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  
Abstract—SMEs (Small and medium-sized enterprises), 
particularly those whose business is focused on developing 
innovative produces, are limited by a major bottleneck on the 
speed of computation in many applications. The recent 
developments in GPUs have been the marked increase in their 
versatility in many computational areas. But due to the lack of 
specialist GPU (Graphics processing units) programming skills, 
the explosion of GPU power has not been fully utilized in general 
SME applications by inexperienced users. Also, existing automatic 
CPU-to-GPU code tr anslators are mainly designed for research 
purposes with poor user interface design and hard-to-use. Little 
attentions have been paid to the applicability, usability and 
learnability of these tools for normal users. In this paper, we 
present an online automated CPU-to-GPU source translation 
system, (GPSME) for inexperienced users to utilize GPU 
capability in accelerating general SME applications. This system 
designs and implements a directive programming model with new 
kernel generation scheme and memory management hierarchy to 
optimize its performance. A web-service based interface is 
designed for inexperienced users to easily and flexibly invoke the 
automatic resource translator. Our experiments with non-expert 
GPU users in 4 SMEs reflect that GPSME system can efficiently 
accelerate real-world applications with at least 4x and have a 
better applicability, usability and learnability than existing 
automatic CPU-to-GPU source translators.  
 
Index Terms— Usability, Parallel Computing, GPU, Automatic 
Translation 

I.  INTRODUCTION  

MEs, particularly those whose business is focused on 
developing innovative products, are subject to many 
pressures in maintaining and growing their market share 

and ensuring that their products remain competitive in an age 
of rapid technological change. In many high-tech fields, users 
are experiencing a huge growth in data, with increases in 
quantity, in resolution, in variety, etc., while the work often 
present significant time constraints on the associated data 
processing. This leads to a continual upward pressure on 
computational resources and, indeed, the speed of computation 
is now a major bottleneck that dramatically limits the 
applicability of available technology in many applications in 
SMEs.  
   The major challenges in many high-tech applications in SMEs 
relate to a huge growth in data processing requirements through 
increases in quantity, in resolution, in variety etc. demanded by 

 
 

general applications. Parallel computing techniques [1] have 
gained wide popularity among researchers and developers to 
overcome these challenges. Many computing tasks exhibit a 
parallel nature and are hence suitable for parallel computing. 
The concept of parallel computing is to split large problems into 
small components and distributing them among multiple 
processors. Conventional parallel computing takes place using 
multi-core CPUs or via distributed, grid, high performance 
computers. The remarkable rise in performance of Graphics 
Processing Unit (GPU) [2] in recent years offers a very 
attractive alternative, which can handle many demanding tasks 
by only harnessing local computing resource in low-cost 
computer platforms. 
    The most important development in GPUs in recent years has 
been the marked increase in their versatility. Their capabilities 
are now much more widely applicable and they have become 
used in many computational areas - this is known as General 
Purpose GPU programming (GPGPU) [3]. OpenCL [4] and 
NVIDIA’s CUDA [5] are two mainly widespread GPU parallel 
programming languages designed to help users manage GPU 
utilization. If the capacities of the GPU are harnessed properly, 
the achieved speed-up can be significant. But the parallelization 
of CPU code for execution on GPUs is not light and handy to 
general users. This process requires an in-depth knowledge of 
the complex underlying GPU architecture and the GPU 
memory optimization schemes. These skills are still in 
relatively short supply to non-expert GPU users. It is highly 
desirable to have a cost-effective approach that enables 
inexperienced users to easily utilise GPU technology for 
accelerating their general applications.  
    Automatic CPU-to-GPU source translation technique can be 
a candidate to make GPU technology more accessible to the 
inexperienced user. To date, numerous automatic CPU-to-GPU 
source parallelization translation tools [9-27], including 
algorithmic skeleton based [14-16], polyhedral model based [9-
13], or directive based [17-23] have been developed for 
academic and commercial use. While their acceleration is 
promising, utilizing them by normal users in general real-word 
applications is still challenging. Many tools are originally for 
research purposes with a non-availability of public-access and 
a limited applicability of supporting different algorithm 
structures. Simultaneously, the usability and learnability of 
these tools are not prospective, since their attentions are mostly 
on improving  
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Table 1. Comparison of properties of typical automatic parallelization source translation tools 

