.12 9779 (50.91%) 9430 (49.09%)

0.15 8339 (43.41%) 10870 (56.59%)

0.20 6994 (36.41%) 12215 (63.59%)

0.25 6308 (32.84%) 12901 (67.16%)
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Figure 22 and Tables 20 and 21. The level-1 classification
shows different trends as compared to the Evotec ELN data.

The functional conversion class dominates all other classes and
represents almost 43% of the entire data set, as compared to
15.4% of the ELN data. This suggests that these reactions were
focused on scaffold modifications more than C−N, C−C, and
C−O bond formations, which constitute 28.5% of the total
classification. “Functional introduction” (7.3%) and “synthesis”
(5.4%) also describe a significant number of examples in the
data, indicating their persistent roles in medicinal chemistry.
Deprotections constitute only 5.4% of the total classification in
comparison to 12.5% reported for the Evotec ELN, supporting
the existence of a positive correlation between C−N bond
formations and deprotections.
The higher percentages of the minority classes such as

“functional elimination” (3.7%) and “cleavage” (1.6%) as
compared to the ELN can be explained by these reaction
classes being generally avoided in industrial pharmaceutical
chemistry where the objective is to construct the final products
from the minimum number of building blocks. Conversely, the
academic literature is usually more concerned with the
presentation of new scaffolds with particular properties, with
limited regard for the number of steps used to obtain such
molecules. The “cycloaddition” (1.7%) (22.7 times higher) and
“cyclization” (1.3%) (2.2 times higher) classes are also more
prevalent as compared to the ELN data analysis.
The ranked frequencies of reactions using the level-2

classification are reported in Table 20. Subclasses of the
functional conversions class occupy seven of the top 15
positions with five subclasses (“hydrogenation”, “reduction”,
“alkene to epoxide”, “cyano to carboxy”, and “oxidation”)
together representing more than 2700 reactions, which
corresponds to 28% of the data set. From an organic chemistry
point of view, these reactions tend to preserve the total number
of heavy atoms in a given structure; thus they are used for
structural activation or functionalization. The relative fre-
quency of the particular scaffold synthesis class “synthesis
(thioether)” shows a strong focus on a particular motif, which
can be typical of a data set covering a short period of time.
This is also supported by the presence of “functional
conversion (alkene to epoxide)” as the fourth most frequent
class in the top 15. This class indicates a particular interest
toward the transformation of alkenes into their corresponding
epoxides, which is not a typical transformation observed in the
preparation of molecules of pharmaceutical relevance. The
highest ranking bond formation subclasses include “C−C bond
formation (coupling)”, “C−N bond formation (condensa-
tion)”, “C−N bond formation (N-alkylation)”, “C−O bond
formation (esterification)”, and “C−O bond formation (ether-
ification)”. It is also worth noting that the C−C bond
formation class has almost twice as many examples as
compared to the most popular C−N bond formation class.
This result is consistent with the analysis carried out by
Schneider et al.18 where they highlighted increasing attention
on C−C bond formations in recent years.
The level-4 classification ranking reported in Table 21

almost preserves the same order of the level-2 ranking except
for a few classes. The “C−C bond formation (coupling)” and
“C−N bond formation (N-alkylation)” are split into multiple
classes, among which no one subclass is sufficiently populated
to appear in the top 15 classes. However, “cycloaddition (diene
+ dienophile) (Diels−Alder)”, “functional conversion (sulfanyl
to sulfinyl)”, and “functional elimination (deoxygenation)”
appear in the top 15 positions, highlighting that the JMC data
set composition is more related to particular transformations,

Figure 22. Level-1 classification of the JMC data set.

