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Manipulation Planning Using Environmental Contacts

to Keep Objects Stable under External Forces

Lipeng Chen, Luis F. C. Figueredo, Mehmet Dogar

Abstract— This paper addresses the problem of sequential
manipulation planning to keep an object stable under chang-
ing external forces. Particularly, we focus on using object-
environment contacts. We present a planning algorithm which
can generate robot configurations and motions to intelligently
use object-environment, as well as object-robot, contacts, to
keep an object stable under forceful operations such as drilling
and cutting. Given a sequence of external forces, the planner
minimizes the number of different configurations used to keep
the object stable. An important computational bottleneck in this
algorithm is due to the static stability analysis of a large num-
ber of configurations. We propose a containment relationship
between configurations, to prune the stability checking process.

I. INTRODUCTION

We propose an approach to address manipulation planning

of keeping an object stable under a sequence of chang-

ing external forces. Particularly, we focus on using object-

environment contacts, in addition to using robot grasps.

Take the example in Fig. 1, where a human and a robot

collaborate to assemble a chair. Throughout the assembly

task, the human applies changing forces on the chair pieces,

due to a sequence of drilling and inserting operations. The

robot is supposed to assist the human by keeping the chair

assembly stable as these forceful operations are applied. The

robot itself cannot to hold the chair assembly stable against

all the different and large external forces. Nevertheless, by

exploiting object contacts with the environment (e.g. the

table surface in Fig. 1), as well as object contacts with the

robot (e.g. grasps, or griper pressing as shown in Fig. 1(b)-

1(c)), the robot succeeds in stabilizing the object under the

sequential changing forces.

The problem of regrasp planning with environmental sup-

port/contact has been well explored before [1], [2], [3],

[4], [5], while planning to resist changing external forces

applied onto an object using environment contacts remains

to be studied, to the best of our knowledge. In our previous

work [6], we describe a robot grasping an object to resist

external forces but without using the object contacts with

the environment, which is our focus in this current work.

Motivated by the potential of exploiting environmental con-

tacts, for example in a human-robot collaborative task as

shown in Fig. 1, we propose a novel planning approach that

enables the robot to use both the environment’s and robot’s

stabilization capabilities in manipulating an object under
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(a) Initial config. (b) Drilling four holes (c) Inserting four legs

(d) Driling four holes (e) Inserting chair back (f) Task complete

Fig. 1. The robot holds the chair pieces stable under sequential force-
demanding operations in an assembly task, by exploiting object contacts
with both environment (e.g. a table surface) and robot (pressing or grasping).

changing external forces and integrate them with intelligent

motion planning.

To achieve robust and efficient manipulation, our planner

addresses three main challenges. First, the planner identifies

appropriate object contacts with the environment and/or the

robot, relying on which the object can stay stable under

forceful operations. This requires the planner to determine

where to move and position the object w.r.t. the environment

and robot. For example, at the configuration in Fig. 1(b),

the object-table contact and object-robot contact (the gripper

pressing) can together stabilize the chair piece under the

drilling forces. Second, to improve manipulation efficiency,

the planner reasons over a large number of available contact

configurations for an optimal solution, which requires mini-

mal number of contact adjustments and thus robot motions

during manipulation. For example, in Fig. 1, in total, there

are only two different configurations (Fig. 1(b) and 1(d)) and

thus one contact change during assembling. This requires the

planner to decide on when to change the object pose w.r.t. the

environment and robot as the operations are applied. Finally,

for each change in the object contacts, the planner needs to

decide on how to move the object to implement the change,

e.g. from the one in Fig. 1(c) to the one in Fig. 1(d).

To address the challenges outlined above, we introduce a

hierarchical planner. The planner first searches a sequence

of contact configurations (the robot configuration and object

pose in the environment) which can stabilize the object

under external forces. The planner minimizes the number

of different configurations in the sequence, so that the robot

can move the object as minimally as possible throughout

the task. Then, it connects these configurations with motion

trajectories. We describe details of the planner in Sec. III.



A key source of computational cost of the planner comes

from stability checking: the planner samples a large set

of candidate configurations, with a wide variety of object-

environment and object-robot contacts. Each such configura-

tion needs to be checked for stability against possible exter-

nal forces. Given frictional constraints at the contact points,

such a stability checking takes the form of a constrained

optimization problem, a computationally expensive process.