 Acceleration  Applicability  Usability  Adaptability  
PoCC [10] 1x-10x 8 benchmarks  C-to-optimized C Open source, programming in Linux 
Pluto [11] 2x-12x 13 benchmarks OpenMP to C Open source, programming in Linux 
R-Stream [12] >10x Matrix multiplication, Guass Seidal  C-to-C (Binary) Non public avaiable source  
Par4All [13] 2x-128x 6 benchmarks C-to-CUDA/OpenCL Open source, programming in Linux 
SkePu [14] 10x 7 skeletons (map, mapArray, reduce, etc)  C-to-CUDA/OpenCL Non public avaiable source 
HMPP [25] -10x Multipe types of loops C-to-CUDA/OpenCL Commercial product 
Bones [16] 1x-13x 8 benchmarks C-to-CUDA/OpenCL Open source, programming in Linux 
CUDA-lite [17] 2x-17x MRI-FHD, TPACF CUDA-to- optimized CUDA Non public avaiable source 
hiCUDA [18] -18x 9 benchmarks, MCML C to CUDA Open source, programming in Linux 
MINT [19] 10x-16x Stencil computing  C to CUDA Open source, programming in Linux 
OpenMPC [20] -50x JACOBI, SPMUL OpenMP-to-CUDA Non public avaiable source 
PGI [21] 10x  Multipe types of loops Fortran, C, C++ to CUDA Commercial product 
PPCG [24] 1x-100x 30 benchmarks C to CUDA Open source, programming in Linux 

speedup performance rather than making them more accessible 
to general users. Also, the diverse types of algorithms and loops 
in general applications pose significant challenges towards the 
use of these tools. So there are no existing CPU-to-GPU source 
translation tools reported in literature to provide an outstanding 
solution for non-expert GPU users with reasonable acceleration, 
wide applicability, good usability and well learnability. The 
motivation of this work is to seek out a solution to satisfy the 
above requirements.   
    In this paper, we propose a web-service based automated 
CPU-to-GPU source translation system, (GPSME) for 
inexperienced users to utilize GPU capability in accelerating 
general SME applications. We design and implement a 
directive based programming model that is capable of carrying 
out semi-automatic CPU-to-GPU source-to-source translation 
on moderately priced standard GPU cards and off-the-shelf 
GPU clusters. A web-service based interface is particularly 
designed for inexperienced users to easily and flexibly invoke 
the automatic resource translator. Our experiments with non-
expert users from 4 SMEs reflect that GPSME system can 
efficiently accelerate general real-world applications with at 
least 4x; and also have an improved applicability, usability and 
learnability than existing CPU-to-GPU source translation tools. 
The main contributions of this paper are below:  
 A comprehensive requirement analysis of inexperienced 

users for utilizing GPU technology in general SMEs 
applications is given. It is benefit to improve the accessibility 
and the applicability of existing automatic CPU-to-GPU 
source translators in real-world applications.    

 A web-service based automated CPU-to-GPU source 
translation system, GPSME, is presented and implemented. 
This tool introduces a new kernel generation scheme and a 
memory management hierarchy to optimize its performance.      

 A thorough performance evaluation of GPSME system with 
general SMEs applications has been carried out. The results 
suggest that the proposed tool can effectively and efficiently 
accelerate general real-world applications, and have 
improved applicability, usability and learnability over 
existing automatic CPU-to-GPU source translation tools 
[23-30].  

    The rest of the paper is organized as follows. Section 2 
reviews notable automatic CPU-to-GPU source translators. 
Section 3 analyses the general requirement of inexperienced 
GPU users. Section 4 presents the design and implementation 
of GPSME system. Section 5 shows the experimental validation 
results. Section 6 gives a conclusion and future work. 

