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A heuristic model for pedestrian intention estimation

Fanta Camara1,2, Natasha Merat1 and Charles W. Fox1,2,3

Abstract— Understanding pedestrian behaviour and control-
ling interactions with pedestrians is of critical importance for
autonomous vehicles, but remains a complex and challenging
problem. This study infers pedestrian intent during possible
road-crossing interactions, to assist autonomous vehicle deci-
sions to yield or not yield when approaching them, and tests a
simple heuristic model of intent on pedestrian-vehicle trajectory
data for the first time. It relies on a heuristic approach based
on the observed positions of the agents over time. The method
can predict pedestrian crossing intent, crossing or stopping,
with 96% accuracy by the time the pedestrian reaches the
curbside, on the standard Daimler pedestrian dataset. This
result is important in demarcating scenarios which have a clear
winner and can be predicted easily with the simple heuristic,
from those which may require more complex game-theoretic
models to predict and control.

Index Terms— Pedestrian Intention Crossing Estimation;
Agent-Human Interactions; Autonomous Vehicles

I. INTRODUCTION

Fully autonomous vehicles (AVs) promise a future with better
mobility systems, fewer on-road accidents, and reduced congestion
in cities [15]. While their localisation, mapping and route-planning
are well understood problems [22], [14], there remain major con-
cerns about their interaction with other road users, especially more
vulnerable ones such as pedestrians and cyclists. Other road users
are less predictable than static environments, being active agents
making their own complex intelligent decisions, and are sometimes
in direct competition rather than co-operation with the vehicle for
priority on the road. Brooks has identified other road users as ‘the
big problem with self-driving cars’ [3].

Fig. 1. Pedestrian intention with a vehicle, from its dashcam, in the
Daimler dataset [17]. The present study uses a heuristic model to predict
the outcomes of interactions from this data – whether the pedestrian will
cross in front of the vehicle or yield to it.
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Pedestrians are the most challenging road users for AVs. Unlike
cyclists – who must follow clearly defined traffic rules – pedestrian
behaviour is less predictable and more complex to model. Predicting
pedestrians’ behaviour is hard due to the multiple uncertainties
about their posture, gestures, and demographics, and the predictive
links between these visible features and their underlying intentions
and emotions. A recent UK government report has emphasised the
need for AV-pedestrian interaction research and its incompleteness
as a research area, having possible implications that could require
changes in traffic legislation [7]. These arise from the problem of
automating the concept of assertiveness in competition for road
space. Usually engineering systems are designed to be as safe as
possible, but vehicles driven completely safety must always yield
to other road users in competition with them, and will hence make
zero progress in busy areas, known as the ‘freezing robot problem’
[23]. Like human-driven vehicles, AVs may thus sometimes need
to maintain a credible threat of colliding with or otherwise causing
some form of lesser but real harm to pedestrians in order to
sometimes obtain priority over them and make progress. The law
will require this notion of credible threats of deliberate harm to be
rationalized and quantified so that AVs using it can demonstrate –
in court in the event of accidents – that they have acted optimally
and legally.

A game theoretic model, ‘Sequential Chicken’, was recently
proposed to provide optimal strategies for such scenarios where
an autonomous vehicle is encountering a pedestrian intending to
cross the road at a crossing where priority is not clearly defined
[10]. In this model, two agents X and Y are moving towards an
intersection. They communicate their crossing intent through their
positions, i.e. their distances x and y from the intersection point.
If neither player yields, they collide and receive a negative utility
Ucrash. Otherwise they get a utility depending on the time taken to
reach their destination, Utime. [6] and [4] then presented a set of
laboratory experiments with human participants playing artificial
version of the Sequential Chicken game, and used them to find
a unique behavioural parameter θ = Ucrash/Utime for the players,
summarising their balance of preferences for avoiding collision
versus saving travel time.

In cases where there is a clear winner visible at the start of an
interaction – such as when one player is clearly much closer to
reaching the intersection point than the other – this game theory
model reduces to a simple deterministic prediction that this player
will win. But in other cases, where both players have a similar
predicted time to arrival at the intersections, the model does not
reduce to a simple prediction and instead models complex game
theoretic interactions as the two players signal to each other and
negotiate for priority with their physical positions.

The previous laboratory studies were in artificial environments so
it is not clear from them alone how often the full game theory model
vs the reduced predictions are needed in real world interactions. We
would like to know how often a simple heuristic matched to the
reduced model will predict accurately. This will tell us whether and
when the full game theory model is needed and appropriate in the
real world. To this end, a standard dataset from pedestrian-vehicle
interactions [17] is analysed with such a simple heuristic to test for
its accuracy.



