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 1 

Abstract 2 

To address the issue of global freshwater shortages, wastewater has become an increasingly 3 

valuable alternative for crop irrigation. As a result, trace levels of emerging contaminants, 4 

including antibiotics, may occur in water used for food production. The objective of this study 5 

was to investigate how soil texture affected the availability and uptake of three chemically 6 

diverse antibiotics (lincomycin, oxytetracycline, and sulfamethoxazole) by lettuce grown in soils 7 

comprised of a silt clay and increasing percentages of sand. Lettuce was irrigated routinely with 8 

antibiotic amended water (1 mg/L) from seed germination through the first harvest (40 days), 9 

switched to control water, and fate monitored at day 45 and 50. Sulfamethoxazole was the only 10 

compound where tissue concentrations increased with increasing sand concentrations to 24.7 11 

ng/g fresh weight (FW). Lincomycin was most readily accumulated with increasing 12 

concentrations observed at the second harvest in both the loam (68.3 ng/g FW) and sandy soils 13 

(66.6 ng/g FW). Apparent toxicity of the antibiotic mixture resulted in decreasing plant mass 14 

(37-72 %) with increasing sand content. Results from this study show that soil texture impacts 15 

plant growth, contaminant transport, plant uptake, and toxic effects, which all contribute to, 16 

observed concentrations in edible plant portions.  17 

 18 

 19 

 20 

 21 
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Introduction 1 

Wastewater is an increasingly valuable resource as a potential alternative to freshwater 2 

owing to the fact that population growth and climate change have depleted water supplies 3 

necessary for crop irrigation (Boxall, 2010; Monteiro and Boxall, 2010; Michael et al., 2013). 4 

The growing use of wastewater for crop irrigation coupled with increasing use of 5 

pharmaceuticals, such as antibiotics, increases the potential for agroecosystem contamination by 6 

these emerging contaminants (Toze, 2006; Du and Liu, 2012; Williams-Nguyen et al., 2016). 7 

While the practice of wastewater reuse for agriculture has long been implemented in Israel, 8 

Jordan, Peru, and Saudi Arabia (WHO, 1989; Azov and Shelef, 1991), its increasing acceptance 9 

is demonstrated by recent studies evaluating its viability in other regions including India (Salidas 10 

et al., 2015), Tanzania (Kahila et al., 2014), and Vietnam (Trinh et al., 2013). Typically, some 11 

form of treatment is recommended prior to use of recycled wastewater; however, it has been 12 

estimated that 20 million hectares of agricultural land is irrigated directly with untreated 13 

wastewater (WHO, 2006). In some cities in developing countries, up to 60 % of vegetables 14 

consumed locally have been grown with untreated wastewater which was valued significantly 15 

higher than traditional sources of irrigation water by area farmers (Ensick and vander Hoek, 16 

2007). Once introduced into the agroecosystem, pharmaceutical contaminants present in 17 

wastewater are capable of transport and uptake into plants (Thiele-Bruhn, 2003; Fatta-Kassinos 18 

et al., 2011; Pan and Chu, 2017; Sallach et al., 2015).  19 

In the case of treated wastewater recycling, treatment technologies are not entirely 20 

effective for removal of these chemicals. The efficacy in removal of antibiotics from wastewater 21 

in the treatment process is dependent on physicochemical properties, which vary considerably 22 

between antibiotic compounds. The result is a range of removal efficiencies from 4 % for 23 
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oxytetracycline to 100 % for sulfadimethazine (Verlicchi et al., 2012). However, one of the 1 

primary advantages in wastewater reuse is the recycling of nutrients, otherwise removed, with 2 

great expense, in the treatment process (Duran-Alvarez and Jimenez-Cisneros, 2014).  Life cycle 3 

assessment studies have evaluated the use of wastewater management strategies that include the 4 

separation and application of toilet fractions, a source of pharmaceutical contamination in raw 5 

municipal wastewater, to agricultural applications with minimal treatment (Spangberg et al., 6 

2014). Furthermore, management practices associated with concentrated animal feeding 7 

operations (CAFOs) often involve the application of highly contaminated wash and runoff water 8 

to agricultural lands. While some regulation exists regarding treatment requirements necessary 9 

for the reuse of wastewater, including recent EU regulations on the topic (European 10 

Commission. 2016), they have traditionally focused on nutrient management rather than 11 

contaminant control, with very limited consideration of emerging contaminants including 12 

antibiotics and resulting antibiotic resistance (Paranychianakis et al., 2015). As a result, 13 

agricultural wastewater reuse provides an additional pathway for antibiotics and other 14 

pharmaceutical contaminants to move within the agroecosystem (Bradford et al., 2008). 15 

The combination of direct irrigation with untreated wastewater, insufficient management 16 

of agricultural wastewater, and the potential for nutrient reuse in municipal sourced wastewater 17 

may lead to increased exposure of pharmaceutical contamination, greater than the levels 18 

typically observed in wastewater treatment effluent. For example, antibiotics in raw agricultural 19 

wastewater have been detected at mg/L levels (Zilles et al., 2005, Bartelt-Hunt et al., 2011), with 20 

concentrations as high as 20 mg/L in wastewater lagoons (Peak et al., 2007).  21 

Hydroponic studies, where plants are exposed to antibiotics in a nutrient solution, have 22 

been conducted to characterize the mechanisms of root uptake and translocation of compounds in 23 
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staple vegetables (Chuang et al., 2015; Herklotz et al., 2010; Liu et al., 2013; Wu et al., 2013). 1 

Incorporating soil-compound interactions and bioavailability, uptake from spiked soil regimes 2 

has also been investigated (Boxall et al., 2006; Hawker et al., 2013; Carter et al., 2014, Chung et 3 

al., 2017). Uptake resulting from other known exposure routes including the land application of 4 

manure (Kumar et al., 2005; Dolliver et al., 2007; Kang et al., 2013) and municipal biosolids 5 

(Wu et al., 2010; Holling et al., 2012; Sabourin et al., 2012; Wu et al., 2015), as well as 6 

irrigation with contaminated water at concentrations representing various degrees of treatment 7 

(Azanu et al., 2016; Jones-Lepp et al., 2010; Tanoue et al., 2012; Wu et al., 2013; Goldstein et 8 

al., 2014; Sallach et al., 2015) have also been investigated for a number of pharmaceutical 9 

contaminants and antibiotic compounds. 10 

The degree of uptake is dependent upon environmental factors, properties of the 11 

compounds, and the plants themselves (Briggs et al., 1982; Wu et al., 2013; Carter et al., 2014; 12 