II.  RELATED WORK 

A large amount of research has been dedicated to automatic 
converting CPU code to GPU code. This section reviews 
existing typical automatic parallelization source translators 
regarding acceleration, applicability, usability and adaptability.  
Polyhedral model [9-10] for performing loop transformations 
has been the basis of early attempts for automatic optimization 
and parallelization of CPU programs. With the emergence of 
GPUs, the polyhedral model is adopted to develop efficient 
CPU-to-GPU source translators such as Pluto [11], R-Stream 
[12], Par4All [13], and PPCG [24]. They translate source code 
with affine loop structures by performing dependency analysis 
and loop transformations. These tools normally require little or 
no input from the users, and have a promising acceleration 
performance; but they have some drawbacks on applicability 
and adaptability. R-Stream supports C-to-CUDA compilation 
but is not publicly available yet. Pluto automatically generates 
CUDA kernel code; but the CUDA host code has to be written 
manually by users. Par4All compiler is a public available tool 
supporting automatic integrated compilation of applications for 
hybrid architectures including GPUs. Yet some restrictions and 
code restructuring might be required for reaching a promising 
performance.   
    Algorithmic skeleton based tools adopt an idea of generating 
efficient target code by a specific algorithm class. Examples of 
such tools are SkePU [14], SkelCL [15], and Bones [16]. Each 
algorithm skeleton is coded as a template of specific algorithm 
class on target architecture. These tools have highly optimized 
library implementations for classes of algorithms instead of 
individual algorithm, as a result of dramatic acceleration.  
Algorithmic skeleton and polyhedral model based tools both 
have a well usability since they do not require users having deep 
GPU knowledge to identify parallel region and memory transfer 
in CPU code. Yet, their applicability is relatively narrow and 
highly sensitive to the characteristics and data structure of CPU 
algorithms. This shortcoming limits their wide acceptances by 
general users. 
    For the purpose of allowing automatic CPU-to-GPU 
translators to be more applicable, directive-based source 
translators [17-23] became popular. By using these tools for 
generating target GPU code, users only need to provide some 
basic annotations about parallelism exploitation and also 
annotations that deal with data transfer. CUDA-lite [17] 
introduces some directives to improve the memory hierarchy of 
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Table.2. Detailed information of inexperienced GPU users from industry

 
CUDA by directly inserting the directives into the CUDA code. 
hiCUDA [18] provides a set of pragmas mapping to typical 
CUDA operations for programmers. CUDA code generated 
from hiCUDA is optimized by operating global memory and 
transformations to leverage the complex memory hierarchy. 
But a prerequisite of hiCUDA is that users have to understand 
sufficient GPU knowledge for specifying the threads and thread 
blocks. OpenMPC [20] project proposes a Cetus compiler 
framework for translating standard OpenMP shared-memory 
programs into CUDA-based GPGPU programs. Despite the 
significant speedup of OpenMPC, its adoption was slowed by a 
manual revision of input source as OpenMP programs. 
Similarly, PGI compiler [21] accelerates applications written in 
C++ by adding standard OpenACC [22] directives; But its 
pragmas are far too complex, and the GPGPU code it outputs is 
almost unreadable (since PGI is designed as a compiler instead 
of a source-to-source translator). Besides, MINT [19] is a very 
easy-to-use C-to-CUDA source translator containing only five 
types of pragmas. It is designed for speedup stencil 
computations on NVIDIA GPUs only. This translator accepts C 
source input with some intuitive MINT directives to generate 
highly optimized CUDA C which may produce performance 
gains of up to 10x. Directive-based tools have a better 
applicability in dealing with complex CPU algorithms due to 
their flexibility of adding annotations in the CPU source code. 
However, their usability is not very good, since users have to 
identify the parallelization region and manage the complex 
memory hierarchy by themselves. Also, hard-learning 
directives and unreadable output code in the tools increase the 
difficulties for inexperienced users to harness them.  

III.  REQUIREMENT ANALYSIS   

This section identifies and analyses general expectations of 
inexperienced GPU users on an automatic CPU-to-GPU source 
translator for accelerating their applications. The participated 
users are from four companies in the EU funded project 
GPSME [29]: Imagemetry Ltd (IME) [30], Biocomputing 
Competence Centre (B3C) [31], Rotasoft [32] and AnSmart 
[33]. Their products involve a wide applicable area including 
Image forgery detection, augmented reality book and virtual 
physiological human. Table.2 illustrates the applicable area of 
each company and the problem they face. For collecting a 
general requirement of their non-expert GPU users, IME Ltd 
communicated with the other three companies and collected 
their feedbacks in three months through emails or project 
meetings. Inexperienced GPU users have some common 
objectives such as:  

 No need on having an in-depth understanding of GPUs 
 Full or semi-automatic CPU-to-GPU source 

translation  
 Support C++ programming language  

 Support either CUDA or OpenCL  
 Efficient speedup performance and no accuracy loss 
 Source code protection  
 Report the system process and error diagnostics 