Therefore, as another contribution, we propose a novel

strategy to efficiently perform stability checking of a large

number of configurations. We introduce a concept of con-

tainment among contact configurations. Given two contact

configuration, based on their object contacts with the envi-

ronment and robot, we say one configuration contains the

other, if the stability of the latter against an external force

implies the stability of the former. For instance, a bimanual

grasp contains its both individual grasps. By exploiting this

concept, the planner can easily compare the stabilization

capabilities among different contact configurations and thus

quickly prune the list of candidates. We provide details of

the containment-based stability checking in Sec. IV.

We show the performance of our planner and the

containment-based stability checking in Sec. V. We show

our planner can produce effective manipulation plans with

reduced number of configuration changes in comparison with

baseline planners. We present the containment-based stability

checking brings in almost an order of magnitude improve-

ment in planning speed compared with a naive approach.

A. Previous Work

The idea of exploiting structures in the environment via

physical contacts can be traced in the earliest approaches

for compliant fine motion generation [7]. Evidence of com-

plex interaction between multi-step manipulation planning

problems and a shared environment is also found in [1],

[2], which addressed structures in the shared environment

as obstacles to be avoided while manipulating target objects.

Recently, planners have been proposed to use structures

in the shared environment as extra supports for various

manipulation tasks like grasping [8], [9] regrasping [3], [5],

prehensile [10], [11] and non-prehensile manipulation [12].

A similar multi-step planning problem is studied by Bretl

[13], to produce contact modes for a spider robot climbing

a wall. We use a similar hierarchical approach, but focus on

the problem where there are changing external forces applied

onto the manipulated objects.

Our novel contributions in this work include:

1) A planning framework that exploits both the object-

environment contacts and the object-robot contacts to

resist changing external forces with a minimal number

of configuration changes—ensuring a more smooth and

efficient manipulation;

2) The formulation of the containment relations among

different contact configurations to perform efficient

static stability checking;

3) Real robot and simulated experiments illustrating the

effectiveness and efficiency of the planning framework.

A forceful operation example: F1

F1
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F14

F20
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A forceful task example: {Fi}
20
i=1

Fig. 2. A forceful task consists of a sequence of forceful operations.

II. PROBLEM FORMULATION

We are interested in building a planner that enables a

robot to efficiently manipulate an object under the application

of sequential or changing forceful operations, e.g. drilling,

cutting and peg inserting.

We refer to a forceful task as a complete sequence of

operations to be applied onto an object, for example, the chair

assembly task in Fig. 1. We give another example in Fig. 2,

where the task is cutting a wave-shaped curve on a board. We

refer to a forceful operation as a single step of a forceful task.

For example, in Fig. 1, each involved assembling action (e.g.

drilling) is a separate forceful operation. For tasks consisting

of a continuous application of forces over time, we divide

into a sequence of operations via discretization, e.g. the 20

discrete cutting operations in Fig. 2.

We model a forceful operation F as a 6D generalized force

(force/torque) f w.r.t. a tool frame and its application pose

p w.r.t. the target object (Fig. 2-Right), and thus denote a

forceful task as:

{Fi}
m

i=1
= {(fi, pi)}

m

i=1
(1)

where m indicates the number of involved operations.

We formulate the problem by explicitly exploiting the

object contacts with both the environment and robot. Specif-

ically, herein we assume the robot can contact an object by

pressing (e.g. the robot’s right hand in Fig. 1(b) and 1(c))

or grasping (e.g. the robot’s left hand in Fig. 1), while the

environment includes rigid structures which allow an object

to be in contact with, e.g. the table surface in Fig. 1. During

a forceful task, the environmental and robot contacts together

provide supporting wrenches to manipulate and stabilize the

object under forceful operations.

Throughout this work, we assume the forceful task and

the geometric model of the system are given. Other physical

parameters, including object mass, centre of gravity and

friction coefficients are specified. We denote the composite

system configuration as q = (qr, qo), where qr ∈ R
nr denotes

configuration of robot manipulators (nr is the total DoFs of

manipulators) and qo ∈ SE(3) denotes object pose. A system

configuration q specifies a set of environmental and/or robot

contacts onto the target object, by which the environment

and robot generate reaction forces capable of moving and

stabilizing the object against gravity and external forces.

A. Overview of Problem

As illustrated in Fig. 3, the robot is supposed to stabilize an

object under a sequence of forceful operations using object

contacts with the environment and the robot grippers.
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Fig. 3. The planner generates a minimum sequence of system configurations
{

qj
}3

j=1
to keep the object stable under {Fi}

20
i=1

and a sequence of

trajectories {tj}
3

j=1
to move the object to go through the planned configurations.