Goldstein et al., 2014). Of the studies that have investigated uptake via soil systems, most have 13 

investigated only a single soil type, with a few exceptions (Kang et al., 2013; Goldstein et al., 14 

2014; Zhang et al., 2015). Of the few studies that have investigated the impact of soil properties 15 

on plant uptake, conclusions have been inconsistent. For example, in two studies investigating 16 

the uptake of sulfamethoxazole, increased (Kang et al., 2013) and decreased (Goldstein et al., 17 

2014) uptake was attributed to higher clay contents of the respective soils in each study.  18 

The aim of this study was to investigate the soil sorption behavior and corresponding 19 

uptake of chemically diverse antibiotics by leaf lettuce, Lactuca sativa cv. Greenstar, to establish 20 

relationships between soil texture and antibiotic uptake at concentrations of 1 mg/L representing 21 

the reuse of untreated wastewater.  The hypothesis is that an increasing proportion of sand 22 

compared to clay in soil would increase the bioavailability and subsequent uptake of antibiotics 23 
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by lettuce. Batch sorption experiments with three antibiotics (lincomycin, oxytetracycline and 1 

sulfamethoxazole) individually and as a mixture were conducted to determine soil-water 2 

partitioning coefficients (Kd). Unlike a previous study, where contaminants were inoculated in a 3 

single irrigation event (Zhang et al. 2015), in the current study lettuce grown in three soils of 4 

varying textures were exposed to the antibiotics via irrigation water routinely throughout the 40 5 

day growth period under greenhouse conditions. Analysis of lettuce shoots, and soil collected 6 

from the top and bottom of the soil profile were used to ascertain relationships between sorption 7 

and accumulation/translocation to the edible plant portions. In addition, after the first lettuce 8 

harvest, irrigation with contaminated water was replaced with clean dechlorinated water and a 9 

second and third harvest was conducted 5 and 10 days later to track the fate and mobility of each 10 

compound in the soil-plant system. 11 

Materials and Methods 12 

Chemicals and Reagents.  13 

Lincomycin, roxithromycin, doxycycline hyclate, and demeclocycline hydrochloride 14 

were purchased from Sigma-Aldrich (St. Louis, MO).  Sulfamethoxazole and oxytetracycline 15 

were obtained from MP Biomedicals, LLC (Solon, OH).  13C6-Sulfamethazine was purchased 16 

from Cambridge Isotope Laboratories (Andover, MA).  Standard stock solutions were prepared 17 

with HPLC grade methanol and stored dark at -20°C.  Surrogate and internal standard spiking 18 

solutions were prepared in methanol at the University of Nebraska-Lincoln (UNL) Water 19 

Sciences Laboratory.  Calibration standards (0.1 ‒ 5 ng/µL) were prepared prior to each analysis 20 

in 3:1 (v:v) solution of Nanopure water (Barnstead, Dubuque, IA) and methanol. 21 

Batch Sorption Study.  22 
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For each soil, duplicate batch sorption reactors were prepared for each compound 1 

individually as well as together as a mixture. For lincomycin and sulfamethoxazole, 5 g of soil 2 

was combined with 25 mL of water with antibiotic concentrations of 10, 50, 100, 500, and 1,000 3 

µg/L in 50 mL polypropelene tubes. A soil to water ratio of 0.5 g in 40 mL water was used for 4 

oxytetracycline at concentrations of 100, 500, 1000, 1500, 5000 µg/L. Reactors containing a 5 

mixture of all three antibiotics were prepared with the same concentrations and soil to water ratio 6 

as lincomycin and sulfamethoxazole. To provide the most accurate comparison of greenhouse 7 

experimental conditions, de-chlorinated water was taken from the greenhouse and, along with 8 

soil, was sterilized at 125°C and 15 psi. Soil and water were then mixed and allowed to 9 

equilibrate for 24 hrs at 20°C prior to spiking with antibiotics. Concentrations in eluent solution 10 

were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. 11 

Additional details and validation are provided in Supplementary Material.   12 

Greenhouse Study.  13 

Three soils were prepared by mixing coarse sand and Sharpsburg silt clay at 75:25, 50:50 and 14 

25:75 ratios by weight.  The resulting soil properties were characterized at Midwest Laboratories 15 

(Omaha, NE) and reported in Table 1. Soils were classified as sand, sandy loam, and loam. 16 

Vegetable production flats, comprised of six 17-cm x 12-cm x 7-cm pots, were prepared in 17 

triplicate for each soil type. Each flat represented a single treatment unit. An additional flat was 18 

prepared for each soil type for control samples with no antibiotic exposure. Seeds of a leafy 19 

lettuce, Lactuca sativum cv. Greenstar, were planted in each soil type at an initial density of 8 20 

seeds per pot. Upon germination, lettuce was thinned to 4 plants per pot.  A final thinning, to two 21 

plants per pot, took place upon the emergence of the plumule and first true leaves. Plants were 22 

grown in a greenhouse with temperature controlled at 15-18°C and 16 h of daily light. 23 
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 Flats were sub-irrigated with 2 L of water to stimulate germination followed by 1 L 1 

watering events at the first indication of leaf wilting throughout the growth cycle. Sub-irrigation 2 

was conducted to simulate various types of furrow irrigation. Amended irrigation water was 3 

prepared by spiking dechlorinated tap water with the lincomycin, oxytetracycline, and 4 

sulfamethoxazole at a final concentration of 1 mg/L. Antibiotic spiking solutions were prepared 5 

weekly and stored frozen at -20°C, and amended irrigation water was prepared fresh, 6 

immediately before use for all irrigation events. Control flats were irrigated with the same 7 

volume of dechlorinated water with no antibiotic amendment. Treatment and control flats were 8 

ordered randomly on greenhouse benches and rotated at each watering to reduce biases related to 9 

variations in greenhouse microclimates and samples of soil and plant tissues were taken in 10 

triplicate at each harvest. 11 

After 40 days, a single pot from each flat was randomly selected for harvest.  Remaining 12 

lettuce continued to grow, however, antibiotics were not added to the irrigation water after the 13 

first harvest. A second and third harvest of lettuce and soil were collected at 45 and 50 days 14 

respectively. At all harvests, lettuce plants were cut at the cotyledonary node, just above the soil 15 

surface. Plant material was weighed, rinsed, and blotted dry prior to storage in plastic sample 16 

bags. Soil was carefully removed from the pot and the top and bottom 1.5 cm of the soil profile 17 

was collected separately in a sample storage bag for analysis. A subset of top and bottom soil 18 

was used to determine moisture content. Collected samples were immediately taken to the UNL 19 

Water Science Laboratory for further processing. A diagram detailing the subirrigation method 20 

as well as soil and lettuce harvesting is provided in the supplementary material (Supplementary 21 