Regarding the above general objectives, it appears that existing 
CPU-to-GPU source translators in Table.1 hardly satisfies the 
full needs.  
Non-expert GPU users expect a system that enables them to 
quickly take advantage of current GPU capability to effectively 
and economically speed up their products. In terms of this goal, 
an explicit requirement analysis of their expectations on this 
system is given as below:  
 Acceleration: They expect their general CPU applications 

to be accelerated significantly on moderate hardware 
platforms. Non-expert GPU users are more interested in 
actual time saved in their applications instead of a high 
speed-up ratio of GPU over CPU. However, existing CPU-
to-GPU translators focus more on the improvement of their 
speed-up ratio for reflecting their parallel efficiency. Their 
acceleration results are mostly achieved by running simple C 
code samples though a high-level GPU hardware. Their 
utilization in practical applications cannot reach and can 
even decrease the performance since some indispensable 
CPU source code revisions are required. So the acceleration 
capability of the GPSME system in this paper need be 
evaluated by practical applications, and not only the sample 
code for the parallel region.  

 Applicability : They look forward to a system with wide 
applicability, which can solve time-consuming problems in 
various types of products. Among the existing CPU-to-GPU 
translators, algorithm skeleton based tools like Bones [16] 
has limited classes so they cannot support the applications 
with complex or diverse loop types. Directive-based tools 
like OpenMP [20], hiCuda [18] and PGI [21] have wide 
applicability guaranteed by flexible usage of standard 
pragmas. But the understanding and learning of these 
pragmas become hard tasks for non-expert users. There has 
to be a trade-off of these tools between applicability and 
directive complexity. The directives of GPSME system have 
to be simple but enable supporting all types of algorithms 
skeleton and loop patterns from their general applications.   

 Usability:  Inexperienced GPU users have strong demands 
on usability of the GPSME system. First, the input and 
output languages are essentially to support C/C++ and 
CUDA/ OpenCL. Second, they suggest using a web-service 
interface to achieve a cross-platform (Windows and Linux) 
usage of code translation. A user file management system 
with source code protection scheme is required for this 
interface. Among existing CPU-to-GPU source translators, 
most of their interface are C-to-CUDA based command line 
tools under Linux. A system with better usability for non-
expert GPU users is expected. 

 Langauge  Product Area Problem 
IME C++ Image forgery detection Time consuming task in detecting suspicious and altered parts of the image or video. 
B3C C++  Virtual physiological human Many VPH applications are computationally demanding.  
ROTA C++ Augmented reality book Imge processing speed in real time AR books. 
AnSmart C++ Eye Tracking Medical image analysis in diagnosising eye diseases. 
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 Adaptability:  The easy-to-learn nature of the tool is 
paramount to inexperienced GPU users. GPU technology 
and programming skills are hard to grasp. The existing CPU-
to-GPU source translators still need users to study the usage 
of the directives. In fact, the simplicity of the directives is 
crucial to the adaptability of the system. This paper aimed to 
design simple, flexible and efficient directives. 

IV.  GPSME SYSTEM OVERVIEW  

GPSME system is a deliverable of the GPSME [29] EU funded 
project. The significance of this tool distinguishing from other 
CPU-to-GPU source translators is that relatively much attention 
has been paid to the usability and adaptability. Also, driven by 
the potential difficulties of having a local GPSME installation 
and the increased visibility of the system, access to GPSME 
system through a remote web server is more suggested. The 
main system architecture of the GPSME system includes two 
components: GPSME web-interface and GPSME core library. 
The communication between these two components is handled 
through a web-service. Though the web-interface, 
inexperienced GPU users can upload their CPU source files; 
execute translations by invoking the core library; and download 
the generated GPU source files.  

A. GPSME Web Interface 
GPSME web-interface is designed and implemented using the 
ExtJS framework for providing appearance and user experience 
close to desktop applications. The web application of GPSME 
includes file explorer, rich text editor, interactive help system 
and tabbed information windows. Also, it encrypts users’ code 
to protect their intelligent properties and facilitates a translation 
of users’ source code, not needing anything related to the 
system locally installed on the users’ machines. The GPSME 
web interface is presented in in Figure.1.  

 

Fig. 1. GPSME web interface 

The typical usage of the GPSME web application is as follows: 
• The user creates an account with his/her details. 
• The user uploads C/C++ source file and necessary header files. 
• The user selects the desired output type and initiates the code 
translation process. 

• It takes a few seconds for the GPSME web server to process 
the user files. If success, the results can be retrieved under the 
‘Processed files’ tab.  
The user does not run the system locally on a Linux machine 
but will be instead making use this remote web server.  
• If CPU source code has an external dependency then it must 
be presented or installed on the remote webserver (in addition 
to user’s local machine). Users need to contact the server 
administrator to get the dependencies installed if so required. 
• When uploading a C++ file for parallelisation users must also 
upload any of their own headers on which the C++ file is 
dependent. It is assumed that these belong in the same directory 
as the C++ source file, so users avoid deep paths in their 
#include statements. 