A. Other related work

Intention estimation plays an important role in interactions
scenarios, and predicting the behaviour of road users and controlling
robotic interactions with them now forms an active research area.
[25] proposed a model that learns a set of features from a database
of LIDAR pedestrian trajectories using support vector machines
(SVM) and predicts whether or not a pedestrian will cross the
street. In [24] they compared this with LSTM neural networks to
predict pedestrian crossing intent and in [26], an extended version
of random forests – quantile regression forests – is used to predict
pedestrian road-crossing behaviour. [8] used the Theory of Planned
Behaviour (TPB) to predict adolescents road crossing intentions.
[1] developed an intention-aware motion planning system based
on Mixed Observable Markov Decision Processes (MOMDPs)
where pedestrian intention is incorporated to the planning model
as the unobserved variables, implemented on an autonomous robot
navigating in a university campus and dealing with jaywalkers. [11]
developed a Gaussian Process model that incorporates contextual
features such as the distance to the curbside and to the traffic light.
Pedestrian trajectories are predicted using a Transferable ANSC
algorithm. [2] defined a set of features that models an inner-city
and proposed a generic context-based model to predict pedestrians
behaviour at zebra crossings. [17] developed a dynamic Bayesian
network including pedestrian head orientation to the trajectory and
crossing intent prediction. [21] used a latent-dynamic conditional
random field model including pedestrian dynamics and awareness
of the environment such as their head orientation for intention
recognition. [16] proposed a motion contour histogram of oriented
gradients descriptor method to predict pedestrian crossing intent
with a high accuracy, tested on data collected from laboratory con-
ditions. [18] used Fictitious Play to compute equilibria over similar
2D trajectories, for pedestrian-pedestrian interactions in pedestrian-
only environments. [27] proposed a probabilistic method based on
Markov chains to predict pedestrian motion in urban environments.
[13] proposed a three-layer trajectory prediction model composed of
a trajectory planner, a force-based (social force) model and a game
theoretic decision model. A deep learning model was proposed in
[12] to predict pedestrian crossing intention, which a good accuracy
on another Daimler dataset. [20] presented a pedestrian crossing
intention detection using contextual features and a SVM classifier.
[9] developed a CNN model based for 2D human pose estimation
combined with random forests and a radial basis function support
vector machine for pedestrian intention estimation.

II. METHODS

The objective of the present study is to show where game theory
is not required for pedestrian-vehicle interactions. We show how
accurately and with how much available time before a potential
collision, it is possible for the proposed heuristic model, that we
name heuristic ratio model, to predict pedestrian intent to cross
or not cross in front of a vehicle, in trajectory data of vehicle-
pedestrian interactions.

A. Data

We used the well-known Daimler pedestrian trajectory prediction
dataset [17] composed of a set of data from 58 pedestrian-vehicle
interactions. The dataset includes vehicle telematics together with
dashcam video of vehicle-pedestrians interactions between a vehicle
driving around and pedestrians that it encountered1. In this dataset,
all the pedestrians enter the road from the right hand side of the
upcoming vehicle. Pedestrians are then detected and tracked in
the images to produce trajectory information for pedestrians [17].
Available data thus includes: ground truth and measured positions
of the pedestrian and the vehicle during an interaction; outcome
(whether the pedestrian ultimately crosses or yields); whether the

1Video sequences last several seconds (min /max / mean: 2.53 s / 13.27
s / 7.15 s) [17]

(a) Pedestrian crossing, vehicle
yielding

(b) Pedestrian yielding, vehicle pass-
ing

Fig. 2. Examples of interactions from the Daimler dataset.
(green=pedestrian trajectory; magenta=car trajectory).

Fig. 3. Sequential Chicken game model

pedestrian sees the vehicle; and pedestrian head orientation during
the interaction. Two interactions are shown in Fig. 2 with the
trajectories of the pedestrian in green and the vehicle in magenta.
These trajectories2 were used to test our method and for each
interaction, we derived from the dataset the following inputs:

• pedestrian trajectory, as the pedestrian distance to the curbside
is used as giving the pedestrian position over time

• vehicle trajectory, as the vehicle speed is used to derived the
vehicle positions over time

• distance between vehicle and pedestrian, as the pedestrian
longitudinal distance to the ego vehicle is used to measure the
distance between the pedestrian and the upcoming vehicle.

B. Heuristic Ratio Model

1) Parametrization: Each interaction between the vehicle and
the pedestrian is described as a sequence of discrete games where
the goal is to cross first the intersection while avoiding a collision.
From the first detection of the pedestrian, time is discretized into
integer ticks, t. This heuristic model is inspired from the Sequential
Chicken model [10], thus space is discretized into cells as shown
in Fig. 3, with the pedestrian being player X and the vehicle being
player Y, and their locations discretized as integer cells x and y as
they approach each other at right angles.