Fig. S2). 22 
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Lettuce and Soil Extraction. Antibiotics were solvent extracted from lettuce and quantified by 1 

LC-MS/MS following the method described in previous studies (Zhang et al., 2015, Sallach et 2 

al., 2016), and soil extraction followed a two-step organic solvent – aqueous extraction from 3 

methods that are also described in previous work (Sallach et al., 2015). Additional details of the 4 

extraction and analytical methods are provided in the Supplementary Material. Concentrations 5 

are reported on a fresh weight (FW) basis, as moisture content in lettuce tissues were not 6 

influenced by soil type or harvest date. 7 

Data Analysis.  8 

Statistical analysis was performed using Graphpad Prism V6 (Graphpad Software, Inc., La Jolla, 9 

CA, USA) using 2-way ANOVA and Tukey’s multiple comparisons test to determine 10 

significance.   11 

Results and Discussion 12 

Uptake as a function of soil texture.  13 

Measured concentrations in lettuce and soils were evaluated as a function of soil texture 14 

and time. Sulfamethoxazole was the only compound that followed the hypothesis that increased 15 

percentage of sand in the soil mixture would result in increased bioavailability and subsequent 16 

uptake in the lettuce shoots when exposed to the antibiotic mixture in all irrigation events at the 17 

time of the first harvest (Figure 1). The concentration of sulfamethoxazole in lettuce grown in 18 

sand (25 ng/g FW) was greater than that grown in sandy loam (8.1 ng/g FW) or loam (3.3 ng/g 19 

FW). Similar to our previous work in a different soil (Sallach et al., 2015), lincomycin was 20 

detected at the highest concentration of the three compounds in all three soils. The higher uptake 21 

of lincomycin results from its ionic speciation at the soil pH range in the current study (7.1-7.4). 22 
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Lincomycin, with a pKa of 7.6) existed in its cationic and neutral species. Sulfamethoxazole (1.6, 1 

5.7) and oxytetracycline (3.57, 7.49, and 9.44) were dominated by their anionic and zwitterionic 2 

forms. Uptake of positively charged ions has been demonstrated to be higher than other charged 3 

organic ions (Goldstein et al., 2014). Unlike sulfamethoxazole, plant concentrations of 4 

lincomycin did not increase with increasing sand content in the soil. The highest concentration at 5 

the first harvest (40 days) was in the lettuce grown in the sandy loam soil (58 ng/g FW). 6 

Oxytetracycline concentrations were also highest in the lettuce grown in the sandy loam soil 7 

(18.3 ng/g FW). 8 

  As shown in Table 2, leaf bioconcentration factors (BCFs) were determined by dividing 9 

the concentration in the lettuce leaves by the average concentration measured in the soil (Figure 10 

2 ). BCFs represent an uptake efficiency that incorporates translocation from roots to the edible 11 

lettuce portion of the plant. BCFs for lincomycin and oxytetracycline are similar in both the loam 12 

and sandy soils with values ranging from 0.023-0.028. Increased uptake efficiency was observed 13 

for both compounds in lettuce grown in the sandy loam soil resulting in greater BCFs of 0.076 14 

for lincomycin and 0.054 for oxytetracycline. Unlike the other two compounds, 15 

sulfamethoxazole uptake efficiency increased with increasing sand soil content from a low of 16 

0.010 in loam to a high of 0.111 in the sand soil. Sulfamethoxazole BCFs determined in this 17 

study are consistent with BCF values reported in hydroponic systems where uptake and 18 

translocation were also found to be low (Herklotz et al., 2010; Wu et al., 2013). 19 

 To add further insight into the influence of soil texture on the mobility of these 20 

antibiotics, batch sorption experiments for each compound in each soil were performed. Batch 21 

sorption experiments of the three compounds as a mixture also were conducted to replicate 22 

conditions in the greenhouse trial. The resulting isotherms are provided in the supplementary 23 
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information (Supplementary Fig. S4) while a summary of soil partitioning coefficients (Kd) and 1 

R2 values of the linear regressions are shown in Table 2.  As a single solute, oxytetracycline was 2 

most influenced by soil texture with Kd values of 1107, 485, and 260 L/Kg in loam, sandy loam, 3 

and sand respectively. Lincomycin sorption was highest in the loam soil with a Kd of 10 L/Kg, 4 

but was slightly lower in sandy loam compared to the sand at 5.5 and 5.9 L/Kg respectively. 5 

Sulfamethoxazole sorption to soils was not measureable at low concentrations (10-100 ng/mL) in 6 

any of the soils (Supplementary Fig. S4), with all of the compound accounted for in solution, 7 

which is supported by the findings of Huang and Weber (1998) who found that aqueous phase 8 

concentrations within two orders of magnitude in difference could increase the time to reach 9 

sorption equilibrium from a few hours for higher concentrations to several months at low 10 

residual solution phase concentrations. Surprisingly, sulfamethoxazole at the higher solution 11 

concentrations showed no difference in Kd value between the three soils. When all compounds 12 

were present at the same concentrations in the multi-solute isotherms, the range of Kd values for 13 

lincomycin increased to 3.9-15.3 L/Kg where the least amount of sorption occurred in sandy 14 

loam and highest sorption in loam soils. An apparent decrease in sorption to both loam (1.9 L/Kg 
15 

to 0.4 L/Kg) and sand (1.9 L/Kg to 1.0 L/Kg) soils occurred for sulfamethoxazole when all 16 

compounds were present in the mixture. However, reductions in R2 values may indicate a 17 

deviation from linear sorption for sulfamethoxazole when in a mixture. For this reason, 18 

Freundlich isotherms were also modelled to the data for mixtures of antibiotics (Table 2). 19 

Generally, the two parameter model (KF and n) better represented the mixture data and yielded 20 

R2 values ≥ 0.98 in all instances except for sulfamethoxazole in loam (R2=0.49).  For 21 

lincomycin, n values approaching one in all three soils, confirms linearity. Oxytetracycline was 22 

not detected in solution, indicating that all of the compound present adsorbed to the soil. This 23 
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was not unexpected as the concentration range and soil-water ratio necessary to determine the 1 

individual oxytetracycline sorption isotherms were far greater than the other two compounds due 2 

to its highly sorptive behavior. These results show the influence of competitive sorption when 3 

compounds are present as a mixture. In practical applications, multiple compounds are likely to 4 

occur as mixtures and these results suggest that sorption behavior is likely to be impacted. 5 

