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Background: When there are structural relationships between outcomes reported

in different trials, separate analyses of each outcome do not provide a single coher-

ent analysis, which is required for decision-making. For example, trials of intra-

partum anti-bacterial prophylaxis (IAP) to prevent early onset group B

streptococcal (EOGBS) disease can report three treatment effects: the effect on bac-

terial colonisation of the newborn, the effect on EOGBS, and the effect on EOGBS

conditional on newborn colonisation. These outcomes are conditionally related, or

nested, in a multi-state model.

This paper shows how to exploit these structural relationships, providing a single

coherent synthesis of all the available data, while checking to ensure that different

sources of evidence are consistent.

Results: Overall, the use of IAP reduces the risk of EOGBS (RR: 0.03; 95% Credi-

ble Interval (CrI): 0.002–0.13). Most of the treatment effect is due to the prevention

of colonisation in newborns of colonised mothers (RR: 0.08, 95% CrI: 0.04–0.14).

Node-splitting demonstrated that the treatment effect calculated using only direct evi-

dence was consistent with that predicted from the remaining evidence (p = 0.15).

The findings accorded with previously published separate meta-analyses of the dif-

ferent outcomes, once these are re-analysed correctly accounting for zero cells.

Conclusion: Multiple outcomes should be synthesised together where possible,

taking account of their structural relationships. This generates an internally coher-

ent analysis, suitable for decision making, in which estimates of each of the treat-

ment effects are based on all available evidence (direct and indirect). Separate

meta-analyses of each outcome have none of these properties.
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1 | INTRODUCTION

Health technology assessments are carried out to evaluate

the efficacy of medical interventions, and inform a decision

of whether to use them for a particular group of

patients. Usually these assessments rely on a systematic

review of the literature, followed by a meta-analysis. It is

considered good practice to define the main review outcome

a priori with other outcomes of interest classified as

secondary and each outcome analysed separately.1-3
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However, often outcomes are known to be related. A joint

synthesis of all related outcomes, where their relationship

(including any correlations) is taken into account, is prefera-

ble as it will use all the relevant evidence in a single coher-

ent analysis.

One approach to multiple outcome synthesis has been

multivariate normal random effects (MVNRE) models tak-

ing account of correlations between outcomes, both within

and between studies.4,5 Alternatively, multi-parameter evi-

dence synthesis (MPES) uses different data sources to

inform parameters which are related in a mathematical

model,6-8 thus capturing structural and logical relationships

between outcomes, and generating outputs that have a natu-

ral clinical interpretation.

In this paper, we present a particular type of multiple out-

come data where outcomes are nested, that is, some events

can only occur in individuals who already had a previous

(related) event. In other words, there is a logical chain of

events which occur in a known sequence, with each outcome

conditional on the occurrence of the previous outcome. We

will present an illustrative example where evidence on such

conditional outcomes is available, forming a multi-state

model. We will show how to incorporate all the outcomes

into a single meta-analysis and how to check for potential

conflict between evidence sources. Finally, we highlight the

benefits of our approach compared to previous meta-analysis

models.

2 | ILLUSTRATIVE EXAMPLE:
EARLY ONSET GROUP B
STREPTOCOCCAL DISEASE

Our study looks at trials of intrapartum antibiotic prophy-

laxis (IAP) to prevent early onset group B streptococcal

(EOGBS) disease in newborns. Newborns can probably only

develop EOGBS if they have been colonised by the bacteria,

which in turn is only possible if the mother was a group B

streptococcus (GBS) carrier during labour9,10 (Figure 1).

Maternal colonisation with GBS is relatively common,

averaging 18% but varying from 11%- 35% in different

countries.11 EOGBS occurs in 0.43 per 1000 births world-

wide,12 with wide variation between regions. EOGBS is

associated with high rates of meningitis and neonatal

encephalopathy, with a 12.1% case fatality.12 At least 60

countries have adopted preventative strategies, ranging from

IAP for women identified at high risk to universal screening

for maternal carriage and IAP in those screened positive.13

The efficacy of IAP is widely recognised based both on

randomised control trials and on a range of observational

data.14 However, the best preventative strategy remains

controversial.15-17

Several trials have been conducted on women colonised

with GBS; some have reported neonatal colonisation as the

outcome, some neonatal EOGBS disease, and others both.