Given a single forceful operation F, finding a system

configuration q that can keep the object stable requires 1)

first finding a kinematically valid configuration q; 2) then

checking if the environment and robot can provide sufficient

resultant wrenches via physical contacts to keep the object

stable. We refer to this problem as stability checking and

explain in detail how we address it in Sec. IV-A.

Then, given a sequence of forceful operations {Fi}
m

i=1
,

i.e. a complete task, the most straightforward solution would

be to find one feasible configuration q for a given operation

Fi and hold such configuration until it is no longer stable

for a new incoming one Fi+ , where i+>i. However, such a

strategy, would require the robot and object to use a large

sequence of different system configurations and accordingly

configuration transfers during manipulation. Herein, we refer

to such a configuration transfer as a configuration change.

Alternatively, to avoid frequent task interruptions due to

configuration changes, the robot can reason about the system

configurations to make the utmost of one configuration q

against a larger sequence of forceful operations, which in

turn would reduce the number of configuration changes. This,

configuration change minimization, imposes an additional but

practically necessary requirement for efficient and smooth

manipulation. In this work, we explicitly address this as a

main objective, building a planning framework that mini-

mizes the sequence of system configurations while satisfying

the sequential forceful constraints. In Sec. III, we introduce a

planner that generates such efficient sequences based on the

assessment of a set of stable system configurations, while in

Sec. IV, we present how this assessment can be performed

efficiently by exploiting their contact-containment relations.

B. Definition of Sequence of Stable Configurations

We say a system configuration q is stable against a se-

quence of k forceful operations {Fi}
k

i=1
, if the environmental

and robot contacts at the configuration q are able to provide

sufficient wrenches to keep the object stable under any

forceful operation in {Fi}
k

i=1
.

Further, we say that a sequence of system configurations
{

qj
}n

j=1
is stable against a sequence of forceful operations

{Fi}
m

i=1
, if the configurations in

{

qj
}n

j=1
cover all opera-

tions in {Fi}
m

i=1
in order, i.e., if q1 is stable against oper-

ations {F1,F2, ...,Fk}, and q2 is stable against operations

{Fk+1,Fk+2, ...,Fl}, and so on, until qn is stable against

operations {Fw+1,Fw+2, ...,Fm}, where 1 ≤ k ≤ l ≤
... ≤ w ≤ m. For example, in Fig. 3, the three system

configurations {q1, q2, q3} cover 20 cutting operation: q1 is

stable against the cutting operations F1 to F7; q2 is stable

against the cutting operations F8 to F14; q3 is stable against

the cutting operations F15 to F20. In this sense, configuration

change minimization can be achieved by finding a minimal

sequence of configurations
{

qj
}n

j=1
stable against {Fi}

m

i=1
.

In addition to minimizing the number of configuration

changes, the robot also needs to move the object to go

through the planned configurations in
{

qj
}n

j=1
in order, us-

ing collision-free and stable trajectories {tj}
n

j=1
. Specifically,

each trajectory tj moves the system from qj−1 to qj ( q0
is the initial system configuration), which corresponds to

a constrained motion planning. For example, in Fig. 3, the

three orange lines illustrate such trajectories {t1, t2, t3}.

In this context, given a sequence of forceful operations

{Fi}
m

i=1
and an initial system configuration q0, our prob-

lem can be stated as finding a minimum sequence of

system/contact configurations
{

qj
}n

j=1
and its connecting

trajectories {tj}
n

j=1
to move and stabilize the object under

the application of sequential forceful operations {Fi}
m

i=1
.

III. PLANNING APPROACH

This section presents details of our planning framework.

A. Manipulation Planning Using Operation Graph

Our planner takes a hierarchical framework. At the high-

level it builds and searches what we call an operation graph

for a minimal sequence of configurations
{

qj

}n

j=1
that are

stable against {Fi}
m

i=1
. It then generates motion trajectories

{tj}
n

j=1
to connect these planned configurations. We provide

pseudo-code of the planner in Alg. 1.

1) Building the Operation Graph: The planner starts by

building a directed acyclic weighted graph, referred to as the

operation graph, using checked-stable configurations from

among a set of sampled candidate configurations Qs.

Specifically, as illustrated in Fig. 4, in an operation graph,

the ith column corresponds to the ith operation Fi, while

all nodes in the ith column represent a subset of sampled

configurations in Qs, which are checked stable against Fi

(We present how this check is performed in Sec. IV-A).