 Overall, the confluence of data collected in this study shows that sorption is not the 6 

driving factor behind the accumulation of antibiotics in lettuce shoots. Even in the case of 7 

sulfamethoxazole, where increasing lettuce concentrations corresponded with increasing sand 8 

content, this behavior was not supported by the batch sorption isotherms that showed that 9 

changes in soil texture had no measurable effect on sulfamethoxazole sorption. However, the 10 

results do show that growth in a soil system, in general, does have a large impact on uptake 11 

trends compared to hydroponic systems. For example, Chuang et al., (2015) showed that uptake 12 

and translocation of oxytetracycline in lettuce grown hydroponically resulted in leaf 13 

concentrations twice that of lincomycin which were, again, twice as high as sulfamethoxazole. 14 

While similar, sulfamethoxazole in this study was found at low concentrations (3.3-24.7 ng/g 15 

FW), oxyetracycline leaf concentrations (11.3-18.4 ng/g FW) were lower than lincomycin 16 

concentrations (23.5-29.5 ng/g FW). This difference is partially explained by the high sorption 17 

partitioning of oxytetracycline, resulting from the dominant cation exchange mechanism for 18 

tetracycline compounds (Sassman and Lee, 2005), in all three soils which acts to reduce its 19 

mobility and corresponding bioavailability to the plant, factors not accounted for in hydroponic 20 

studies. 21 

Partitioning coefficients did correlate strongly with the distribution of the antibiotics 22 

throughout the soil profile. Comparing the concentrations in the top and bottom of the soil profile 23 
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(Figure 2) shows that oxytetracycline, with highest Kd values in all three soils, remained mostly 1 

in the bottom layer. In comparison, the compound with the lowest sorption and lowest Kd values 2 

for all three soils was sulfamethoxazole which was detected at higher concentrations in the top 3 

soil layer. 4 

Fate in soil and lettuce.  5 

After the first harvest, all remaining lettuce pots were irrigated with the control dechlorinated tap 6 

water and samples were collected 5 (harvest 2) and 10 (harvest 3) days later. The leaf 7 

concentration of lincomycin grown in the sandy loam soil decreased at both subsequent harvests 8 

(Figure 1).Lettuce grown in the sand and loam soils showed highest concentrations detected at 9 

the second harvest. Even without additional amendment, the relatively high solubility of 10 

lincomcyin (13 g/L) likely allowed for desorption and resuspension into the uncontaminated pore 11 

water, making it available for uptake in the irrigation events following the first harvest.  12 

The lettuce concentrations of sulfamethoxazole in the sandy loam soil remained constant 13 

at all three harvests at around 8 ng/g FW. In the loam soil, the concentration increased slightly at 14 

each harvest while the opposite occurred in the sand soil where a decreasing concentration trend 15 

was observed.  16 

Oxytetracycline concentrations in lettuce were highest at the first harvest for all three 17 

soils. However, a sharp decrease in concentration was observed at harvest 2 before a slight 18 

increase in concentration at harvest 3. In fact, concentrations in lettuce harvested at 45 days were 19 

below the detection limit for a number of the replicates in all three soils (Figure 2). 20 

Oxytetracycline, even as a zwitterion, maintains a positively charged functional group and as a 21 

results, cation exchange is more favorable than hydrophobic partitioning, which results in high 22 
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sorption affinity (Sassman and Lee, 2005). High sorption and low solubility (0.022 g/L) limit its 1 

ability to desorb and reincorporate into the uncontaminated irrigation water that was used 2 

following the first harvest. 3 

While the concentration of toxicants in edible plant portions is an important measure for 4 

the understanding of human exposure of emerging contaminants, it is not enough to reveal all of 5 

the behaviors of the dynamic soil-plant system over time. This is because the measure of 6 

concentration is dependent upon both the rate of uptake of the contaminant as well as the rate of 7 

growth of the plant. Therefore, examining the total mass of accumulation, or net accumulation, 8 

provides insight into the movement of the antibiotics with time. Net accumulation was calculated 9 

by multiplying the contaminant concentrations in the lettuce plants by the average plant mass at 10 

the time of harvest (Figure 3). For both sulfamethoxazole and lincomycin, even in instances 11 

when the concentration decreased, antibiotic uptake continued in the five days between harvest 1 12 

and 2. This result highlights how increasing plant mass effectively dilutes contaminant 13 

concentrations, an observation noted in a previous study (Sallach et al., 2015). Net lincomycin 14 

uptake continued to increase from harvest 2 to harvest 3 in the sand soils. However, in the loam 15 

and sandy loam soil the total accumulated mass of lincomycin decreased from harvest 2 to 3. 16 

This indicates that degradation of lincomycin occurred within the lettuce plant at a rate that 17 

exceeded uptake. Degradation of sulfamethoxazole is also apparent in lettuce grown in the sand 18 

soil where net accumulation decreased between harvest 2 and 3. While pharmaceutical 19 

degradation is known to occur in the environment, few studies have demonstrated its occurrence 20 

in vegetable production (Goldstein et al., 2014). Further, this highlights the importance of the 21 

significant research gap where the fundamental understanding of the fateand biological impact of 22 

antibiotic metabolites is not well known (Williams-Nguyen et al., 2016).  23 
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In soil, antibiotic transport and degradation both factor into the soil concentrations over 1 

the course of the three harvests. Generally, concentrations of each of the three compounds in 2 

both the top and bottom soil profile were reduced over the course of the ten days during which 3 

no additional antibiotics were added to the system. First order decay functions were generated 4 

for the 10-day time period between harvest 1 and 3 and degradation rate constants, k, and 5 

compound half-lives, t1/2, were calculated. Values are summarized in Table 2 while isotherms 6 

and calculations are provided in the supplemental information. Based upon the partition 7 

coefficient Kd (Table 2), both sulfamethoxazole and oxytetracycline distributions in the soil 8 

profile behaved as expected. Because subirrigation requires irrigation water to flow from the 9 

bottom, up through the soil profile, we would expect the more sorptive compounds to be 10 

concentrated in the bottom soil layer. Oxytetracycline concentrations in the top profile were far 11 

lower than concentrations found in the bottom for all three soils. The least sorptive compound, 12 

sulfamethoxazole (Kd=0.4-1.9) was found at higher concentrations in the top soil as compared 13 

with the bottom in all soils and at all harvests. Both of these compound specific trends are 14 

supported by transport studies that show tetracycline mobility to be limited while sulfonamides 15 

may pose a risk to surface and groundwater contamination (Blackwell et al., 2007; Watanabe et 16 

al., 2010; Kim et al., 2012; Srinivasan and Sarmah et al., 2014). With a half-life ranging 3.4-3.7 17 

days, lincomycin demonstrated the most rapid and consistent decay in all three soils. Although 18 

soils were exposed to the same concentrations of three antibiotics, higher initial concentrations of 19 