We number these outcomes (or states) maternal colonisation

(1), newborn colonisation (2), and EOGBS (3).

FIGURE 1 Multi-state model structure for the EOGBS example

HIGHLIGHTS

What is already known?

Most previous estimates for the effectiveness of

Intrapartum antibiotic prophylaxis for early onset

group B streptococcal (EOGBS) disease were

biased due to inappropriate methods being applied

to meta-analyse studies with strong treatment effects

and a large number of zero cells.

What is new?

Synthesis using multi-state models delivers a single

coherent analysis of multiple evidence sources using

conditional relationships. The relative treatment

effects estimated are more precise than when sepa-

rate analyses were conducted.

Potential impact for Review Synthesis
Methods readers outside the authors'
field

Wherever possible, multiple outcomes should be

synthesised together in a single coherent analysis,

capturing the clinical and structural relationships

between them. A single set of coherent estimates

improves the robustness and allows a better

understanding of the effectiveness of the interven-

tion, facilitating decision-making.

2 ANWER ET AL.



A change in state is referred to as a transition.18-20 The

transition between states are labelled as 1 ! 2, 2 ! 3 and

1 ! 3. Table 1 reports all the aggregate data available from

eight studies21-28 that compare the effectiveness of IAP

administered to mothers intravenously to a placebo or con-

trol. Multiple births were rare in the data, and therefore the

lack of independence between twins in the data was

ignored.29 Studies 1–3, 6 and 8 report both infant colonisa-

tion and EOGBS outcomes, and thus provide evidence on all

three transitions. Studies 4 and 5 report only infant colonisa-

tion and thus provide evidence on the 1 ! 2 transition only.

Study 7 only provides evidence on the proportion of patients

making both a 1 ! 2 and 2 ! 3 transition. Standard meta-

analytic methods have been applied to both the 1 ! 230 and

1 ! 39,30-32 effects. The difficulty with having separate,

unrelated meta-analyses is that these are not independent as

some of the trials are involved in both and because the

1 ! 2 effect is part of the 1 ! 3 effect. Also, it is unclear

how one can draw an overall conclusion from the two sets

of estimates produced.

In addition, relevant evidence from two studies (420 and

521 in Table 1) would be excluded from a meta-analysis

where the outcome of interest was EOGBS given maternal

colonisation. The large number of zero counts in the IAP

treatment arm (because the treatment is very effective), adds

further complexity to the analysis.

3 | METHODS

3.1 | Data and likelihoods

Let rx ! y,ik denote the number of individuals with event of

type y given previous state x in arm k of trial i where x = 1,

2 represents maternal colonisation or neonatal colonisation

and y = 2, 3 represents neonatal colonisation and EOGBS,

respectively (Figure 1, Table 1). The likelihoods conditional

on a previous outcome are binomial:

rx!y, ik e Binomial πx!y, ik,nx, ik
� �

ð1Þ

where πx ! y,ik represent the conditional probabilities of

achieving outcome y = 2, 3 for individuals in state

x = 1, 2, that is the probability of transitioning from

1 ! 2, 2 ! 3 or 1 ! 3; and nx,ik represent the number

of individuals in state x, that is n1,ik, the number of

women colonised with GBS and n2,ik the number of

colonised newborns in arm k of trial i.

The likelihoods in Equation (1) take into account the

information available in each study.

For example, studies 1–521-25 and 828 provide data on

neonatal colonisation (2) given maternal colonisation (1).

Therefore, we can estimate the probability of transitioning

from 1 ! 2 in each of these studies by specifying a likeli-

hood for r1 ! 2,ik using the total number of colonised women

as the denominator.