In the original Sequential Chicken model [10], at each time t, the
vehicle and pedestrian players both choose simultaneously between
two discrete actions, to move either SLOW (one square forwards) or
FAST (two squares forwards), and must negotiate via these moves
to avoid collision where their paths overlap. This original model
cannot fit data where a player stops completely, so here we extend
it to allow pedestrians an extra third action, STOP.

At each t, we wish to know the probability P(X) = 1−P(Y ) that
the pedestrian will be the eventual winner of the game by crossing
the road before the vehicle passes.

2Three interactions in the dataset contain trajectories where the pedestrian
is already crossing the road or at the edge of the curbside, we thus
removed these three interactions and tested our model on the remaining
55 interactions.



TABLE I

MAPPING BETWEEN DISCRETE AND REAL SPEEDS FOR PEDESTRIAN

AND VEHICLE

Player SLOW action FAST action

Pedestrian 1.
Xcellsize

∆t
≈ 0.75m/s 2.

Xcellsize

∆t
≈ 1.5m/s

Vehicle 1.
Ycellsize

∆t
≈ 13.4km/h 2.

Ycellsize

∆t
≈ 26.9km/h

The discrete cell scales are chosen to fit the scales of typical
interactions in the Daimler data: pedestrian cells are chosen to be
of size Xcellsize = 0.045m square and vehicle cells Ycellsize = 0.225m
square, so that the pedestrian and vehicle speeds are,

speedX = N
Xcellsize

∆t
, (1)

where N is the number of discrete cells they move in the game
grid as in [6] and ∆t = 0.0603s is defined as one video frame
duration in the Daimler data. This gives the speeds in Table I: for
the pedestrian, xspeed is about 0.75m/s in a slow move and higher
than 1.5m/s in normal/fast move while for the vehicle yspeed is
about 13.4km/h and higher than 26.9km/h in normal/fast motion.
These cell sizes and speeds are coherent with the normal walking
speed of pedestrians, about 1.5m/s [19], and the driving speed of
the vehicle in the data recording environment [17]. When pedestrian
walking speed is lower than their cell size Xcellsize be consider it to
be a STOP action. Using these cell sizes, we then create the discrete
game grid as in Fig. 3, with the two players initial locations x and y
set to cells corresponding to their continuous locations in the video
at the start of the interaction.

2) Algorithm: Given the proposed discretization of the space,
we obtained Xcell number which represents the number of discrete
cells for player X and Ycell number the number of cells for player
Y. The game starts with an observation of the position Xt of the
pedestrian and the speed V yt of the vehicle. If the pedestrian’s
speed is higher than the normal walking speed of 1.5m/s then
the selected action is to go fast, a decrease of the speed but kept
within the interval [Xcellsize,2.Xcellsize] is regarded as yield and if
the speed is even smaller than Xcellsize then it is a stop action.
For the vehicle, only the speed variation informs about the action
selection between go fast and yield. Once each player’s action is
selected, they move on the grid. For each new observation, the
likelihoods of winning λwinX and λwinY of the agents are computed
given their current position. The likelihood of winning is calculated
based on the remaining cells that separate the players from the
intersection/collision, which is defined as a ratio of their distances
to the intersection. These likelihoods are normalized as:

normalize(a) = a/Z (2)

where Z is a normalizer. We then fuse the likelihood of winning
with the prior π to form the probabilities of winning P(X | Xt) and
P(Y | Yt) where the Bayesian fusion operator is:

p⊗q =
pq

pq+(1− p)+(1−q)
(3)

In the present study, the prior π is chosen to be flat 0.5, i.e both
pedestrian and vehicle have equal probability to cross the road first.
These probabilities of winning are finally stored into vectors SX and
SY that inform about the winner of the interaction over time with:

SX = {P(X | x0), ..,P(X | xn)}, SY = {P(Y | y0), ...,P | yn)} (4)

Algorithm 1 Crossing Intent Probability Computation

P(X | X0)← π

2: P(Y | Y0)← 1−π

Xcell number←
Xdistance2curbside

Xcellsize

4: Ycell number←
Ydistance2X

Ycellsize

xindex← Xcell number

6: yindex← Ycell number

for each new observation Xt and V yt : do

8: if Xt > 0 then

xspeed ← Xt −Xt−1

10: if xspeed >= 2.Xcellsize then

xaction ← FAST

12: else

if xspeed >Xcellsize and xspeed < 2.Xcellsize then

14: xaction ← SLOW

else

16: xaction ← STOP

end if

18: end if

if V yt −V yt−1 > 0 then

20: yaction ← FAST

else

22: yaction ← SLOW

end if

24: xindex ← xindex− xaction

yindex ← yindex− yaction

26: λwinX = 1− xindex

max(Xcell number ,Ycell number)

λwinY = 1− yindex

max(Xcell number ,Ycell number)

28: normalize(λwinX , λywin
Y )

