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Abstract 

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common childhood 

behavioural disorders, the frontline treatments for which are drugs with abuse potential. As a 

consequence, there is an urgent need to develop non addictive drug treatments with equivalent 

efficacy. Preclinical evidence suggests that selective serotonin uptake inhibitors (SSRIs) are 

likely to be effective in ADHD, however clinical reports suggest that SSRIs are of limited 

therapeutic value for the treatment of ADHD. We propose that this disconnect can be explained 

by the pattern of drug administration in existing clinical trials (administration for short periods 

of time, or intermittently) leading to inadequate control of the autoregulatory processes which 

control 5-HT release, most notably at the level of inhibitory 5-HT1A somatodendritic 

autoreceptors. These autoreceptors reduce the firing rate of 5-HT neurons (limit ing release) 

unless they are desensitised by a long term, frequent pattern of drug administration. As such, 

we argue that the participants in earlier trials were not administered SSRIs in a manner which 

realises any potential benefits of targeting 5-HT in the pharmacotherapy of ADHD. In light of 

this, we hypothesise that there may be under-researched potential to exploit 5-HT transmission 

therapeutically in ADHD, either through changing the administration regime, or by pharmaco-

logical means. Recent pharmacological research has successfully potentiated the effects of 

SSRIs in acute animal preparations by antagonising inhibitory 5-HT1A autoreceptors prior to 

the administration of the SSRI fluoxetine. We suggest that combination therapies linking SSRIs 

and 5-HT1A antagonists are a potential way forward in the development of efficacious non-

addictive pharmacotherapies for ADHD.  
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Introduction 

Attention Deficit Hyperactivity Disorder (ADHD) is one of the most common childhood 

behavioural disorders, although estimates of its prevalence vary widely (0.6-29.2%; [1]). This 

suggests that there is considerable ambiguity in the interpretation of the diagnostic criteria for 

the disorder and how they relate to the symptoms observed. This ambiguity arises in large part 

because the pathophysiological basis for the disorder is poorly understood [2]. 

Pathophysiological uncertainty has also hindered the development of new pharmacotherapies 

for the disorder, the frontline treatments for which are still amphetamines or methylphenidate 

(e.g. in the UK, NICE Guideline NG87 [3]), both of which have abuse potential [4]. Although 

non-stimulant drugs such as atomoxetine are available for the treatment of ADHD, the efficacy 

of these drugs are poor in comparison to psychostimulants [5] and the search is on for a drug 

strategy that is as efficacious as psychostimulants without carrying the abuse potential. 

 Since the seminal work of A.A. Strauss in the 40s and 50’s (e.g. [6]), besides hyperactivity, 

distractibility has been recognised as a core symptom of ADHD. Indeed, increased 

distractibility is the most frequently presenting symptom of ADHD [7], and is the symptom that 

shows greatest resistance to extinction with age [8]. On the basis of recent theoretical and 

experimental work, we have proposed that increased distractibility in ADHD is caused by a 

hyper-responsiveness of the superior colliculus (SC; [9]), a visual (superficial layers) and 

multimodal (deep layers) sensory structure in the midbrain which is intimately linked to eye 

movements and attentional focus (e.g. [10]). The original case for a collicular sensory hyper-

responsiveness in ADHD is made fully in Overton [9], based on clinical observations by other 

groups and our own early preclinical work. In brief: 1. ADHD patients show increased 

distractibility in tasks which are sensitive to collicular function; 2. ADHD patients have a 

general problem inhibiting eye movements (saccades), the generation of which involves the SC; 

3. Covert shifts in attention, which have been argued to involve the SC, are also impaired in 
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ADHD; 4. D-amphetamine, an effective pharmacotherapeutic agent in ADHD, depresses 

visually evoked activity in the colliculus; 5. Aberrant reward processing identified in ADHD 

could also reflect a collicular dysfunction, given the role played by the SC in the regulation of 

the dopamine systems.  