Study 727 provides information only on EOGBS (3)

given maternal colonisation (1) thus we can estimate the

probability of transitioning from 1! 3 in this study by spec-

ifying a likelihood for r1 ! 3,ik using the total number of

colonised women as the denominator.

Additionally, studies 1–321-23 and 828 also provide data

on EOGBS (3). Rather than use this data to estimate the

1 ! 3 probabilities, which would involve “double counting”

as it is not independent of the 1 ! 2 data, we can instead

estimate the probability of transitioning from 2 ! 3 by spec-

ifying a likelihood for r2 ! 3,ik conditioning on the total

TABLE 1 Study details for intrapartum antibiotic prophylaxis for the prevention of EOGBS in newborns. The number of individuals

experiencing an event x (where 1 = maternal colonisation, 2 = neonatal colonisation and 3 = EOGBS) in a study i for the placebo (k = 1) and IAP

(k = 2) arms are denoted by rx,ik

Maternal colonisation (1) Neonatal colonisation (2) EOGBS (3)

Placebo IAP Placebo IAP Placebo IAP

r1, i1
*

r1, i2
*

r2, i1 r2, i2 r3, i1 r3, i2

1. Boyer (1982) 21 82 69 46 2 4 0

2. Boyer (1983) 22 37 43 13 1 1 0

3. Matorras (1991) 23 56 54 24 2 3 0

4. Easmon (1983) 24 49 38 17 0

5. Yow (1979) 25 24 34 14 0

6. Morales (1986) 26 128 135 59 0 2 0

7. Tuppurainen (1989) 27 111 88 4 1

8. Boyer (1986) 28 79 85 40 8 5 0

*These are the total number of individuals that were randomised.

ANWER ET AL. 3



number of colonised newborns n2,ik as the denominator.

These studies contribute indirect evidence on the probability

of transitioning from 1 ! 3 (see Section 3.2).

Study 626 was used to inform the overall treatment

effect (1 ! 3) instead of using the results to inform tran-

sitions 1 ! 2 and 2 ! 3 separately as it effectively pro-

vides no information on the latter transition, since no

newborns in the IAP arm were colonised (leading to a

denominator of 0 when describing the 2 ! 3 transition).

Therefore, six studies provide evidence to the 1 ! 2

transition, four to the 2 ! 3 transition, and 2 to the

1 ! 3 transition for the multiple-outcome meta-analysis

model for EOGBS.

To combine all data in a single, coherent analysis, we

need to express the relationship between the relative

treatment effects on the 1 ! 2, 2 ! 3, and 1 ! 3

transitions.

3.2 | Relationships between states

A relationship can be established between the Relative Risks

(RRs) estimated from the three sources of evidence. The RR

for the 1 ! 2 transition is defined as:

RR 1! 2ð Þ=
Pr 1! 2jTð Þ

Pr 1! 2jCð Þ
ð2Þ

where Pr(1 ! 2| T) and Pr(1 ! 2| C) are the probabilities

of neonatal colonisation conditional on maternal colonisa-

tion under IAP and control, respectively.

Similarly, the RR for the 2 ! 3 transition is defined as:

RR 2! 3ð Þ=
Pr 2! 3jTð Þ

Pr 2! 3jCð Þ
ð3Þ

Assuming the transitions 1 ! 2 and 2 ! 3 are conditionally

independent, it follows that:

RR 1! 2ð Þ�RR 2! 3ð Þ =
Pr 1! 2jTð Þ

Pr 1! 2jCð Þ
�
Pr 2! 3jTð Þ

Pr 2! 3jCð Þ

=
Pr 1! 3jTð Þ

Pr 1! 3jCð Þ

= RR 1! 3ð Þ

ð4Þ

We define the RR on the 1 ! 2 and 2 ! 3 transitions as the

basic parameters33,34 to be estimated and will impose the

constraint RR(1 ! 3) = RR(1 ! 2) � RR(2 ! 3) (Equation

(4)). Note that no such relationship exists if the treatment

effect is defined in terms of the Risk Difference or Odds

Ratio.