Table 20. Top Fifteen Reaction Classes in the JMC Data Set
According to the Level-2 Labeling System

level-2 classification count

functional conversion (hydrogenation) 1034

functional conversion (reduction) 776

C−C bond formation (coupling) 466

functional conversion (alkene to epoxide) 307

functional conversion (cyano to carboxy) 293

functional conversion (oxidation) 293

synthesis (thioether) 293

functional conversion (nitro to amino) 277

C−N bond formation (condensation) 250

functional introduction (hydroxylation) 244

functional conversion (alcohol to alkene) 227

C−O bond formation (esterification) 225

C−O bond formation (etherification) 218

C−N bond formation (N-alkylation) 203

functional introduction (bromination) 164

Table 21. Top Fifteen Reaction Classes in the JMC Data Set
According to the Level-4 Labeling System

level-4 classification count

functional conversion (hydrogenation) (alkene to alkane) 909

functional conversion (reduction) (aldehyde/ketone to alcohol) 528

functional conversion (alkene to epoxide) (Prilezhaev) 307

functional conversion (cyano to carboxy) 293

synthesis (thioether) 293

functional conversion (nitro to amino) 277

functional conversion (alcohol to alkene) 227

functional conversion (oxidation) (alcohol to aldehyde/ketone) 208

functional introduction (hydroxylation) (alkene hydration) 205

functional introduction (bromination) 164

cycloaddition (diene + dienophile) (Diels−Alder) 160

C−O bond formation (esterification) 155

functional elimination (deoxygenation) 155

functional conversion (sulfanyl to sulfinyl) 147

C−N bond formation (condensation) (carboxylic acid + amine) 141
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which are perhaps aimed at producing novel scaffolds. The
presence of specific functional conversions and, in particular, of
a functional elimination class among the top 15 classes
describes a trend diametrically opposed to the statistics found
for the Evotec ELN data set and the U.S. patent reactions.

■ CONCLUSIONS

Reaction classification is a complex task that has traditionally
been accomplished using hand-coded rule-based approaches;
however, the availability of large collections of reactions
enables data-driven approaches to be developed. Building on
the work of Schneider et al.,8 we have used machine learning to
develop a model capable of predicting over 300 organic
reaction classes. The classification task is configured as a
multitask classification problem and is trained using reactions
extracted from U.S. patents, with random forests (RF) chosen
as the best performing method. We have extended the previous
work in a number of ways. First, we have increased the number
of reaction classes that can be predicted from 50 to 336. This
scaling up of the approach enables a more complete analysis of
data sets to be carried out. Second, and unlike the previous
approach, our workflow involves cleaning and balancing the
reaction data prior to model building including reducing each
reaction to only those components that change during the
reaction. We believe that use of “clean” data may well have
impacted positively on the scaling-up by minimizing noise in
the training data. Third, we remove duplicate fingerprints from
our training and test data and also ensure that there is no
overlap between training and test data; thus we believe that we
have created a more difficult modeling task, yet we still obtain
impressive statistics. Fourth, the classifier uses a dynamic
reaction fingerprint to reduce feature noise in the classification
task by accounting only for the features that are described in
the training data set. Finally, we also introduce a novel
hierarchical reaction classification system, SHREC, which
distributes the label information across four hierarchical levels
and allows data sets to be browsed at different classification
levels. We first demonstrated performance comparable to that
seen in the literature for a smaller set of 50 reaction classes and
then extended the approach to the much larger task of over
300 reaction classes.
Prediction confidence is evaluated by integrating a

conformal prediction module on top of the classification
model. Two confidence estimations are associated with each
prediction: a confidence value that is related to the variance in
the prediction; and a credibility score that is related to the
separation in confidence value between the two highest scoring
classes. A systematic evaluation has been carried out on the
separation between true and false predictions for different
credibility thresholds to enhance the performance and
reliability of the model.
The classification model was used to compare two reaction

data sets, one obtained from industry (the Evotec ELN) and
the other from the medicinal chemistry literature (JMC),
respectively. Results showed that reaction classification can be
used to gain immediate insights on the nature of data sets by
analyzing their confidence estimations and general class
compositions, as well as providing detailed information for
data analysis purposes. In particular, the analysis of the
classification data revealed that the industrial data set was more
focused on typical synthetic routes for molecular growing using
commercial fragments, while the literature collection was more
related to particular functionalizations and scaffold syntheses.