 More recently, we have gone on to show that two well validated animal models of 

ADHD, the Spontaneously Hypertensive Rat and the New Zealand Genetically Hypertensive 

Rat, both exhibit collicular visual hyper-responsiveness [11], [12]. We have also shown that 

non-clinical human participants who have higher levels of ADHD-like traits exhibit elevated 

levels of small amplitude saccades at fixation (micro-saccades) compared to those with lower 

levels of ADHD-like traits [13], a saccadic type that is particularly associated with the 

colliculus (e.g. [14]). Participants with higher levels of ADHD-like traits also process 

multisensory stimuli abnormally [15], and the SC is acknowledged to play an important role in 

multisensory integration (e.g. [16]).  

Current pharmacotherapies for ADHD 

Identifying the SC as a potential pathological locus of change in ADHD fits well with the 

known pharmacological actions of frontline ADHD treatments. While the pharmacodynamics 

of D-amphetamine are complex, there is converging evidence that it’s effects are mediated by 

elevating synaptic levels of the monoamine neurotransmitters dopamine (DA), noradrenaline 

(NA)[17] and serotonin (5-HT)[18], [19]. D-amphetamine affects widespread areas of the brain 

[17, 18, 19], many of which may be involved in the therapeutic effects of the drug, however 

due to the pathophysiological uncertainty surrounding the disorder, we focus here on the SC. 

The SC is extensively innervated by 5-HT and NA [20], [21], and to a lesser extent by DA [22], 

thus expresses the appropriate neurochemistry to allow for the action of D-amphetamine (and 

methylphenidate, a DA/NA/5-HT uptake inhibitor [23]) to be mediated locally within the 

colliculus. That theoretical possibility was demonstrated to be correct by Dommett et al. [24] 
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using an in vitro SC preparation to probe the proximal effects of therapeutically appropriate 

doses of D-amphetamine or methylphenidate applied to the SC. Perfusion of either drug 

inhibited superficial layer collicular responses to low intensity stimulation of the optic tract, 

while responses to high intensity stimulation were largely preserved. The inhibitory action of 

the psychostimulants was blocked by the broad spectrum 5-HT antagonist metergoline, 

implicating 5-HT in psychostimulant-induced suppression of collicular responsiveness. This 

suggests that therapeutically D-amphetamine and methylphenidate may act to enhance 5-HT 

mediated modulation of sensory activity at the level of the SC, thereby normalising collicular 

hypersensitivity and reducing symptoms of distractibility. Although metergoline also interacts 

with dopamine receptors as well as 5-HT receptors [25] and dopamine receptors are present in 

the SC [26], the agonistic actions of metergoline appear to be largely confined to D2-type 

dopamine receptors [27], which are scarce in the superficial layers [22]. The involvement of 5-

HT is additionally supported by the finding in Dommett et al. [24] that the inhibitory action of 

D-amphetamine and methylphenidate was mimicked by 5-HT itself. This pharmacological 

evidence implicating 5-HT in the effects of D-amphetamine and methylphenidate at the level 

of the SC, however, is contradicted by clinical reports that suggest selective serotonin uptake 

inhibitors (SSRIs) are of limited efficacy in the treatment of ADHD (e.g. [28]). There is 

therefore a clear disconnect; if collicular dysfunction underlies distractibility in ADHD, and 

collicular activity is effectively modulated by 5-HT and normalised by psychostimulants, why 

are SSRIs not more efficacious in treating ADHD? 

Hypothesis 

We believe that the low efficacy of SSRIs arises as a result of inadequate control of the 

autoregulation process that regulates the release of 5-HT, most notably at the level of inhibitory 

5-HT1A somatodendritic autoreceptors which limit synaptic release via a reduction in the firing 

rate of 5-HT neurons. As a consequence, we hypothesise that desensitisation of autoregulation 
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processes, either via an appropriate administration regime for the drug, or via pharmaco-

logically controlling the autoregulatory process, will enhance the efficacy of SSRIs in the 

treatment of ADHD.  