3.3 | Meta-analysis models

3.3.1 | Multi-state model

A Bayesian multi-state model (referred to as the base-case

model) estimates the log relative risks (LRRs) whilst ensur-

ing that estimated probabilities remain between zero and

one,35 and incorporating Equation (4).

Using the likelihood defined in Equation (1), the LRRs

for the control and treatment arms for any transition x ! y,

are modelled as:

log πx!y, i1
� �

= μx!y, i

log πx!y, i2
� �

= μx!y, i + min δx!y, i, −μx!y, i
� � ð5Þ

For a trial i, μx ! y,i is the log of the probability of the tran-

sition in the control arm of trial i, which is given a non-

informative prior distribution, Uniform (0,1) , and consid-

ered a nuisance parameter.35 At the same time the LRR,

δx ! y,i, is constrained to ensure probabilities remain

between zero and 1.35,36

Then, in an FE model δx ! y,i = dx ! y, while for an RE

model, we write:

δx!y, i e Normal dx!yσ
2
x!y

� �
ð6Þ

where dx ! y is the mean treatment effect and σ2x!y the

between-study heterogeneity variance. The RE model was

used to model the LRR of neonatal colonisation on maternal

colonisation (transition 1 ! 2) as:

δ1!2, i e Normal d1!2σ
2
1!2

� �

d1!2 e Normal 0, 1000ð Þ

σ1!2 e Half −Normal 0, 0:322
� � ð7Þ

The half-normal prior distribution for the between-trial

standard deviation generates only positive values, and its

variance is chosen so that the 95% Credible Interval (CrI)

for the effects of trials lies within a factor of 2 from the

median.36

The LRR of EOGBS conditional on neonatal colonisa-

tion (transition 2 ! 3) is modelled using a FE model due to

data sparseness:

δ2!3, i = d2!3 e Normal 0, 10ð Þ ð8Þ

The relationship in Equation (4), on the log-scale, is used to

describe the overall treatment effect (transition 1 ! 3), as

the sum of a random effect for the 1 ! 2 transition and a

fixed effect for 2 ! 3:

4 ANWER ET AL.



δ1!3, i e Normal d1!3σ
2
1!3

� �

d1!3 = d1!2 + d2!3

: ð9Þ

This captures the assumption that the relative treatment

effect for 2 ! 3, d2 ! 3, has a fixed effect, forcing the vari-

ance of 1 ! 3 to be the same as the variance of 1 ! 2.

3.3.2 | Sensitivity analyses

Modelling assumptions regarding the way trials 6 and 7

were incorporated in the base-case model were investigated

in sensitivity analyses. In a second multi-state model, Sensi-

tivity Analysis (SA) 1, the overall treatment effect is mod-

elled using a FE model where δ1 ! 3,i = d1 ! 3 with d1 ! 3

defined in Equation (9). A third model, SA 2, assumed that

all the effect of IAP in EOGBS is achieved through

preventing neonatal colonisation: thus we set d2 ! 3 = 0,

resulting in d1 ! 3 = d1 ! 2.

We also examined more informative and less informative

prior distributions for the between-trial standard deviation

σ1 ! 2. These were Half-Normal (0, 0.192) and Half-Normal

(0, 0.502), which imply that 95% of the trial effects are

within a factor of 1.5 and 3.0 from the median, respectively.

A t-distribution prior with a mean of zero and two

degrees of freedom was used to investigate the sensitivity of

the prior for d (Supplementary Figures S2 and S3).

3.3.3 | Standard meta-analysis models

Standard Bayesian meta-analysis models were also applied,

using the same priors as the multi-state models; an RE

model for the 1 ! 2 transition and both FE and RE models

for the 2 ! 3 and 1 ! 3 transitions using a binomial likeli-

hood,37,38 in each case using all the data available on each

transition. These analyses are not independent but are pres-

ented for comparison.