B. GPSME Core Library  

The design of GPSME core library is inspired by MINT [19], 
which is developed on Linux by using the ROSE compiler 
framework [34] at Lawrence Livermore National Laboratory. 
ROSE provides an open source compiler with API to develop 
customized source-to-source translators for performing code 
transformations, analyses and optimizations. The structure of 
GPSME core library is similar to MINT [19] but with some 
extended components. The system structure and translation 
flow of implementing the core library is illustrated in Figure.2.  

 

Fig. 2. Structure of GPSME core library  

The input of GPSME system is a set of C/C++ source files 
annotated with GPSME directives. Once source files are read, 
the ROSE frontend constructs an Abstract Syntax Tree (AST). 
The core library traverses the AST and queries parallel regions 
containing data parallel for loops. The Identifier is responsive 
to identify and classify loop pattern, variables and device 
information from the AST. Regarding the identifications, the 
Analyser and the Optimizer investigate the possibility of using 
predefined approaches in GPSME system for  
 



 

5 
 

Table 3. Listing of GPSME directives (some are inherited from and MINT [19])

AST transformations. The Translator adopts similar rules in 
MINT Baseline Translator to perform transformations on the 
AST. But it enhances the functionalities of MINT, whose 
details are presented in section I. GPSME core library supports 
both CUDA and OpenCL code by unparsing the transformed 
AST. Due to the similar code generation procedure between 
CUDA and OpenCL, this paper mainly discusses the generation 
of CUDA code using the GPSME core library.   

C. Interaction  
The interaction between GPSME web application and GPSME 
core library is designed and implemented by utilizing the 
jQuery Framework and Java Servlet. At the server side, 
RESTful web-services are deployed to Tomcat 7 servlet 
container for handling the AJAX requests including file upload, 
edit and execute. Figure 3 illustrates an interactive workflow 
between GPSME web interface and core library at GPSME 
server.  

 
Fig. 3. Interaction between GPSME web interface and core library  

In Figure.3, users firstly register and upload their source files 
though GPSME web interface. They receive a private key for 

decrypting uploaded source files in their emails. The public key 
was generated and stored in server database for encrypting 
uploaded source files. Users need key in a correct private key 
to display, edit, save or translate the source files. In code 
process, an AJAX request will be sent to the REST service end 
point and invoke the GPSME core library to execute command 
line tools. Once execution finished, the outputted files and log 
files are collected and returned to GPSME web interface. User 
can view the diagnosis and error reporting information and 
download the CUDA or OpenCL source files. Meanwhile, 
some sample codes and tutorials are provided in web interface 
for users to learn and experience.        

D. GPSME Directives 
In MINT [19], five types of different directives are employed 
for three main tasks: a) Identification of parallel region. b) 
Memory management. c) Kernel generation. The MINT for 
directives in MINT is the most important since it identifies a 
parallel for loop nest and helps guide optimization and 
generation of kernel code. The MINT copy directives help users 
manage the separate host and device memory space. However, 
the utilization of MINT in general applications faces to three 
challenges below:      

 The MINT directives indicating parallel regions and kernel 
regions are too simple to use for complicated algorithms. The 
directive parallel marking a parallel region must be located 
immediately behind the directive copy. It cannot handle 
algorithms in which users need to insert source code between 
these two directives.     

 The copy directives combining memory allocation and data 
transfer is too extensive to support high level storage setup 
and management. Particularly, in practical applications, it 
requires separating the operations of memory allocation and 
data transfer to allow the reuse of the allocated memory for 
data transfer. 

 The MINT kernel generation directives only support stencil 
computing. Many algorithm skeletons in general 
applications are beyond stencil computing, which hardly 
copy with by MINT kernel.   