lincomycin were detected at the first harvest. This high concentration of the most degradable 20 

compound in our system may be a result of an initial lag phase in biodegradation, whereby the 21 

compound was able to build up in the soil during the first 40 days where irrigation with 22 

contaminated water retarded degradation via alteration in the microbial community. Irrigation 23 
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with uncontaminated water over the course of days 41-50 may have allowed the native bacteria 1 

population to recover leading to the rapid degradation of the compound. This lag phase behavior 2 

has been observed in other soil degradation studies and was attributed to the presence of a 3 

sulfonamide, also included in our study, which has been shown to temporarily disrupt soil 4 

bacteria populations (Monteiro and Boxall, 2009). Lincomycin and sulfamethoxazole 5 

degradation rate decreased with increasing sand content from 8.3 days in loam to 14.6 days in 6 

sand. This was expected as biological activity is known to decrease with increasing coarseness of 7 

soil texture (Wardle, 1992). Oxytetracycline degradation was most rapid in the loam soil (t1/2= 8 

6.6 days) but unlike sulfamethoxazole, was most persistent in sandy loam (t1/2=20.9 days). 9 

Compared to other values reported, half-lives of oxytetracycline and sulfamethoxazole were on 10 

the same order of magnitude, but higher, than the biodegradation rates of a sulfonamide 11 

(sulfamethazine) and tetracycline (chloretetracycline) antibiotic in a silt loam soil (Topp et al., 12 

2013). In strong agreement with our work, half-lives have been reported for sulfamethoxazole 13 

under aerobic and anaerobic conditions ranging from 9.0 to 18.3 days (Lin and Gan, 2011).  14 

Effects of routine irrigation with contaminated water 15 

 In a previous study, which evaluated the uptake of these three compounds by lettuce in 16 

the same soil mixtures, a single exposure event was conducted with water spiked 5x higher than 17 

the antibiotic concentrations in the current study (Zhang et al., 2015). Results from the prior 18 

study showed that 48 hours after exposure, only sulfamethoxazole was detected in lettuce leaves 19 

above detection limits (Zhang et al., 2015). Consistent with results from the current study, 20 

sulfamethoxazole concentrations in lettuce increased with increasing percentage of sand in the 21 

soil mixture. However, when routine irrigation with contaminated water occurred throughout the 22 

growth cycle of the lettuce, both lincomycin and oxytetracycline were detected in leaves, and 23 
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their concentrations in lettuce leaves exceeded sulfamethoxazole concentrations. The 1 

significance of this, which was revealed by differences in exposure regimes between the two 2 

studies, suggests that the processes by which oxytetracycline and lincomycin are internalized by 3 

lettuce roots and translocated throughout the shoots are more time dependent than the kinetics 4 

involved with sulfamethoxazole uptake. As discussed previously, this is supported by results in 5 

the fate investigation for lincomycin where the total mass taken up by lettuce shoots increased 6 

significantly in the five days following the final irrigation with spiked water (Figure 3). 7 

Toxicity.  8 

The growth of lettuce was affected by the soil texture, where the sand soil mixture 9 

resulted in significantly (P<0.0001) reduced mass of lettuce compared to both the loam and 10 

sandy loam soil (Figure 4). The difference in lettuce plant mass between loam and sandy loam 11 

was not statistically significant in the control group (P=0.146). For all soil types, irrigation with 12 

antibiotic amended water resulted in significantly decreased lettuce growth compared with its 13 

respective control (P<0.0001). The relative impact of the spiked water on the mass of lettuce 14 

increased with increasing sand content in the soil. A decrease of 37 %, 55 %, and 72 % of plant 15 

mass between controlled and treated plants was determined for lettuce grown in loam, sandy 16 

loam, and sand soil respectively. High percentage decreases in plant material (up to 60%) have 17 

also been associated with the pharmaceutical carbamazepine at similar soil concentrations 18 

(Carter et al., 2015). Furthermore, leaf discoloration and reduction in photosynthetic pigments 19 

resulted from carbamazepine exposure, consistent with the discoloration, yellowing, of leaves 20 

from lettuce grown in the sandy soil from the antibiotic spiked water. Lettuce was able to recover 21 

as soil concentrations declined in the 10 days between harvest 1 and harvest 3 where leaves from 22 

all three soils showed no signs of stress. These significant growth reductions suggest that 23 



 

18 

 

agricultural productivity may be negatively impacted by the use of recycled wastewater, a 1 

significant research gap, recently identified, relating to antibiotics in the agroecosystem 2 

(Williams-Nguyen et al., 2016). 3 

Sulfonamide antibiotics, including sulfamethoxazole, have been shown to inhibit the 4 

growth of rice at a concentration of 0.1 mg/L and maize grown in soil at 10 mg/kg (Liu et al., 5 

2009; Michelini et al., 2012). However, rice sensitivity to tetracyclines was less acute as 6 

concentrations in soil as high as 300 mg/kg, tetracyclines did not affect plant growth but did 7 

effect seed germination (Liu et al., 2009). This likely is attributed to tetracycline’s high 8 

adsorption to soils (Table 2) and is supported by the findings of Norman where root growth was 9 

inhibited by oxytetracycline in a hydroponic system, but had no effect in soils (Norman, 1955). 10 

Oxytetracycline in hydroponic systems has also been shown to reduce plant growth in alfalfa; 11 

however, at concentrations of 1 mg/L, the concentration of oxytetracycline in our irrigation 12 

water, no effect was observed (Kong et al., 2007). Lincomycin has been shown to be toxic to a 13 

number of algae strains at the µg/L level (Andreozzi et al., 2006). Attributing toxicity to specific 14 

antibiotics in a mixture is not possible, as mixture toxicities can have unpredictable and 15 

concentration dependent synergistic or antagonistic effects (Liu et al., 2008; Yang et al., 2008; 16 

Gonzalez-Pleiter et al., 2013). Consistent with our study, antibiotic toxic effects have also been 17 

shown to be dependent upon soil characteristics; where plants were more sensitive in sandy loam 18 

than with a high clay soil (Batchelder, 1982). Not only was the sand soil, without antibiotic, the 19 

least ideal for optimal plant growth, it also amplified the toxic effect of the antibiotics to lettuce. 20 

Conclusions  21 
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This study confirmed that soil texture plays an important role in the uptake of antibiotics 1 

by lettuce. However, correlation between increasing sand content and subsequent uptake and 2 

translocation was only observed for sulfamethoxazole. This is because soil composition not only 3 

affected the bioavailability of the contaminants but also the health of the plant When irrigation 4 

was switched to non-contaminated water, lettuce recovery was observed resulting in an increase 5 

in growth rate. In addition, examination of the net accumulation of antibiotic compounds by 6 

lettuce plants over time revealed that degradation of lincomycin and sulfamethoxazole within the 7 

lettuce leaves occurred over the 10-day harvesting period. Results from this study should help in 8 

the evaluation of best management practices for the use of recycled wastewater for irrigation. 9 