Serotonin based interventions for ADHD: Disconnect between theory and 

application 

There is convergent evidence that frontline ADHD pharmacotherapies may reduce 

distractibility by targeting 5-HT transmission at the collicular level (e.g. [24]). However, 

despite this pharmacological evidence, clinical and behavioural reports assessing the efficacy 

of SSRIs in the treatment of ADHD have been mixed at best. Trials assessing the viability of 

treating ADHD with SSRIs were initially promising. In a six week preliminary open trial, 

ADHD patients who had been non-responsive to stimulants showed at least a moderate 

improvement in symptoms when treated with fluoxetine [28]. In other trials, however, SSRIs 

have shown little efficacy in treating ADHD. Donnelly et al. [29] showed that while D-

amphetamine produced marked improvements in hyperkinetic and inattentive ADHD 

symptoms, the SSRI fenfluramine did not significantly alter symptom presentation relative to 

placebo. Similarly, in patients with comorbid ADHD and major depressive disorder, fluoxetine 

monotherapy produced a remission of depressive symptoms, but had no significant effect on 

ADHD symptoms [30]. In addition to limited efficacy as a primary treatment for ADHD [28], 

SSRIs may actually act to exacerbate the symptoms of ADHD. Riddle et al. [32] found that 

administering fluoxetine to treat children with comorbid ADHD and depression often 

aggravated ADHD symptoms in a dose dependant manner. Discontinuing fluoxetine treatment 

reversed this aggravation.  

 While these trials suggest that SSRIs are of inconsistent therapeutic viability in ADHD 

[33], it should be noted that each of these studies were comprised of small sample sizes (no 

trial had more than 20 participants), and that the course of SSRI treatment may have been too 
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short for observable clinical effects [34]. Nevertheless, these early trials have been cited by 

several major contributors to the field of ADHD psychopharmacology as evidence that the 5-

HT system, and drugs that target this system, are of little to no relevance to the treatment of 

ADHD [35], [36]. This, combined with the emergence of other viable alternatives to 

psychostimulant medication, such as the NA reuptake inhibitor atomoxetine [37], [38], has 

contributed to a period of reduced interest in researching the viability of 5-HT manipulation in 

the psychotherapy of ADHD. 

 However, in recent years 5-HT transmission in ADHD has been revisited. Much of this 

renewed interest stems from advances in genetics, which have revealed that ADHD can be 

reliably predicted by polymorphisms of the 5-HT transporter (SERT; [39], [40]). Specifically, 

ADHD is associated with a significant over-expression of the long variant of the promoter 

region of the SERT gene (the 5HTTLPR; [39], [41]). The SERT is the carrier protein that is 

responsible for reuptake of 5-HT into presynaptic terminals, thus terminating 5-HT signalling 

[42]. Expression of the long allele of the 5HTTLPR is associated with an approximate two fold 

higher uptake of 5-HT compared to other genotype expressions [43]. As action of the SERT 

constitutes a fundamental mechanism for the regulation of 5-HT levels in the central nervous 

system, the rapid 5-HT uptake associated with the long variant of 5HTTLPR results in reduced 

availability of active 5-HT [44].  

 While genetic evidence points towards a dysfunction at the level of the SERT in ADHD, 

in vivo evidence for altered SERT expression and availability in ADHD patients is currently 

inconclusive. Early PET investigations assessing binding potentials for ligands with high 

specificity for SERT showed no difference in SERT availability between ADHD patients and 

healthy controls [45], [46]. Recently, however, Vanicek et al. [47] has argued that these studies 

lacked the required statistical power to detect differences between groups. Vanicek et al. [47] 

performed a PET interregional molecular correlational analysis to assess functional 
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connectivity between various regions of interest that are traditionally implicated in the 

neuropathology of ADHD. They found altered interregional SERT binding between various 

regions of ADHD patients compared to healthy controls. As SERT expression in vivo is 

partially regulated by 5-HT release [48], these findings point towards altered 5-HT dynamics 

in ADHD.  