 Directives  Descriptions 
 
Basic pragma 

Parallel                         (MINT) To identify a region generating a kernel function 
For                                (MINT) To mark the succeeding “for” loop for GPU acceleration  
Single                            (MINT) To indicate serial regions in the GPSME  
Parallel region   
 

To identify a parallel region containing parallel work 

 
 
Memory  
Management 

Copy                              (MINT) To express the declaration, allocation, data transfers between the host and device  
CopyByTexture To create a CUDA texture on a device, and bind or unbind with 2D data 
CopyMalloc1DArray To create a CUDA array on a device, associating it with a CUDA texture on the device 
CopyMemcopy2D To create a CUDA cudamemcpy2D function to copy a matrix between CPU and GPU memory 
CopyMemcopy2DToArray To create a CUDA function cudaMemcpy2DToArray to copy data between CPU and GPU memory 
CopyBindTexture To bind the created texture memory to a CUDA global array 
Copy2DArrayTo1DArray 
 

To convert the array with different dimensions on the CPU memory buffer 

 
Kernel  
Generation 

For, nest, tile, chunksize (MINT) To generate CUDA kernel for each parapllel “for” loop with given thread blocks and threads.  
 

Initialisation To define a one dimensional array for storing the data in a sliding window 
Transfer To transform the code of putting the data in a sliding window into a local variable within a “For” 

loop 
Remain To transform the operations on a sliding window from CPU algorithm to the GPU kernel. 
Assign To assign the new data to the relevant GPU buffer with the correct index. 
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For overcoming the limits to MINT directives, the design of 
GPSME directives consider the practical requirements in 
section 2. The detailed information of GPSME directives are 
reported in our early work on GSWO programming model [37]. 
First, the basic GPSME directives are inherited from MINT as 
shown in Table.3. The primary extension of GPSME directives 
is that its memory management directives have an enhanced 
hierarchy. GPSME introduces a set of memory management 
pragmas to control GPU memory allocation, CPU-to-GPU 
memory transfer and CPU memory conversion, respectively. It 
also provides pragmas to allow for the use of texture memory 
(in addition to the use of global memory). These new pragmas 
bring the flexibility and effectiveness to memory management 
that is needed in general applications for image processing.  
Also, GPSME introduces a set of newly defined kernel 
generation directives. These were designed for Sliding Window 
Operations based image processing applications by following a 
typical procedure, which contains initiation, transfer, remain 
and assign. They are simple and can be applied to all types of 
parallelizable operations in sliding windows. Our experiments 
showed that using GPSME directives provides a significant 
improvement in usability and productivity when compared with 
other CPU-to-GPU translators. 
The final improvement of GPSME directives is that it extends 
the directive parallel of MINT into two directives parallel and 
parallel region to distinguish the kernel region from the parallel 
region. The parallel region indicates the start of a parallel 
region containing the CPU source code for parallelization, 
whereas the parallel marks a loop for generating a GPU kernel 
function. This extension is highly similar to the directives 
parallel and kernels in the OpenACC standard, but is less 
complicated and more easy to use by non-expert GPU users. 
With these two directives, the GPSME system can support more 
complicated algorithmic structures than MINT. 

V. KEY ENHANCEMENTS  

The GPSME system has some functional extensions to MINT 
[19], including C++ and multi-file support, preliminary 
OpenCL output, and a user-friendly interface. Besides, some 
key enhancements on improving its acceleration capability and 
applicability were also implemented.  

A. Supporting Triangular Loops 

In earlier work [35], GPSME system with original MINT kernel 
was applied to the PolyBench [23] benchmarking suite in order 
to assess the resulting performance increase. During this 
process, the lack of support for triangular loops was identified 
as an inhibiting factor of the auto-parallelization process. MINT 
kernel was still able to process the outermost loop but this 
yielded significantly lower performance that that which was 
theoretically obtainable.  
An example of such a problematic triangular loop is shown in 
Table.4, and the iteration space is depicted visually in Figure.4. 
Note how the initial value of  j2 in the inner loop is dependent 
on the current value of j1 in the outer loop. Mint was still able 
to process the input code but generated a non-compilable output 

which attempted to make use of variables prior to their 
declaration. 
GPSME have therefore implemented triangular loop support as 
an extension to the MINT. We define a rectangular iteration 
space over the full range of values which j1 and j2 can assume, 
and then overlay a grid of CUDA thread blocks. The CUDA 
kernel checks whether the current iteration does indeed fall 
within the triangular part of the iteration space, and skips 
execution if this test fails.  