Areas with sandy soil should pay particularly close attention to plant toxicity resulting in 10 

decreased yield. Furthermore, due to the persistence and mobility of antibiotic compounds in the 11 

soil-plant system, a “finishing” period, utilizing uncontaminated irrigation water, may be suitable 12 

to reduce the concentrations of antibiotics in vegetables meant for consumption. The time needed 13 

to realize this reduction is dependent upon both contaminant and soil characteristics. 14 

Supplementary Material. Equilibration time study of antibiotic batch sorption reactors 15 

(Supplementary Fig. S1). Method Validation for soil and lettuce samples (Supplementary Table 16 

S1). Schematic of soil-plant system using subirrigation (Supplementary Fig. S2), average of top 17 

and bottom soil concentrations (Supplementary Table S2), equations related to decay functions 18 

(Equations 1-2), antibiotic decay in soils (Supplementary Fig. S3), and linear sorption isotherms 19 

(Supplementary Fig. S4).  20 

Acknowledgements.  21 



 

20 

 

The authors recognize the contribution of Emily Hoehn and Lindsey Knight for assistance with 1 

sample processing, and separation chemist Dave Cassada for analytical assistance. This work 2 

was supported by the United States Department of Agriculture NIFA program [project number 3 

2011-67019-20052]. 4 

Author Disclosure Statement. 5 

No competing financial interests exist. 6 

 7 

 8 

References 9 

Aga, D. S., Lenczewski, M., Snow, D., Muurinen, J., Sallach, J. B., Wallace, J. S. (2016).  10 

Challenges in the measurement of antibiotics and in evaluating their impacts in 11 

agroecosystems: A Critical Review.  J. Environ. Qual. 45, 407. 12 

 13 

Andreozzi, R., Canterino, M., Lo Giudice, R., Marotta, R., Pinto, G., Pollio, A. (2006).  14 

Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means 15 

of ozonation.  Water Res. 40, 630. 16 

 17 

Azanu, D., Mortey, C., Darko, G.; Weisser, J. J., Styrishave, B., Abaidoo, R. C. (2016). Uptake 18 

of antibiotics from irrigation water by plants. Chemosphere 157, 107. 19 

 20 

Azov, Y., Shelef, G. (1991). Effluents quality along a multiple-state waste-water reclamation 21 

system for agricultural reuse.  Water Sci. Technol. 23, 2119. 22 

 23 

Bartelt-Hunt, S., Snow, D. D., Damon-Powell, T., Miesbach, D. (2011). Occurrence of steroid 24 

hormones and antibiotics in shallow groundwater impacted by livestock waste control 25 

facilities.  J. Contam. Hydrol. 123, 94. 26 

Batchelder, A. R. (1982). Chlortetracycline and oxytetracycline effects on plant-growth and 27 

development in soil systems.  J. Environ. Qual. 11, 675. 28 

Blackwell, P. A., Kay, P., Boxall, A. B. A. (2007).  The dissipation and transport of veterinary 29 

antibiotics in a sandy loam soil.  Chemosphere 67, 292.  30 

 31 



 

21 

 

Boxall, A. B. A. (2010).  Veterinary medicines and the environment.  Comparative and 1 

Veterinary Pharmacology. 199, 291.  2 

 3 

Boxall, A. B. A., Johnson, P., Smith, E. J., Sinclair, C. J., Stutt, E., Levy, L. S. (2006).  Uptake 4 

of veterinary medicines from soils into plants.  J. Agri. Food Chem. 54, 2288.  5 

 6 

Bradford, S. A., Segal, E., Zheng, W., Wang, Q. Q., Hutchins, S. R. (2008).  Reuse of 7 

concentrated animal feeding operation wastewater on agricultural lands.  J. Environ. Qual. 8 

37, S97. 9 

Briggs, G. G., Bromilow, R. H., Evans, A. A. (1982).  Relationships between lipophilicity and 10 

root uptake and translocation of non-ionized chemicals by barley.  Pestic. Sci. 13, 495. 11 

 12 

Carter, L. J., Harris, E., Williams, M., Ryan, J. J., Kookana, R. S., Boxall, A. B. A. (2014).  Fate 13 

and uptake of pharmaceuticals in soil-plant systems.  J. Agri. Food Chem. 62, 816.  14 

 15 

Carter, L. J., Williams, M., Bottcher, C., Kookana, R. S. (2015).  Uptake of Pharmaceuticals 16 

Influences Plant Development and Affects Nutrient and Hormone Homeostases.  Environ. 17 

Sci. Technol. 49, 12509. 18 

 19 

Chuang, Y. H., Zhang, Y. J., Zhang, W., Boyd, S. A., Li, H. (2015).  Comparison of accelerated 20 

solvent extraction and quick, easy, cheap, effective, rugged and safe method for extraction 21 

and determination of pharmaceuticals in vegetables.  J. Chromatogr. A. 1404-1. 22 

 23 

Chung, H. S., Lee, Y. J.; Rahman, M. M., Abd El-Aty, A. M., Lee, H. S., Kabir, M. H., Kim, S. 24 

W., Park, B. J., Kim, J. E., Hacımüftüoğlu, F., et al. (2017). Uptake of the veterinary 25 

antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish. Sci. Total 26 

Environ. 605–606, 322. 27 

 28 

Dolliver, H., Kumar, K., Gupta, S. (2007).  Sulfamethazine uptake by plants from manure-29 

amended soil.  J. Environ. Qual. 36, 1224. 30 

 31 

Du, L. F., Liu, W. K. (2012).  Occurrence, fate, and ecotoxicity of antibiotics in agro-32 

ecosystems. A review.  Agron. Sustain. Dev. 32, 309.  33 

 34 

Duran-Alvarez, J. C., Jimenez-Cisneros, B. (2014). Beneficial and negative impacts on soil by 35 

the reuse of treated/untreated municipal wastewater for agricultural irrigation - A Review of 36 

the current knowledge and future perspectives. In Hernandez-Soriano, M.C., Environmental 37 

Risk Assessment of Soil Contamination. 137. 38 

 39 

Ensink, J. H. J., van der Hoek, W. (2007).  Editorial: New international guidelines for 40 

wastewater use in agriculture.  Trop. Med. Int. Health. 12, 575. 41 

 42 

European Commission. (2016). Development of minimum quality requirements for water reuse 43 

in agricultural irrigation and aquifer recharge October 2016.  44 

 45 



 