 There are thus clear contradictions within the literature assessing the contribution of the 

serotonergic system to ADHD symptoms. Other than a single open-label trial [28], clinical 

reports suggest that monotherapeutic interventions targeting 5-HT in ADHD are either 

ineffective, or otherwise exacerbate symptoms [35], [36]. However, genetic and biological 

evidence point towards dysfunction at the level of the serotonergic system [39]. We have 

argued above that collicular dysfunction underlies distractibility in ADHD and have presented 

pharmacological evidence that psycho-stimulants may reduce distractibility in ADHD by 

targeting 5-HT transmission at the level of the SC. In light of this biological and genetic 

evidence, it is somewhat paradoxical that clinical reports suggest that drugs targeting 5-HT are 

of limited efficacy when the treating the symptoms of ADHD. One potential explanation for 

this disconnect is that the contribution of 5-HT to the pathology of ADHD is more complex 

than an overall increase or decrease in symptom presentation. In a review of serotonergic 

dysfunction in ADHD, Oades [49] proposed that while a widespread association of 5-HT 

dysfunction with a diagnosis of ADHD is unlikely, there may be a differential contribution of 

5-HT to the major symptomatic domains of ADHD. Evidence reviewed showed little 

association between 5-HT and hyperkinetic ADHD symptoms, but did show an association 

between 5-HT and inattentive symptoms. In particular, Oades [49] proposed that reduced 5-

HT availability in ADHD contributes to altered perceptual sensitivity and salience designation, 

leading to enhanced cognitive impulsivity and distractibility. If 5-HT only has relevance to 

attentional symptoms, this may explain the mixed results presented in the clinical trials above, 
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where specific symptomatic domains were not controlled for. While this proposition may 

contextualise why D-amphetamine affects 5-HT transmission in salience designation circuits 

such as the SC, it does not explain why 5-HT based interventions are not more efficacious in 

the treatment of ADHD, particularly for inattentive symptoms (e.g. [50]).  

 A more viable explanation for clinical reports suggesting that 5-HT is of limited 

relevance to the pharmacotherapy of ADHD relates to the regulatory mechanisms that control 

5-HT neurotransmission in vivo. It has long been known in the depression literature that a 

minimum of 3-4 weeks of continuous daily SSRI use is required until improvements in clinical 

symptoms are observed [51]. Similarly, when SSRIs are used in the treatment of obsessive 

compulsive disorder (OCD), a minimum period 8-12 weeks of continuous daily SSRI use is 

required until a clinically and statistically significant improvement in symptoms is observed 

[34], [52] . This delay in time to response is believed to result from feedback mechanisms at 

the level of the raphe nuclei, the major source of ascending 5-HT projections for the central 

nervous system [53], [54], which act to regulate the rate of 5-HT release in target regions [51]. 

Consequently, it is only after chronic regular exposure to SSRIs that these regulatory feedback 

mechanisms are desensitised, allowing for increased levels of synaptic 5-HT and 

commensurate therapeutic benefits. In the trials assessing SSRI use for ADHD described 

above, SSRIs were prescribed either for short periods (three weeks for Findling [30]; six weeks 

for Barrickman et al., [25]), or were otherwise not administered daily [29], [31]. Given that up 

to twelve weeks of continuous daily SSRI use is required to desensitise raphe feedback 

mechanisms and allow for observable clinical improvements in other disorders (e.g. OCD; 

[52]), it is plausible that participants in the ADHD clinical trials described above were not 

administered SSRIs for sufficient regularity and length for any potential clinical effect on 

ADHD symptoms. As these trials represent a basis for which SSRIs are considered to have 

limited pharmacological relevance to ADHD (e.g. [35]), it is possible that by bypassing the 
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mechanisms that regulate 5-HT release, we may observe effects of SSRIs which have clinical 

relevance to the pharmacotherapy ADHD. The next section will thus consider the principal 

mechanism that regulates the release of 5-HT, and a potential strategy for bypassing this 

mechanism. 