3.4 | Model estimation

Models were estimated by Markov Chain Monte Carlo

(MCMC) methods in WinBUGS 1.4.3.39 The multi-state

structures are implemented by adapting the code given in

Dias, Ades, Welton, Jansen, Sutton 36 for ‘chains of evi-

dence’ structures, included in the Supplementary Files (Sup-

plementary File S4).

Convergence was assessed as having occurred within

15,000 iterations using the Brooks-Gelman-Rubin (BGR)

diagnostic 40 and trace plots. We discarded the first 200,000

samples (burn in), and based inference on 100, 000 samples

from each of four chains.

3.4.1 | Model fit

The fit of the models is checked using the total residual

deviance and by inspecting deviance plots.41 The residual

deviance is the posterior mean of the deviance of the

model removing the deviance for a saturated model.42 For

models that fit the data well, the residual deviance is

expected to be close to the number of unconstrained data

points. Model comparison can be conducted by using

DIC to compare the base-case model, SA 1 and SA 2.

The DIC measures the goodness of fit penalising for the

effective number of parameters.41 Lower values of DIC

are preferred with differences greater than 3 to 5 points,

being considered important.

3.4.2 | Checking conflict

Node-splitting43 was used to check for conflict between the

“direct” evidence on the RR for the 1 ! 3 transition from

studies 6 and 7, and the “indirect” evidence from the rest of

the data.

Therefore, we define dDir1!3 as:

dDir1!3 e Normal 0,1000ð Þ ð10Þ

while the “indirect” estimate is calculated as

dInd1!3 = d1!2 + d2!3 and compared to dDir1!3 using a Bayesian

“p-value” 43,44:

pB =Pr dDir1!3 ≥ dInd1!3

� �
ð11Þ

In an MCMC framework, this p-value is calculated as the

proportion of iterations where dDir1!3 ≥ dInd1!3. If pB is less than

0.5, the two-sided p-value is 2 × pB, otherwise it is 2×

(1-pB).
43

The fit of the node-split model is also compared to the fit

of the base-case model using the residual deviance and

DIC.41 The changes in between-study heterogeneity can also

be used to compare the heterogeneity of the base-case and

node-split models.45

4 | RESULTS

4.1 | Multi-state model

The overall treatment effect using all available relevant evi-

dence shows that administering IAP to mothers prevents

EOGBS in newborns (RR: 0.03, 95% CrI: 0.002, 0.13). The

results from the base-case model (Table 2 and Figure 2) indi-

cate that IAP primarily prevents EOGBS disease by

preventing colonised mothers from infecting their newborns,

i.e. during transition 1 ! 2 (RR: 0.08, 95% CrI: 0.04, 0.14).

ANWER ET AL. 5



There is insufficient evidence to determine whether IAP has

an additional treatment effect on preventing EOGBS in

colonised newborns, i.e. transition 2 ! 3 (RR: 0.33, 95%

CrI: 0.03, 1.54). The residual deviance for the base-case

model is 25.5 compared to 24 data points included in the

analysis, indicating a good fit.

TABLE 2 Median relative risks (RR) with 95% Credible Intervals (CrI), between-trials standard deviance (σ) for the 1 ! 2 transition, and

model fit statistics for the base-case model and sensitivity analysis. All 8 studies in Table 1 were included in each model

Model

Residual

deviance† DIC

σ1 ! 2

(95% CrI)

RR1 ! 2

(95% CrI)

RR2 ! 3

(95% CrI)

RR1 ! 3

(95% CrI)

Base-case

Base-case δ1 ! 3,i = δ1 ! 2,new+d2 ! 3 25.5 96.3 0.278

(0.011, 0.765)

0.081

(0.039, 0.143)

0.331

(0.026, 1.538)

0.026

(0.002, 0.130)

Sensitivity analyses: Modelling assumptions

SA 1 δ1!3, i ¼ d1!3

¼ d1!2 + d2!3

25.7 96.5 0.273

(0.015, 0.750)