We further define a link between every two nodes in

neighbouring columns of the graph and weight the link

with a weighting scheme associated with the number of

configuration changes.
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Fig. 4. We build an operation graph to search for efficient solutions.

2) Weighting Links in Operation Graph: As illustrated

in Fig 4, rather than weighting the link of two different

configurations (e.g., from qa to qb) as 1, here we adopt a

more detailed weighting scheme, computing the weight as

the number of the total changes in both environmental and

robot contacts. For example, in Fig. 4, from the node qa in

the first column to the node qb in the second column, we say

the number of configuration changes is 2, including one robot

contact change (one extra gripper is added onto the object)

and one environmental contact change (the contact region

changes). However, the weight between the node qc in the

first column and the node qc in the second column is set to

be 0, since they simply represent the same configuration.

3) Searching the Operation Graph: At this point, using

the operation graph, finding a minimal sequence of system

configurations
{

qj
}n

j=1
stable against {Fi}

m

i=1
is reformu-

lated as a graph search problem. The expected output is

a path that starts from one node in the leftmost column

for operation F1 and ends with a node in the rightmost

column for operation Fm, with the smallest total weight.

By searching the graph, e.g., using the Dijkstra’s algorithm,

the planner can easily get optimal solutions, i.e. efficient

manipulation plans with a minimal number of configuration

changes. In Fig. 4, the red path illustrates such a solution.

The procedure PlanStableSequence in Alg. 1 provides the

pseudo-code of planning using the operation graph. The

procedure BuildOperationGraph builds the operation graph

(line 2) as outlined above. The procedure GraphSearch (line

3) searches the operation graph to generate a candidate

configuration sequence
{

qj

}n

j=1
. Then for every two sub-

sequent pair of configurations in the sequence (line 5 - 9),

the procedure PlanConfigChange attempts to plan motions

via general motion planners, e.g. RRT-based planners, to

implement the configuration changes.

4) Finding Stable Configurations for An Operation: As

described above, building an operation graph requires the

Algorithm 1 Manipulation Planning Using Operation Graph

PlanStableSequence
(

{Fi}
m

i=1
, q0

)

:

1: Qs ← Generate a set of candidate system configurations
2: GO ← BuildOperationGraph

(

{Fi}
m

i=1
, Qs

)

3:
{

qj

}n

j=1
← GraphSearch (GO)

4:
{

qj

}n

j=0
← Add q0 to the beginning of

{

qj

}n

j=1

5: for each subsequent qj and qj+1 in
{

qj

}n

j=0
do

6: tj+1 ← PlanConfigChange(qj , qj+1)
7: if PlanConfigChange failed then
8: Remove failing edge from graph GO

9: Go to line 3
10: return (

{

qj

}n

j=1
, {tj}

n

j=1
)

BuildOperationGraph
(

{Fi}
m

i=1
, Qs

)

:

1: GO ← ∅
2: for each forceful operation Fi in {Fi}

m

i=1
do

3: S ← FindStableConfigs(Fi, Qs)
4: if i = 1 then
5: Add S into GO as the first column
6: else
7: for each configuration q′ in previous column of GO do
8: for each configuration q′′ in S do
9: w←ComputeWeight (q′, q′′)

10: Create a link from q′ to q′′ with a weight w

11: return GO

planner to check and find a subset of stable configurations

for each forceful operation in {Fi}
m

i=1
, from a set of sampled

candidate configurations Qs. This is achieved by FindStable-

Configs in Alg. 1 (line 3 in BuildOperationGraph).

The planner starts from sampling a set of candidate

configurations Qs, which acts as a representative to the

high-dimensional composite configuration space (line 1 in

PlanStableSequence). The set Qs includes a variety of config-

urations with different object-environment and object-robot

contacts. Given an object and an environment model, the

problem of contact generation with the environment has

been extensively studied in the literature based on geometric

computation [14], [15], learning [16] and kinematics simu-

lators [17], [5]. Likewise, robot-object contacts can be com-

puted via general grasp planners, e.g. Miller and Allen [18].

Such techniques lie outside the scope of this work. Our

planner is, in fact, agnostic to the contact generation strategy

and thus can take any existing method in the literature for

this step. In Sec. V, we explain how we generated such sets

of candidate configurations for our experimental studies.