Serotonin based interventions for ADHD: Autoregulation of serotonergic 

activity  

The delayed onset of the therapeutic benefits of SSRIs observed in both depression and OCD 

can be explained by regulatory mechanisms of somatodendritic autoreceptors situated on 5-HT 

cells in the raphe nuclei, which decrease the firing rate of 5-HT neurons in response to locally 

released 5-HT. Serotonergic neurons in the dorsal and medial raphe nuclei (DRN and MRN) 

form the majority of all 5-HT producing cells within the central nervous system, with the DRN 

and MRN accounting for up to 85% and 15% of all serotonergic cell bodies respectively [55]. 

Neurons in the DRN give rise to ascending projections to a broad range of cortical and 

subcortical targets, including the cerebral cortex, basal ganglia, and limbic system [56], and of 

particular relevance to the present discussion, the SC [57]. The firing rate of raphe neurons 

alters the release of 5-HT in target regions [58]. Consequently, the mechanisms that regulate 

the firing of these DRN neurons thus regulate 5-HT release and availability at afferent targets. 

The most relevant of these mechanisms to the delayed efficacy SSRIs pharmacotherapy is the 

down-regulation of DRN firing elicited by somatodendritic 5-HT1A autoreceptors.  

 Under typical conditions, 5-HT neurons exhibit spontaneous firing at a rate of 1-5 action 

potentials per second [59]. When DRN neurons are exposed to 5-HT, either through local 

dendrodendritic connections or raphe-raphe projections [60], inhibitory post synaptic potentials 

can be observed, resulting in down-regulation of DRN activity and thus reduced central 

nervous system 5-HT release [61]. A major contributor to this down-regulation is negative 

feedback evoked by 5-HT1A autoreceptors ([58], [62]. 5-HT1A autoreceptors are a class of  G 
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protein-coupled receptors  which are densely expressed on somatodendritic compartments of 

raphe nuclei cell bodies [63]. Upon binding with 5-HT, these autoreceptors activate G protein-

coupled inwardly rectifying potassium channels, thereby increasing permeability to K+ and 

thus causing membrane hyperpolarisation and a consequent reduction in neural excitability 

[64], [65].  

 It has long been recognised that acute SSRI administration increases extracellular 5-HT 

availability in the DRN, thereby activating 5-HT1A autoreceptors and reducing the firing rate 

of neurons mediated by these autoreceptors [66]. As a result, 5-HT release is inhibited in areas 

innervated by these DRN neurons [67]. Consequently, the delayed time to response observed 

when SSRIs are administered clinically (for e.g. in depression) can be explained by 

desensitisation of 5-HT1A autoreceptors following consistent daily use over a number of weeks 

[68]. In terms of 5-HT availability at afferent DRN targets, it can be conceptualised that any 

initial increase in synaptic 5-HT availability caused by SSRIs occupying presynaptic 5-HT 

transporters is counteracted by the down-regulation of DRN firing rate by 5-HT1A 

autoreceptors. Following desensitisation of these autoreceptors, negative feedback at the level 

of the raphe is reduced, thereby normalising firing rate and allowing for increased 5-HT 

availability in afferent target regions. This conceptualisation is supported by evidence that more 

rapid onset of anti-depressant effects of SSRIs can be obtained when SSRIs are administered 

concurrently with a 5-HT1A antagonist [69]. Similarly, selective deactivation of 5-HT1A 

autoreceptors in murine models allows for immediate anti-depressant effect following a single 

dose of fluoxetine [70]. This concept can be expanded to allow for the examination of effects 

of SSRIs in acute animal preparations. Pre-treatment with 5-HT1A antagonists prior to 

administration of fluoxetine has allowed for the exploration of a variety of behavioural and 

pharmacological effects which would have otherwise been obscured by the autoregulation of 

DRN activity (e.g. [66], [71], [72]. 
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 One potential problem for the proposal that insufficient 5-HT1A autoreceptor 

desensitisation might underlie the previous lack of effectiveness of SSRIs in the treatment of 