Table.4. Example of problematic triangular loop 

Algorithm                                          
1: #pragma mint copy(data,toDevice, M, N) 
2:  #pragma mint copy(mean,toDevice, M) 
3:  #pragma mint copy(symmat,toDevice, M, N) 
4:  #pragma mint parallel 
5: { 
6:           ... //Some code omitted for brevity 
7:      #pragma mint for nest(2) tile(16, 16) 
8:          for (j1 = 0; j1 < M; j1++)  
9:             { 
10:                for (j2 = j1; j2 < M; j2++)  
11:                    { 
12:                            ... //Some code omitted for brevity 
13:                     } 
14:            } 
15: } 
16:  #pragma mint copy(symmat,fromDevice, M, N) 

With this in mind, a thread block can be categorized as being in 
one of three states with respect to the number of threads which 
need to execute: 
 Full:  All threads are part of the triangular iteration space 

and must be executed. No processing capability is wasted 
in this scenario. 

 Empty:  None of the threads are part of the triangular 
iteration space. All threads will fail the membership test 
implemented in the kernel and return immediately. 

 Half-full:  In this case the running time of the thread block 
is determined by the threads which do need to run. Threads 
which do not need to run must still wait upon those that do, 
and this represents some wasted processing capability. 

 
 

Fig. 4. Iteration space of the two-level covariance loop 
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This approach has yielded a performance increase greater than 
that which was obtained from OpenACC, and more than 30 
times greater than that which was obtained from the original 
Mint. The proportion of half-full blocks decreases as the 
problem size increases, which limits the impact of the GPU's 
relatively poor performance in the presence of divergent 
operations. 
GPSME system has evaluated the triangular loop support on a 
sample CPU code for the computation of colon centerlines to 
be used for the purpose of virtual endoscopy. When running on 
the CPU, the provided code took approximately five minutes to 
fully process a CT dataset with a resolution of 512x512x512 
voxels. This code was optimised prior to GPUification such that 
it ran in 48 seconds on a single core. The GPSME system was 
then able to achieve a three-fold speed increase bringing the 
execution time down to 17 seconds, which was comparable to 
the 15 seconds taken by the four-core CPU version. A manual 
implementation was able to further decrease the runtime to only 
1.2 seconds [36]. 
While the GPSME system was effective in parallelizing this 
application, the main problem was the large memory usage. Our 
manual implementation was able to be much smarter about the 
allocation and copying of memory which led to a significant 
speed increase. However, this manual implementation did take 
several days of work, whereas the auto-parallized version only 
took one hour to add the directives and perform some minor 
debugging. 

B. Single-dimensional vs Multi-dimensional Arrays 
Another improvement to the GPSME system is that it adds 
more optimization opportunities when applied to code that use 
multi-dimensional arrays. The optimizations are in terms of 
better register reuse, as well as better shared memory usage.  
This assumption was evaluated on some of the Polybench tests 
[26]. For the 2MM and SYR2K tests, a further 25% 
performance increase is obtained when using two-dimensional 
addressing instead of the default flattened array addressing. 
The changes from single-dimensional to multi-dimensional 
array accesses were done in a manual manner, as in Polybench 
all tests are written with flattened array accesses. However, with 
extra hints from the programmer the GPSME system should be 
able to treat the single dimensional arrays as multi-dimensional 
ones. An interesting observation is that when faced with the 
same two-dimensional arrays in the 2MM and SYR2K tests, the 
OpenACC compiler reports more than two times worse 
performance. The reasons for this are not currently clear and 
will be the subject of some future investigation. 

   C. Kernel generation scheme for SWO  

Considering the limitation of MINT kernel generation, another 
kernel generation scheme in GPSME system is designed into 
our early work (GSWO model [37]) to orchestrate the GPU 
kernel code generation. Figure.5 shows an example workflow 
of the kernel generation scheme for median filter. We have 
designed new “single” pragmas for kernel code generation, four 
of which are defined below.    

 Single Initialisation: generates CUDA kernel code that 
defines a 1D array with size I×J for storing the data in the 
sliding window.  

 Single Transfer generates CUDA kernel code to transfer the 
data of the sliding window into the 1D array defined in the 
Single Initialisation directive.  

 Single Remain generates CUDA kernel code that 
corresponds to the operations on the sliding window.  

 Single Assign generates CUDA kernel code that copies the 
processed data in the sliding window to the relevant GPU 
buffer obtained via the thread and block IDs.   