0.081

(0.039, 0.144)

0.341

(0.025, 1.586)

0.027

(0.002, 0.137)

SA 2 d2 ! 3 = 0 25.3 95.3 0.279

(0.017, 0.757)

0.079

(0.038, 0.139)

1.000

(fixed)

0.079

(0.038, 0.139)

Sensitivity analyses: Assumptions about between-trials variation on the 1 ! 2 relative treatment effect

SA 3 σ1 ! 2 = 0 (FE) 27.5 97.2 -- 0.087

(0.049, 0.142)

0.333

(0.026, 1.551)

0.029

(0.002, 0.140)

SA 4 σ1 ! 2~Half − Normal

(0,0.192)

26.5 96.7 0.152

(0.009, 0.463)

0.085

(0.045, 0.141)

0.324

(0.023, 1.550)

0.027

(0.002, 0.137)

SA 5 σ1 ! 2~Half − Normal

(0,0.502)

24.5 96.0 0.434

(0.029, 1.128)

0.077

(0.031, 0.147)

0.331

(0.025, 1.551)

0.025

(0.002, 0.129)

Sensitivity analysis: Assumptions about treatment effects

SA 6 d1!2 e Student df ¼ 2ð Þ

d2!3 e Student df ¼ 2ð Þ

25.5 96.3 0.277

(0.014, 0.764)

0.081

(0.039, 0.143)

0.341

(0.025, 1.571)

0.027

(0.002, 0.137)

† Compare to 24 datapoints

FIGURE 2 Comparative forest plots

representing the relative risks and 95% Credible

Intervals (CrIs) for the treatment effects of IAP on

EOGBS for the (a) base-case model (BC), (b)

Sensitivity Analysis 1 (SA 1), (c) Sensitivity

Analysis 2 (SA 2), and (d) standard random

effects model (RE MA)

6 ANWER ET AL.



4.2 | Sensitivity analyses

Models SA 1 and SA 2 appear to fit the data as well as the

base-case model (Table 2). The RRs estimated for SA 1

were consistent with those of the base-case model (Table 2).

As the RR for the 2 ! 3 transition for SA 2 is set to 0,

RR1 ! 3 = RR1 ! 2 (Table 2) but the estimated RR1 ! 2 is

still consistent with that estimated in the base-case model.

No meaningful changes are observed in the estimated

between-study heterogeneity in models SA 1 or 2 compared

to the base-case model.

The treatment effect of IAP also remained consistent

when the prior distributions for the heterogeneity of the

1 ! 2 transition were varied although the estimates of het-

erogeneity changed (Table 2). The effect of the different

prior distributions on the posterior distributions is shown in

the Supplementary Material, S1.

4.3 | Standard Meta-analysis models

Table 3 shows the results for the standard meta-analysis

models. The differences between the FE and RE models are

negligible for transitions 2 ! 3 and 1 ! 3. RR1 ! 3 for the

standard meta-analysis models is consistent with the RR esti-

mated for all multi-state models except SA 2. The RR esti-

mated for the 1 ! 2 transition using standard meta-analysis

is lower than the RR obtained from the multi-state models.

The RR for the 2 ! 3 transition is zero. This is due to no

cases of EOGBS being observed in the IAP arm in any of

the included trials.

4.4 | Checking conflict

There was no evidence of conflict between the overall treat-

ment effects on EOGBS (Direct: 0.01 (4 × 10−5, 0.08), Indi-

rect: 0.10 (0.004, 0.70), p-value: 0.15). The node-splitting

model also appears to fit the data adequately. The residual

deviance for 24 datapoints is 23.3 and the DIC is 94.7. The

between-study SD for transition 1 ! 2 is 0.29 (0.01, 0.78),

similar to σ1 ! 2 obtained in the base-case model (Table 2).

The RRs observed for the node-splitting models yielded con-

clusions for the overall treatment effect consistent with those

from the multi-state and standard meta-analysis models.