P(Xwin | Xt)← π⊗λwinX

30: P(Ywin | Yt)← π⊗λwinY

SX ← store(P(Xwin | Xt))
32: SY ← store(P(Ywin | Yt))

Xt−1← Xt

34: V yt−1←V yt

end if

36: end for

Return SX ,SY

C. Variants of the heuristic ratio model

1) Ratio model (Model A): We define Model A as being the
heuristic ratio model described above and detailed in Algorithm
1. The pedestrian is the winner if their probability of winning is
greater than the vehicle probability of winning at the time pedestrian
reaches the curbside as:

P(Xwin | TXcurbside)> P(Ywin | TXcurbside) (5)

2) Ratio model with scaling factor (Model B): This model
relies on the heuristic ratio model (Model A) and we define a
scaling factor α = 2.15 and multiply it with the vehicle likelihood
of winning λwinY before its normalization in Algorithm 1, such
that:

{

λwinY = α ∗λwinY

P(Xwin | TXcurbside)> P(Ywin | TXcurbside)
(6)

3) Evaluation: We used the mean absolute error (MAE) to
gain insight about the accuracy of the predictions given by,



MAE = 〈|p−g|〉 (7)

where p is the predicted outcome and g is the ground truth value.
MAE informs about how confident we can be with the predictions.

III. RESULTS

The results of the heuristic ratio model are shown in Table II. The
ratio model (Model A) has a prediction accuracy of 76.4% while the
ratio model with a scaling factor (Model B) can predict pedestrian
crossing with 96.3% accuracy by the time the pedestrian reaches
the curbside. In Fig. 4 and 5, we show the evolution of Algorithm 1
for two interaction scenarios using the best model (Model B). The
estimated trajectories in meters and discrete cells show how the
pedestrian and vehicle move over time in the discrete game grid
according to the heuristic ratio model.

TABLE II

RESULTS FOR THE RATIO MODEL VARIANTS

Type of Model Starting Frame Prediction Accuracy

Model A: Ratio Model Frame 0 44/55 80.0%

Model A: Ratio Model Mixed starting frames 42/55 76.4%

Model B: Ratio Model with Scaling factor Frame 0 40/55 72.7%

Model B: Ratio Model with Scaling factor Mixed starting frames 53/55 96.3%

A
ct

u
a

l

v
a

lu
e

Prediction outcome

Crossing Stopping Total

Crossing 40 1 41

Stopping 1 13 14

Total 41 14

TABLE III

CONFUSION MATRIX

In total, there were 41 crossing scenarios and 14 stopping
scenarios. As shown in Table III, our model correctly predicts 40
crossing scenarios out of 41 and 13 stopping scenarios out 14,
hence reaching an accuracy of 96.3%. The two probabilities for
the interactions that were not correctly classified are shown in
Fig. 6, it is to be noted that these interactions were categorized
as either ‘critical’ or ‘anomalous’ situations in the original dataset
[17]. Given the good results found with Model B, we can interpret
that this is due to the scaling factor α , which is compensating the
lack of good prior used in our model. Due to the small amount data
available, we have used the Daimler dataset as the test set only but
in the future, the prior could be learnt from training data.

Fig. 7(a) shows the mean average error of the pedestrian’s
probability of winning from the start of the interaction using Model
B predictions. Pedestrian’s behaviour is uncertain at the beginning
of the interaction and becomes more and more certain. This tells
us that autonomous vehicles should wait and observe a certain
number of features before acting. This is coherent with the previous
work in [5]. Fig. 7(b) represents the uncertainty over pedestrian’s

probability of winning from the end of the interactions using Model
B predictions. It shows that Model B can predict pedestrian crossing
intention with about 90% confidence around 1s before the end of the
interaction and it reaches 96% confidence in the intention estimation
at the time the pedestrian reaches the curbside.

IV. CONCLUSIONS

A simple heuristic model can accurately estimate pedestrian cross-
ing intent on the standard Daimler dataset with about 96% accuracy
and about one second before the crossing action occurs. The
remaining one in every twenty interactions, which are those in
which both players have similar initial times to arrival at the
intersection, may thus require more complex models such as the
Sequential Chicken game theory model. This shows that such
complex models do appear to be necessary for AVs in general use
and should continue to be developed and refined to bring accuracy
closer to 100%.
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frame)
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(a) Interaction 3

(b) Estimated trajectories in meters (from 16th frame)

(c) Estimated trajectories in discrete cells (from 16th

frame)

(d) P(player | τi)τi=t:T

Fig. 5. Results obtained from Model B for pedestrian stopping scenario



(a) P(player | τi)τi=t:T for a crossing scenario pre-
dicted as pedestrian stopping

(b) P(player | τi)τi=t:T for a stopping scenario pre-
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(a) Time from the start (s)

(b) Time from the end (s)

Fig. 7. Mean average error for Model B
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