22 

 

Fatta-Kassinos, D., Kalavrouziotis, I. K., Koukoulakis, P. N., Vasquez, M. I. (2011).  The risks 1 

associated with wastewater reuse and xenobiotics in the agroecological environment.  Sci. 2 

Total Environ. 409-3555. 3 

 4 

Goldstein, M., Shenker, M., Chefetz, B. (2014).  Insights into the uptake processes of 5 

wastewater-borne pharmaceuticals by vegetables.  Environ. Sci. Technol. 48, 5593.  6 

 7 

Gonzalez-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganes, F., Rosal, R., Boltes, K., 8 

Marco, E., Fernandez-Pinas, F. (2013).  Toxicity of five antibiotics and their mixtures 9 

towards photosynthetic aquatic organisms: Implications for environmental risk assessment.  10 

Water Res. 47, 2050. 11 

 12 

Hawker, D. W., Cropp, R., Boonsaner, M. (2013).  Uptake of zwitterionic antibiotics by rice 13 

(Oryza sativa L.) in contaminated soil. J. Hazard. Mater. 263, 458. 14 

 15 

Herklotz, P. A., Gurung, P., Heuvel, B. V., Kinney, C. A. (2010).  Uptake of human 16 

pharmaceuticals by plants grown under hydroponic conditions.  Chemosphere. 78, 1416. 17 

 18 

Holling, C. S., Bailey, J. L., Heuvel, B. V., Kinney, C. A. (2012).  Uptake of human 19 

pharmaceuticals and personal care products by cabbage (Brassica campestris) from fortified 20 

and biosolids-amended soils.  J. Environ. Monitor. 14, 3029. 21 

 22 

Huang, W. L., Weber, W. J. (1998).  A distributed reactivity model for sorption by soils and 23 

sediments. 11. Slow concentration dependent sorption rates.  Environ. Sci. Technol. 32, 3549. 24 

 25 

Jones-Lepp, T. L., Sanchez, C. A., Moy, T., Kazemi, R. (2010).  Method development and 26 

application to determine potential plant uptake of antibiotics and other drugs in irrigated crop 27 

production systems.  J. Agri. Food Chem. 58, 11568. 28 

 29 

Kang, D. H., Gupta, S., Rosen, C., Fritz, V., Singh, A., Chander, Y., Murray, H., Rohwer, C. 30 

(2013).  Antibiotic uptake by vegetable crops from manure-applied soils.  J. Agri. Food 31 

Chem. 61, 9992. 32 

 33 

Kihila, J., Mtei, K. M., Njau, K. N. (2014).  Wastewater treatment for reuse in urban agriculture, 34 

The case of Moshi Municipality, Tanzania  Phys. Chem. Earth. 72, 104. 35 

 36 

Kim, Y., Lim, S., Han, M., Cho, J. (2012).  Sorption characteristics of oxytetracycline, 37 

amoxicillin, and sulfathiazole in two different soil types.  Geoderma. 185, 97. 38 

 39 

Kong, W. D., Zhu, Y. G., Liang, Y. C., Zhang, J., Smith, F. A., Yang, A. (2007).  Uptake of 40 

oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.).  Environ. Pollut. 147, 41 

187. 42 

 43 

Kumar, K., Gupta, S. C., Baidoo, S. K., Chander, Y., Rosen, C. J. (2005).  Antibiotic uptake by 44 

plants from soil fertilized with animal manure.  J. Environ. Qual. 43, 2082. 45 

 46 



 

23 

 

Lin, K. D., Gan, J. (2011).  Sorption and degradation of wastewater-associated non-steroidal 1 

anti-inflammatory drugs and antibiotics in soils. Chemosphere. 83, 240. 2 

 3 

Liu, F., Ying, G. G., Tao, R., Jian-Liang, Z., Yang, J. F., Zhao, L. F. (2009).  Effects of six 4 

selected antibiotics on plant growth and soil microbial and enzymatic activities.  Environ. 5 

Pollut. 157, 1636. 6 

 7 

Liu, L., Liu, Y. H., Liu, C. X., Wang, Z., Dong, J., Zhu, G. F., Huang, X. (2013).  Potential effect 8 

and accumulation of veterinary antibiotics in Phragmites australis under hydroponic 9 

conditions.  Ecol. Eng. 53, 138. 10 

 11 

Liu, Y., Zhang, J., Gao, B. Y., Feng, S. P. (2014).  Combined effects of two antibiotic 12 

contaminants on Microcystis aeruginosa.  J. Hazard. Mater. 279, 148.  13 

 14 

Michael, I., Rizzo, L., McArdell, C. S., Manaia, C. M., Merlin, C., Schwartz, T., Dagot, C., 15 

Fatta-Kassinos, D. (2013).  Urban wastewater treatment plants as hotspots for the release of 16 

antibiotics in the environment: A review.  Water Res. 47, 957. 17 

 18 

Michelini, L., Reichel, R., Werner, W., Ghisi, R., Thiele-Bruhn, S. (2012).  Sulfadiazine uptake 19 

and effects on salix fragilis L. and zea mays L. plants.  Water Air Soil Poll. 223, 5243.  20 

 21 

Monteiro, S. C., Boxall, A. B. A. (2009).  Factors affecting the degradation of pharmaceuticals in 22 

agricultural soils.  Environ. Toxicol. Chem. 28, 2546. 23 

 24 

Monteiro, S. C., Boxall, A. B. A. (2010).  Occurrence and fate of human pharmaceuticals in the 25 

environment.  Rev. Environ. Contam. T. 202, 53.  26 

 27 

Norman, A. G. (1955).  Terramycin and plant growth.  Agron. J. 47, 585. 28 

 29 

Pan, M. Chu, L. M. (2017). Fate of antibiotics in soil and their uptake by edible crops. Sci. Total 30 

Environ. 500. 31 

 32 

Paranychianakis, N. V, Salgot, M., Snyder, S. A., Angelakis, A. N. (2015) Water reuse in EU 33 

states: Necessity for uniform criteria to mitigate human and environmental risks. Crit. Rev. 34 

Environ. Sci. Technol. 2015, pp 1409–1468. 35 

 36 

Peak, N., Knapp, C. W., Yang, R. K., Hanfelt, M. M., Smith, M. S., Aga, D. S., Graham, D. W. 37 

(2007).  Abundance of six tetracycline resistance genes in wastewater lagoons at cattle 38 

feedlots with different antibiotic use strategies.  Environ. Microbiol. 9, 143. 39 