Note that, to find efficient manipulation plans that min-

imize configuration changes, the planner needs a large set

of candidate configurations Qs, which, however, makes the

procedure FindStableConfigs and as a result the procedure

BuildOperationGraph computationally expensive. This is be-

cause, given an operation F, the procedure requires the

planner to perform a separate stability checking for each

sampled configuration q ∈ Qs, while the stability checking

of a single configuration itself is already a computationally

expensive process (as explained in Sec. IV-A). Therefore,

after presenting a naive approach in Sec. IV-B, we present,

in Sec. IV-C, a containment-based strategy to implement the

procedure FindStableConfigs efficiently.
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IV. STABILITY CHECKING

In this section, we formulate the stability checking of a

system configuration q against a forceful operation F as an

optimization problem. Then, we present an approach that can

efficiently find all configurations in Qs that are stable against

F, i.e. the procedure FindStableConfigs in Alg. 1.

A. Stability Checking for A Single Forceful Operation

Stability checking refers to the problem of assessing if a

system configuration q is able to provide sufficient wrenches

to stabilize an object under a forceful operation F.

As illustrated in Fig 5, under the assumption of rigid

bodies, both environmental and robot contacts specify con-

tact regions on the object surface (denoted as Ce and Cr

respectively), which can be further represented as a set of

point contacts. At each contact point, the contact force fc

applied to the object is constrained within a generalized

friction cone fc ∈ FC(n, µ) characterized by a contact normal

n and a friction coefficient µ.

Given a forceful operation F=(f, p), and a configuration

q consisting of nc point contacts in total (including the

uniformly discretized surfaces of both the environmental con-

tacts and robot contacts), stability checking requires finding

a distribution of contact forces h = [fTc,1, fTc,2, ..., fTc,nc
]T,

such that:

1) The resultant wrench provided by h is able to keep

the object stable, i.e. in static equilibrium, against the

external force f by the operation F;

2) The contact forces h lie within the composite friction

cone H=FC1 × ...× FCnc
.

Therefore, similar to [19], [20], [21], we formulate the

problem of stability checking as a constrained optimization

problem, particularly a quadratic programming:

min
h∈H

hTh (2a)

s.t. Gh + hmg +R(p)f = 0 (2b)

h ∈ H (2c)

where G=[G1, ...,Gnp
] is a 6 × 6nc matrix mapping the

contact wrenches to a resultant wrench onto the object. hmg

is the wrench incurred by object gravity. R(p) transforms the

external wrench f from the tool frame to a common frame.

For a candidate configuration q and an operation F, if

we can find a solution h satisfying the constraints in Eq. 2,

we say that the configuration q is able to stabilize the

object against the operation F. Otherwise, we say that the

configuration q cannot be stable against the operation F. The

constraints Eq. 2(b)-2(c) ensure that there exists a distribution

Algorithm 2 Naive Stability Checking

FindStableConfigs(F, Qs):

1: S = ∅
2: for each configuration q in Qs do
3: Solve the constrained optimization problem in Eq. 2
4: if Eq. 2 has a solution then
5: Add q to S

6: return S

of contact forces h that can keep the object stable under

the operation F, while optimizing the objective in Eq. 2(a)

ensures h to be close to the actual force distribution [21].

In the following sections, we present two approaches to

implement the procedure FindStableConfigs in Alg. 1, which

performs stability checkings over a large set of sampled

configurations in Qs.

B. Naive Stability Checking of Qs

Eq. 2 enables the planner to check whether a configuration

q is stable against a forceful operation F. Accordingly,

given a forceful operation F, the planner can implement

the procedure FindStableConfigs by simply performing a

separate stability checking via optimizing in Eq. 2, for each

candidate configuration in Qs.

We call this implementation the naive stability checking.

Alg. 2 provides the pseudo-code of this implementation.

Nonetheless, as aforementioned, due to the large set Qs,

this implementation can be computationally expensive, and

therefore degrade the planing efficiency, as we show with

experimental results in Sec. V-B.

C. Containment-Based Stability Checking of Qs

Rather than performing excessive stability checkings by

solving optimization problems in Eq. 2 over all configura-

tions in Qs, we propose a containment-based approach to

implement the procedure FindStableConfigs efficiently. The

algorithm relies on the containment relationship among dif-

ferent configurations to quickly eliminate redundant stability

checkings. Alg. 3 presents the pseudo-code of this strategy.