ADHD is that the classical psychostimulant pharmacotherapeutic agents used in the disorder, 

d-amphetamine and methylphenidate, do not require extended exposure before they become 

effective (e.g. [73], [74]) (as we have argued is likely to be the case for SSRIs), even though 

they too are likely to lead to elevated levels of 5-HT in the DRN, which should activate 

inhibitory 5-HT1A receptors on the cell bodies of raphe neurons. Why might they not require a 

period of time to desensitise 5-HT1A receptors before becoming effective? In the case of d-

amphetamine, the explanation is fairly straightforward, since the drug produces the impulse-

independent release of monoamine neurotransmitters (e.g. [75]), hence the elevation of 

forebrain 5-HT levels is still likely to occur following d-amphetamine administration even if 

DRN firing rate is acutely suppressed. The case for methylphenidate is a more complicated, 

since there is no direct evidence of impulse-independent release as far as we are aware. 

However, evidence from freely moving animals suggests that acute methylphenidate 

administration changes that activity of over half of the neurons in the DRN, in most cases 

increasing their firing rate [76]. Although the mechanism of action is unknown, again this 

means the drug is likely to produce an early increase in forebrain 5-HT levels without the need 

for a period of desensitisation.  

 We have previously presented evidence outlining the potential benefits of exploiting 

collicular 5-HT transmission in the treatment of ADHD. The critical role of 5-HT1A auto-

receptors in regulating 5-HT transmission suggests that the efficacy of SSRIs in the treatment 

of ADHD can be improved by combining SSRIs with the administration of 5-HT1A antagonists. 

Antagonism of 5-HT1A receptors is unlikely to directly interfere with the therapeutically desired 

inhibitory effects of 5-HT on collicular activity as this appears to be mediated by 5-HT1B and 

5-HT1D and receptors [57], [77].  
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Summary and next steps  

There is a disconnect between pre-clinical evidence, which suggests that SSRI-based therapies 

for ADHD are likely to be effective, and clinical reports which suggest that SSRIs are of limited 

therapeutic relevance to the treatment of ADHD. We propose that this disconnect can be 

explained by inadequate control of autoregulation processes, which paradoxically limit the 

availability of 5-HT when SSRIs are administered over the irregular periods used in these 

clinical trials [30], [31]. As such, we argue that the participants in earlier trials were not 

administered SSRIs with sufficient regularity or for long enough to fully realise any potential 

benefits of targeting 5-HT in the pharmacotherapy of ADHD. In light of this, there may be 

under-researched potential to exploit 5-HT transmission therapeutically in ADHD, by 

administering SSRIs according to a regime which desensitises 5-HT1A auto-receptors. Hence, 

we suggest that combination therapies linking SSRIs and 5-HT1A antagonists are a potential 

way forward in the development of efficacious non-addictive pharmacotherapies for ADHD. 

The need to develop new efficacious non-addictive pharmacotherapies for ADHD is made even 

more acute by the recent evidence that not only do ADHD symptoms persist into adulthood in 

up to 43% of childhood cases [78], but ADHD can also emerge de novo in adulthood [79]. 

Introducing a combination therapy may be relatively straightforward as the centrally-active 5-

HT1A partial agonist pindolol (Visken) is already in clinical use for unrelated conditions in 

physical medicine [80], and drugs like the 5-HT1A antagonist lecozotan have been developed 

in the context of Alzheimer’s disease [81], so their adoption in the context of ADHD would 

represent a repurposing of existing medications rather than the generation additional drugs. 

However, recent studies with SSRI-resistant depression underline the critical issue of dose 

when it comes to incorporating an adjunct therapy into a treatment regime alongside SSRIs 

[82]. It is also important to bear in mind the costs and benefits of such adjunct therapies. As a 

monotherapy in ADHD, very high dose pindodol (20 mg b.i.d.) has recently been shown be as 
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effective as a standard dose of methylphenidate against conduct problems and hyperactive 

behaviour at home and hyperactivity at school, although adverse effects were greater [83]. The 

extent to which those effects might be ameliorated via reducing the dose, and/or the combined 

administration of pindodol and SSRIs has yet to be determined. 
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