5 | DISCUSSION

We have proposed a model which delivers a single coherent

analysis of three nested outcomes and checked the core

assumptions to the extent possible. Joint modelling of all the

outcomes ensures that all relevant trials provide information

on all relative effects of interest, directly or indirectly. The

results confirm that the effect of IAP on EOGBS is very

strong, eliminating approximately 97.4% (95% CrI: 87.0% -

99.8%) of EOGBS, and suggesting that most of this effect

occurs by preventing newborn colonisation. Previous

authors9,31 also suggest that IAP reduces GBS colonisation

in mothers, in turn reducing the transmission to newborns

through reduced exposure to GBS during labour.

We have found IAP to be more effective than most previ-

ous researchers, but this appears to be mainly because biased

estimation methods have been used (Table 4). Smaill

(2000)30 uses the Peto ‘one-step’ method51 which is biased

for unbalanced data or large treatment effects52. Benitz

(1999)31 and Ohlsson (2014)9 used Mantel–Haenszel (M-H)

but added a continuity correction factor of 0.5 to cells with

zero counts which is not only unnecessary but also incor-

rect.53 The use of continuity correction with sparse data

results in bias and poor coverage.54,55 The size of these

biases, in this case, can be seen by comparing published esti-

mates to the estimates based on Bayesian Fixed Effect and

M-H method without continuity correction (Table 4). Our

findings with multi-state models concur with previous work

when appropriate methods were used.

The traditional systematic review and meta-analysis

approach forces investigators to choose a “primary” outcome

TABLE 3 Relative risks and model fit statistics for standard fixed and random effects meta-analysis models. Between-study SD for the random

effects models are also included. Some studies were included in more than one meta-analysis

Number of

studies

Number of

Datapoints

Fixed effects model Random effects model

Estimate

Residual

deviance Estimate

Between-study

SD

Residual

deviance

RR1 ! 2 7 14 0.059

(0.032, 0.098)

18.3 0.055

(0.029, 0.099)

0.216

(0.010, 0.719)

14.8

RR2 ! 3
† 4 8 0.000

(0.000, 4.898)

-- --- --- ---

RR1 ! 3 6 12 0.030

(0.001, 0.171)

10.7 0.029

(0.001, 0.169)

0.216

(0.010, 0.718)

10.7

† The data for the 2 ! 3 transition did not allow the use of Bayesian models or the M-H method to estimate RRs. The RR for the 2 ! 3 transition was generated using

the exact method46 in the exactmeta47 package in R 3.4.1.
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TABLE 4 Results obtained for previous studies

Univariate estimates

Transition Studies included Method used in study

Pooled estimate

reported in study

Mantel–Haenszel (M-H) OR

(no continuity correction)

Bayesian fixed

effect OR

Smaill (2000)30 1 ! 2 Boyer (1986)28 Peto OR 0.10 (0.07, 0.14) 0.037 (0.018, 0.074) 0.037 (0.017, 0.069)

Easmon (1983)24

Matorras (1991)23

Morales (1986)26

Smaill (2000)30 1 ! 3 Boyer (1986)28 Peto OR 0.17 (0.07, 0.39) 0.051 (0.007, 0.375) 0.034 (0.001, 0.199)

Matorras (1991)23

Morales (1986)26

Tuppurainen (1989)27

Benitz (1999)31 1 ! 3 *Allardice (1982)48 M-H OR

with continuity correction

0.19 (0.07, 0.53) 0.103 (0.023, 0.470) 0.092 (0.012, 0.346)

Morales (1986)26

Tuppurainen (1989)27

Matorras (1991)23

*Pylipow (1994)49

Allen (1993)32 1 ! 3 Boyer (1986)28 M-H OR without

continuity correction

0.03 (0.0013, 0.17) 0.025 (0.004, 0.187) 0.017 (0.001, 0.095)

*Boyer (1986)28

*Allardice (1982)48

*Morales (1987)50

Morales (1986)26

Matorras (1991)23

Tuppurainen (1989)27

Ohlsson (2014)9 1 ! 3 Boyer (1986) 28 M-H RR with continuity

correction

0.17 (0.04, 0.74) 0.097 (0.014, 0.696)† 0.062 (0.002, 0.368)‡

Matorras (1991)23

Tuppurainen (1989)27

*Non-randomised studies.