1) Containment Relationship: We define the containment

relationship between two different system configurations

over their capability of resisting external wrenches, i.e.

contact wrench space [22], [23]. A system configuration q

specifies the geometric relationships among the object, robot

and environment, while its corresponding contact region(s)

qualitatively indicates its capability of resisting external

forces that can be applied on the object. For example in

Fig. 51, since the environmental contact region Cb
e contains

Ca
e and the robot contact Cb

r contains Ca
r , one can say any

forceful operation resistible to qa is also resistible to qb.

That is, qb contains qa in terms of the capability of resisting

possible external wrenches. In this context, we define the

containment relationship (denoted with ⊆) among different

contact configurations as:

Definition 1. Let qa and qb be two system configurations,

we say qb contains qa (qa ⊆ qb), iff

1Fig. 5 is illustrated in 2D for clarity of presentation. In our implemen-
tation, contact regions and containment are represented in 3D.



• Ca
e ⊆ Cb

e and

• Ca
r ⊆ Cb

r

Note that the containment among the environmental con-

tact regions holds only for the same surface contacts, as the

friction coefficients may be different for different materials.

2) Containment Graph: We then build an directed acyclic

containment graph over all sampled configurations in Qs to

represent their containments (line 2 in Alg. 3).

Specifically, as illustrated in Fig. 5(c), each node in the

graph represents a candidate configuration q in Qs. For every

two nodes, if there exists a containment between them as

stated in Def. 1, they are connected in the graph with a

directed path, e.g. in Fig. 5(c), the node qa is contained and

thus becomes a successor to the other three nodes.

3) Stability Checking Using Containment Graph: Based

on the characteristics of the containment graph, we introduce

two properties to simplify the procedure FindStableConfigs.

Property 1. Given a forceful operation F and a containment

graph T , if a node q is stable against F, then all its

predecessors in T are stable against the operation F.

The property can be easily proved by Def. 1. We call this

property the ‘activating’ property, as using this property, if

a configuration q is checked to be stable against a forceful

operation F, all its predecessor configurations can be directly

‘activated’ as feasible without solving optimization problems

in Eq. 2 (line 6-9 in Alg. 3). For example, if qa in Fig. 5(c)

is stable against an operation F, then all other nodes in the

graph can be directly regarded as stable against F.

Property 2. Given a forceful operation F and a containment

graph T , if a node q is not stable against F, then all its

successors in T are not stable against the operation F.

Similarly, the property can be easily proved by Def. 1.

We call this property the ‘blocking’ property, as using it, if

a configuration q is checked as not stable against a forceful

operation F, all its successor configurations can be directly

‘blocked’ (line 10-12 in Alg. 3) from searching. For instance

in Fig. 5(c), if qb is not able to keep the object against an

operation F, then all other nodes in the graph can be directly

regarded as infeasible without additional checking.

By exploiting the activating property and blocking prop-

erty, the planner needs not to solve a constrained optimiza-

tion problem for each configuration in Qs separately, thus

reducing computational complexity of the procedure Find-

StableConfigs greatly. We proposed experiments to verify the

effectiveness of using the containment graph in Sec. V-B.

V. IMPLEMENTATION AND RESULTS

This section presents a variety of simulated and real robot

experiments, using a Baxter robot in both cases, to validate

and quantitatively assess the performance of our planner.

Experimental Settings: We implemented the planner

in OpenRAVE [24] with the flexible collision library

(FCL) [17] for collision check and contact detection. We used

Scipy.optimize library for the optimization based stability

checking (Eq. 2), NetworkX [25] for graph construction

Algorithm 3 Containment-Based Stability Checking

FindStableConfigs(F, Qs):

1: S ← ∅
2: T ← Build a containment graph as Fig. 5
3: while T is not empty do
4: q← Randomly pick a configuration in T
5: Solve the constrained optimization problem in Eq. 2
6: if Eq. 2 has a solution then
7: S ← Add q and its predecessors in T into S
8: T ← Remove q and its predecessors from T
9: go to line 3

10: else
11: T ← Remove q and its successors from T
12: Go to line 3
13: return S

and search, and BiRRT [26] as the motion planner for the

procedure PlanConfigChange in Alg. 1.

We implemented the planner on three types of forceful

operations. To obtain a more realistic representation, we

implemented these operations multiple times on a foam board

used as the target object, and measured the operation forces

via a force/torque sensor (FT150 from Robotiq). For each

type of operations, we took a maximum operation force:

• A drilling operation yields a maximum 20N force;

• A cutting operation yields a maximum 45N force;

• An inserting operation yields a maximum 16N force.