A limitation of our approach is the composition of the
training data, which was derived from pharmaceutical reactions
in patent and is not expected to cover organic reaction space
exhaustively. This was demonstrated by the lower percentage
of reactions that could be predicted reliably in the medicinal
chemistry literature (around 50%) as compared to the ELN
(around 85%). The training data may also have introduced
some bias in our classification system because it was restricted
to evaluation of the labels in the original patent set. A further
potential issue is the unbalanced distribution of reaction classes
in the patent set, and the use of more representative and
curated training data would be expected to result in a better
performing model with wider coverage. Other limitations relate
to the information encoded within the reaction vector, which is
used in model training. For example, the reaction vector takes
no account of stereochemistry or of catalysts; thus, reactions
where these characteristics are important cannot be distin-
guished, as highlighted in the Methods.
The reaction classifier has been developed to be fully

compatible with our reaction-based de novo design tool, and
we are currently exploring two applications in this context,
both of which are aimed at controlling the combinatorial
explosion that is inherent in de novo design. First is simply to
allow the user to select preferred reaction classes during
augmented de novo, for example, from a drop down list. The
second approach is the use of a Reaction Class Recommender,
which is able to automatically suggest preferred reaction classes
based on the characteristics of a starting material. The
development of the Reaction Class Recommender is the
subject of a forthcoming paper.
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Klucznik, T.; Kazḿierowski, M.; Rydzewski, J.; Gambin, A.;
Grzybowski, B. A. Automatic Mapping of Atoms across Both Simple
and Complex Chemical Reactions. Nat. Commun. 2019, 10, 1434.
(26) Carhart, R. E.; Smith, D. H.; Venkataraghavan, R. Atom Pairs as
Molecular Features in Structure-Activity Studies: Definition and
Applications. J. Chem. Inf. Model. 1985, 25, 64−73.
(27) Vovk, V.; Gammerman, A.; Shafer, G. Algorithmic Learning in a
Random World; Springer: New York, 2005; pp 323−324.
(28) Eklund, M.; Norinder, U.; Boyer, S.; Carlsson, L. The
Application of Conformal Prediction to the Drug Discovery Process.
Annals of Mathematics and Artificial Intelligence 2015, 74, 117−132.
(29) Norinder, U.; Boyer, S. Conformal Prediction Classification of
a Large Data Set of Environmental Chemicals from Toxcast and
Tox21 Estrogen Receptor Assays. Chem. Res. Toxicol. 2016, 29,
1003−1010.
(30) Ahlberg, E.; Hammar, O.; Bendtsen, C.; Carlsson, L. Current
Application of Conformal Prediction in Drug Discovery. Annals of
Mathematics and Artificial Intelligence 2017, 81, 145−154.
(31) King, G.; Langche Zeng, G. H. E.; Alt, J.; Freeman, J.;
Gleditsch, K.; Imbens, G.; Manski, C.; McCullagh, P.; Mebane, W.;
Nagler, J.; Russett, B.; Scheve, K.; Schrodt, P.; Tanner, M.; Tucker,
R.; Bennett, S.; Huth, P.; Zeng, L. Logistic Regression in Rare Events
Data; 2001.
(32) Brown, D. G.; Boström, J. Analysis of Past and Present
Synthetic Methodologies on Medicinal Chemistry: Where Have All
the New Reactions Gone? J. Med. Chem. 2016, 59, 4443−4458.
(33) Bostrom, J.; Brown, D. G.; Young, R. J.; Keseru, G. M.
Expanding the Medicinal Chemistry Synthetic Toolbox. Nat. Rev.
Drug Discovery 2018, 17, 709−727.
(34) Campbell, I. B.; Macdonald, S. J. F.; Procopiou, P. A. Medicinal
Chemistry in Drug Discovery in Big Pharma: Past, Present and
Future. Drug Discovery Today 2018, 23, 219−234.

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.9b00537
J. Chem. Inf. Model. 2019, 59, 4167−4187

4187

https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873
https://www.nextmovesoftware.com/namerxn.html
https://www.nextmovesoftware.com/namerxn.html
https://github.com/rsc-ontologies/rxno/
http://lifescience.opensource.epam.com/indigo/
http://lifescience.opensource.epam.com/indigo/
http://dx.doi.org/10.1021/acs.jcim.9b00537