† M-H RR

‡ Bayesian FE RR35

NOTE: Reviews did not necessarily extract the same data from each study
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and perform separate analyses for each outcome of interest.

This has led to all previous analyses treating the outcomes as

unrelated, failing to use all the available evidence or taking

into account dependencies and overlaps in the data. One

approach would be to treat the 1 ! 2 and 1 ! 3 outcomes

as correlated in a MVNRE meta-analysis.5 This would take

account of the within- and between-study correlations, but

the analysis would be identical if the outcomes were two dif-

ferent ways of measuring depression, or if one outcome was

the risk of stroke, and the other the risk of bleeding. The

MPES models presented here, by contrast, are intended to

capture structural and clinical relationships, and provide a

range of outputs in the way of transition-specific risk ratios,

and model checking, that have a natural clinical

interpretation.

The multi-state models proposed in this paper are related

to a much wider set of models for aggregate event history

data using rate models and hazard ratios.56 These methods

include multiple end-state (or competing risk) models,57

models using the Kolmogorov forward equations for data on

fully or partially observed Markov processes58,59 and models

synthesising data on multiple-outcomes8 and over multiple

follow-up times.7 In the case of the EOGBS data, although

the lack of a time-element does not allow for event history

analysis, the conditional, sequence of outcomes can be used

to conduct a coherent analysis.

The most recent Cochrane review,9 which concludes

“there is a lack of evidence … to recommend IAP” takes all-

cause mortality as the primary outcome, rather than EOGBS,

and entirely excludes most of the evidence, which is on new-

born colonisation. Only one trial28 reports neonatal mortal-

ity, with 0/79 deaths in the IAP arm and 2/85 in controls

(one death was due to GBS, the other to other causes).

One naturally hesitates before making a treatment recom-

mendation based on such sparse data. However, to treat neo-

natal EOGBS mortality as if it is unrelated to EOGBS, or to

GBS colonisation of the newborn, is reductionism60 taken to

an illogical extreme. Deaths due to EOGBS can only occur

in infants with EOGBS, so prevention of EOGBS is a neces-

sary and sufficient condition to prevent EOGBS-related mor-

tality. Similarly, to the extent that EOGBS can only occur

following newborn colonisation, it would also be reasonable

to take newborn colonisation by GBS as a reasonable proxy

outcome.

Indeed, if we accept that the effect of IAP on EOGBS

mortality is the target parameter, our multi-state approach

readily provides an estimate. If we conservatively assume

that there is no effect of treatment on EOGBS mortality in

newborns with EOGBS, then the RR of IAP for neonatal

mortality due to EOGBS is 0.03 (0.002, 0.13), the same as

the effect on EOGBS. As there is evidence that IAP also

prevents other early onset disease61,62 the effect on all-cause

mortality can only be greater than this.

We have shown how a MPES framework can be used to

jointly synthesise all relevant evidence and to check that the

underlying assumptions are statistically supported by the evi-

dence available. The starting point for this type of model is

an assumption on the clinical relationship between out-

comes, which must be clinically plausible and validated by

experts.

Similar methods can be applied to trials on fertility treat-

ments where embryo fertilisation, implantation, clinical

pregnancy, ongoing pregnancy and birth must follow in

order, and the survival of the embryo/fetus at each stage is

conditional on survival at the previous stage. Many other

multiple outcome evidence structures exist, where a joint

synthesis respecting clinical and logical structure provides a

more robust basis for systematic review and decision mak-

ing,6-8,58 especially if formal methods such as cost-

effectiveness analysis are employed.63,64
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