Generating a Set of Candidate Configurations Qs: We

sampled three sets of candidate system configurations (line 1

of PlanStableSequence in Alg. 1) and fed them to the planner.

To obtain such sets with higher sample variety, we evenly

discretized and generated a set of contact regions Ce on

the object surface with a fixed step size for environmental

contacts, and discretized the object surface as a set of contact

points Cr for robot contacts. A combination (Ce, Cr) of such

an environmental and robot contact regions defines a contact

profile a system configuration q may have. Then, to map

the contact regions (Ce, Cr) into a fully-assigned system

configuration q, we evenly discretized the structure surfaces

in the environment into a set of placement positions. At each

position, we checked whether there exists a kinematically

valid configuration q meeting the contact profile (Ce, Cr).
In this manner, we sampled three sets of candidate con-

figurations with different set size (|Qs|=144, 560, 1172) for

following experimental studies.

A. Analysis of Minimizing Configuration Changes

We first assessed the performance of our planner in min-

imizing the number of configuration changes (consequently,

task interruptions) along four different forceful tasks:

• Task 1: A rectangular cutting task consisting of 20

continuous cuttings as shown in Fig. 6. The environment

has a flat surface in the front of the robot;

• Task 2: A stool fabricating task involving cutting four

legs (discretized as twenty cuttings), drilling four holes

and inserting four legs (thus a sequence of 28 forceful

operations in total) as shown in Fig. 7. The environment

has an L-shaped structure;

• Task 3: A chair assembly task consisting of four hole-

drillings, four peg-insertings, four leg-insertings, four



TABLE I

NUMBERS OF CONFIG. CHANGES FOR EACH TASK BY THE BASELINE

AND PROPOSED PLANNER WITH THREE SIZES OF SAMPLE SETS.

Method |Qs|
# of Configuration Changes

Task 1 Task 2 Task 3 Task 4

Baseline 144 23 19 20 27

Proposed
144 4 10 7 9
560 3 4 3 3
1172 3 1 1 2

hole-drillings and then four peg-insertings (thus a se-

quence of 20 forceful operations in total) as shown in

Fig. 1. The environment has a flat supporting surface;

• Task 4: A wave cutting task discretized into 20 cuttings

as shown in Fig. 3. The environment has a ⊔-shaped

supporting structure.

To the best of our knowledge, there exists no planner

in the literature directly capable of solving such complex

tasks. Existing strategies would, in the best scenario, need

to plan each forceful operation individually, neglecting the

sequential property that defines a task. We define such a

scenario as the baseline planner. For each operation in a

task, the baseline planner iterates over the available candidate

configurations in Qs until it finds the first stable one.

Table I summarizes the results of configuration changes

by the baseline planner and our proposed planner. As shown

in the table, compared with the baseline planner, our planner

reduces the number of configuration changes dramatically.

Specifically, with |Qs|=144, for Task 1 (the rectangular

cutting task), the baseline planner finds a solution with 23
configuration changes and therefore almost generates a new

configuration for each involved operation (20 operations in

total). Our planner generates a more efficient solution (Fig. 6-

Left, Solution A), which involves only 4 different system

configurations and 4 configuration changes in total. Similarly,

Fig. 7 shows a solution generated by our planner for Task

2, which involves only 1 configuration change. Fig. 1 and 3

show an efficient solution for Task 3 and 4 respectively.

It is also notable that as we increase the number of

sampled configurations in Qs, i.e. the set size |Qs|, the

planner may come up with better solutions, that is, manipu-

lation plans with a further reduced number of configuration

changes, as shown in Table I for all tasks. To better illustrate

the difference, take for instance Fig. 6-Right which shows

a different solution for Task 1 generated by our planner

but with |Qs|=1172. As shown, when the set size |Qs|
increased, the planner came up with a more efficient solution:

in Solution A (real robot experiments), the planner requires

a regrasping (from right arm in q2 to left arm in q3) whereas

in Solution B (from the simulator)2 the robot is capable to

perform the task only with the right hand.