 40 

Sabourin, L., Duenk, P., Bonte-Gelok, S., Payne, M., Lapen, D. R., Topp, E. (2012).  Uptake of 41 

pharmaceuticals, hormones and parabens into vegetables grown in soil fertilized with 42 

municipal biosolids.  Sci. Total Environ. 431, 233. 43 

 44 



 

24 

 

Saldias, C., Speelman, S., Amerasinghe, P., van Huylenbroeck, G. (2015).  Institutional and 1 

policy analysis of wastewater (re)use for agriculture: case study Hyderabad, India.  Water 2 

Sci. Technol. 72, 322. 3 

 4 

Sallach, J. B., Zhang, Y. P., Hodges, L., Snow, D., Li, X., Bartelt-Hunt, S. (2015).  Concomitant 5 

uptake of antimicrobials and Salmonella in soil and into lettuce following wastewater 6 

irrigation.  Environ. Pollut. 197, 269. 7 

 8 

Sallach, J. B., Snow, D., Hodges, L., Li, X., Bartelt-Hunt, S. (2016).  Development and 9 

comparison of four methods for the extraction of anitbiotics from a vegetative matrix.  10 

Environ. Toxicol. Chem. 35, 889. 11 

 12 

Sassman, S. A., Lee, L. S. (2005). Sorption of three tetracyclines by several soils: Assessing the 13 

role of pH and cation exchange. Environ. Sci. Technol. 39, 7452. 14 

 15 

Spangberg, J., Tidaker, P., Jonsson, H. (2014).  Environmental impact of recycling nutrients in 16 

human excreta to agriculture compared with enhanced wastewater treatment.  Sci. Total 17 

Environ. 493, 209. 18 

 19 

Srinivasan, P., Sarmah, A. K. (2014).  Assessing the sorption and leaching behaviour of three 20 

sulfonamides in pasture soils through batch and column studies.  Sci. Total Environ. 493, 21 

535. 22 

 23 

Tanoue, R., Sato, Y., Motoyama, M., Nakagawa, S., Shinohara, R., Nomiyama, K. (2012).  Plant 24 

uptake of pharmaceutical chemicals detected in recycled organic manure and reclaimed 25 

wastewater.  J. Agri. Food Chem. 60, 10203. 26 

 27 

Thiele-Bruhn, S. (2003).  Pharmaceutical antibiotic compounds in soils - a review.  J. Plant Nutr. 28 

Soil Sc. 166, 145. 29 

 30 

Topp, E., Chapman, R., Devers-Lamrani, M., Hartmann, A., Marti, R., Martin-Laurent, F., 31 

Sabourin, L., Scott, A., Sumarah, M. (2013).  Accelerated biodegradation of veterinary 32 

antibiotics in agricultural soil following long-term exposure, and isolation of a 33 

sulfamethazine-degrading microbacterium sp.  J. Environ. Qual. 42, 173. 34 

 35 

Toze, S. (2006).  Reuse of effluent water - benefits and risks.  Agr. Water Manage. 80, 147. 36 

 37 

Trinh, L. T., Duong, C. C., Van der Steen, P., Lens, P. N. L. ( 2013).  Exploring the potential for 38 

wastewater reuse in agriculture as a climate change adaptation measure for Can Tho City, 39 

Vietnam.  Agr. Water Manage. 128, 43. 40 

 41 

Verlicchi, P., Al Aukidy, M., Zambello, E. (2012).  Occurrence of pharmaceutical compounds in 42 

urban wastewater: Removal, mass load and environmental risk after a secondary treatment-A 43 

review.  Sci. Total Environ. 429, 123. 44 

 45 



 

25 

 

Wardle, D. A. (1992).  A comparitive-assessment of factors which influence microbial biomass 1 

carbon and nitrogen levels in soil.  Biol. Rev. 67, 321. 2 

 3 

Watanabe, N., Bergamaschi, B. A., Loftin, K. A., Meyer, M. T., Harter, T. (2010).  Use and 4 

environmental occurrence of antibiotics in freestall dairy farms with manured forage fields.  5 

Environ. Sci. Technol. 44, 6591. 6 

 7 

Williams-Nguyen, J., Sallach, J. B., Bartelt-Hunt, S., Boxall, A. B., Durso, L. M., McLain, J. E., 8 

Singer, R. S., Snow, D. D., Zilles, J. L. (2016).  Antibiotics and antibiotic resistance in 9 

agroecosystems: State of the science.  J. Environ. Qual. 45, 394. 10 

 11 

World Health Organization (WHO). (1989).  Health guidelinies for the use of wastewater in 12 

agriuculture and aquaculture.  In WHO: Geneva. 13 

 14 

World Health Organization (WHO). (2006).  Guidelines for the safe use of wastewater, excreta 15 

and greywater.  In WHO: Geneva. 16 

 17 

Wu, C. X., Spongberg, A. L., Witter, J. D., Fang, M., Czajkowski, K. P. (2010).  Uptake of 18 

pharmaceutical and personal care products by soybean plants from soils applied with 19 

biosolids and irrigated with contaminated water.  Environ. Sci. Technol. 44, 6157. 20 

 21 

Wu, X. Q., Ernst, F., Conkle, J. L., Gan, J. (2013).  Comparative uptake and translocation of 22 

pharmaceutical and personal care products (PPCPs) by common vegetables.  Environ. Int. 60, 23 

15.  24 

 25 

Wu, X. Q., Dodgen, L. K., Conkle, J. L., Gan, J. (2015).  Plant uptake of pharmaceutical and 26 

personal care products from recycled water and biosolids: a review.  Sci. Total Environ. 536, 27 

655. 28 

 29 

Yang, L. H., Ying, G. G., Su, H. C., Stauber, J. L., Adams, M. S., Binet, M. T. (2008).  Growth-30 

inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga 31 

Pseudokirchneriella subcapitata.  Environ. Toxicol. Chem. 27, 1201. 32 

 33 

Zhang, Y., Sallach, J.B, Hodges, L., Snow, D.D., Bartelt-Hunt, S., Eskridge, K.M., Li, X. (2015).  34 

Effects of soil texture and drought stress on the uptake of antibiotics and the internalization 35 

of Salmonella in lettuce following wastewater irrigation.  Environ. Pollut. 208, 523. 36 

 37 

Zilles, J., Shimada, T., Jindal, A., Robert, M., Raskin, L. (2005). Presence of macrolide-38 

lincosamide-streptogramin B and tetracycline antimicrobials in swine waste treatment 39 

processes and amended soil.  Water Environ. Res. 77, 57. 40 

 41 

 42 

*corresponding author: brett.sallach@york.ac.uk, telephone 01904 322999 43 