B. Analysis of Planning Efficiency

We further verified the performance of our planner in

terms of time efficiency. More specifically, we compared

2Note both scenarios were implemented in simulation and in the real
robot, yet they are presented separately in Fig. 6 to aid the discussion.

q1 q2

Four leg-cuttings Four hole-drillings Four leg-insertings

q2

Fig. 7. A manipulation plan for the stool fabricating task (Task 2) involving
28 operations. The solution contains 1 configuration change (environmental
contact from q1 to q2).

our planner (Alg. 1) using the naive stability checking

in Alg. 2 (Plan-N, for brevity) with the (same) planner

but using the containment-based strategy in Alg. 3 (Plan-

Cont, for brevity)3. Note that the two planners differ in the

strategy of implementing the procedure FindStableConfigs in

Alg. 1, i.e. building the operation graph which is the most

computationally complex procedure in Alg. 1, as it involves

perform stability checkings over all forceful operations and

candidate configurations.

Taking the same four tasks as previous, Table II summa-

rizes the average time of building the operation graph over

50 runs for each task, with the total planning time listed in

parentheses. As shown, the containment-based strategy (bold

in Table II) increases the planning efficiency significantly.

For example, for Task 2 with |Qs| = 1172, it takes about

2087.8s for the Plan-N to build the operation graph compared

to 135.8s by the containment-based planner (an improvement

of about 15×). Similar analysis can also be made for the

other three tasks and configuration sets.

Table II also highlights the time cost of building the

operation graph in the total planning time (in parentheses).

As shown in the Table, with lower values of |Qs|, i.e. smaller

configuration sets, the planner would generate solutions with

more configuration changes, and therefore more motion

planning iterations would be required. This results in a larger

difference between the time of building the operation graph

and the total planning time.

It is also important to mention that the containment-

based planner requires extra construction of the containment

graph as described in Sec. IV-C. Nonetheless, this is a low

computational complexity task as illustrated in Table III,

which shows the average time of building the containment

graph over 50 runs for each task. As shown, the time of

building the containment graph increases proportionally to

|Qs|, yet it still represents less than 1% of the building

time required for the operation graph in Table II and thus

negligible in the overall planning. For example, for Task 2

with |Qs| = 1172, it takes only 1.05s for the planner to build

the containment graph, but 135.8 s to build the operation

graph and 138.2 s for total planning.

Based on above analysis, we can conclude that compared

with performing naive stability checkings (Eq. 2) for all oper-

ations and sampled configurations, building the containment

graph can greatly improve planning efficiency.

3In Sec. V-A, the proposed planner refers to Plan-Cont, yet both strategies
could have been used as they return the same plans and configuration
changes.



Solution A Solution B

q1 q2 q3 q4 q1 q2 q3 q4

Fig. 6. Two manipulation plans for the rectangular cutting task (Task 1) consisting of 20 operations. Left: Solution A contains 4 configuration changes,
with a robot regrasp (from left arm in q2 to right arm in q3). Right: Solution B contains 3 configuration changes.

TABLE II

AVERAGE TIME (S) OF BUILDING THE OPERATION GRAPH AND THE OVERALL PLANNING TIME IN PARENTHESES FOR EACH TASK OVER 50 RUNS.

|Qs|
Task 1 Task 2 Task 3 Task 4

Plan-N Plan-Cont Plan-N Plan-Cont Plan-N Plan-Cont Plan-N Plan-Cont

144 198.5(223.1) 20.1(37.7) 280.1(335.0) 31.0(81.9) 211.8 (246.8) 22.9(56.7) 201.3(256.1) 22.2(74.6)
560 773.2(792.0) 69.7(86.6) 1100.6(1121.1) 77.8(96.0) 821.5(837.5) 72.4(87.9) 799.1(820.0) 70.8(91.3)

1172 1551.2(1570.1) 98.3(115.4) 2087.8(2092.5) 135.8(138.2) 1611.7(1615.4) 112.0(115.8) 1605.4(1616.7) 109.9(120.0)

TABLE III

AVERAGE TIME (S) OF BUILDING THE CONTAINMENT GRAPH.

|Qs| Task 1 Task 2 Task 3 Task 4

144 0.04 0.06 0.04 0.07
560 0.26 0.40 0.31 0.59
1172 0.97 1.25 1.05 1.52

VI. CONCLUSION AND FUTURE WORK

We presented a manipulation planning approach to keep

an object stable under sequential external forces by utilizing

both environmental and robot contacts. The proposed plan-

ning strategy fills the gap in sequential manipulation planning

literature, increasing the aptitude of robots to perform com-

plex tasks efficiently. Indeed, the proposed solution not only

reasons about possible object-environment and object-robot

contacts during planning, but also addresses the dimension-

ality and combinatorial explosion for the stability checking

procedure in an efficient manner through the introduction

of a new concept of wrench based containment relationship

between configurations.
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