Figure. 5. Working flow of Kernel Generation Pragmas 

VI.  PERFORMANCE EVALUATION  

In this section, the effectiveness of the GPSME system is 
evaluated on the general applications of four companies from 
the GPSME project [29]. The evaluation methodology used in 
this paper is based on the measurement of acceleration ratio 
between GPU and CPU performance without losing the original 
algorithm’s accuracy. The baseline is the performance of the 
original CPU code running on conventional hardware without 
using multi-threading. The evaluation platforms were: (a) Intel 
Core i7-2670QM CPU and NVIDIA GeForce GT 540M; (b) 
Intel Core i7-3770K CPU and NVIDIA GeForce GTX 690; (c) 
Intel Core i3-2.1GHz CPU and NVIDIA GeForce GT 520M; 
(d) Intel Core i7-3.4GHz CPU and NVIDIA GeForce GTX 
680M; All GPU implementations used NVIDIA GPU SDK 
version 4.1. OpenMP programs were compiled using Visual 
Studio 2008, and all computation used double precision. 
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A. Acceleration Performance 

Acceleration is the most important indicator reflecting the 
performance of the GPSME system. In order to evaluate this, 
we have compared the execution performance of the original 
CPU code, the GPSME system generated GPU code, and the 
manually-generated GPU code. The original CPU codes were 
provided by inexperienced GPU users from their general 
applications. They were revised by the users in order to be 
processed by the GPSME system. The system generated the 
machine-generated GPU codes. To better represent the 
performance of the generated GPU code, we have also 
performed the CPU to GPU code conversion manually. The 
acceleration performance is shown in Table. 4.  
SCS: The application from SCS is centerline extraction for a 
given 3D model. The code from SCS is based on C++, and also 
calls VTK functions for centerline extraction. The performance 
gain from the use of the system is shown in Table.4. It appears 
that the GPSME system can accelerate the application from 
B3C up to 2-3 times on average, dependent on the GPU devices 
used. 
IME:  The application from IME is to produce a camera 
fingerprint by applying de-noising methods to a set of images 
that are known to come from a given camera. The sample code 
from IME are based on C++, and aims at implementing a 3×3 
median filter for de-noising. The image resolution is 3648 × 
2736. The number of images is 39. The algorithm splits the 
images into a number Region of Interests (ROIs), which can be 
processed in parallel. Table 5 shows the performance gain from 
the use of the GPSME system. 
It shows that the accuracy of the IME application delivered by 
the GPU implementation and the CPU implementation is 
exactly the same, which means that the machine generated GPU 
implementation does not negatively impact the camera 
fingerprint application. Secondly, it appears that on average the 
GPSME system accelerates the performance with up to 3-4 
times. If only considering the acceleration of the kernel region, 
the speedup performance can achieve execution times of up to 
6 times shorter than the original CPU application. This proves 

that the GPU kernel implementation is certainly capable of 
speeding up the CPU code in the parallel regions.  
ROTA:  The application from Rotasoft uses the highly 
viewpoint-invariant ASIFT algorithm for feature extraction in 
augmented reality applications. Rotasoft has successfully 
evaluated the ASIFT implementations on their own dataset. The 
matching accuracy of the GPU implementation is almost the 
same as the original CPU implementation. After using GPSME 
system, the performance of the application is greatly increased, 
as shown in Table. 6. It appears that GPSME system accelerates 
the whole application up to 6x times for a lower grade system, 
and up to 13.6x for a high performance system. 
AnSmart:  The application from AnSmart is to use 
morphological filter to detect the eye’s region position in a 
video. While OpenCV provides some functions to detect the 
position of eye regions, the performance is limited by a variety 
of issues, such as the lighting, the head position, other noise, 
etc. Therefore, AnSmart develops some own morphological 
filter based algorithms to segment the eye regions from videos. 
The morphological filter relies on the repeated use of dilation 
and erosion operations on a binary image. However, the 
repeated use of dilation and erosion is a quite time-consuming 
task, particularly for high resolution image with large sizes of 
window kernels. The GPSME system is capable of successfully 
accelerating the performance of morphological filters. The 
results are as shown in Table.7. It appears that the GPSME 
system can effectively speed up the morphological filtering for 
the AnSmart eye detection algorithm with up to 3 times. The 
times of repeating the operations of dilation and erosion will 
impact the acceleration performance of GPSME system. If the 
times for the dilation and erosion operations are increased, the 
acceleration performance will be better. Another issue is that 
the window size of the running kernel could impact the 
acceleration performance. Due to the image resolution, a 9*9 
morphological kernel is used in this case. If the window size 
increases, the speedup ratio is enhanced significantly. 
Oppositely, for small window size kernel, the performance of 
GPSME system is close to that of the CPU implementation.   
 
 

Table 4. Acceleration performance of general applications from industry 

Companies  Applications Platform GPSME  
Speedup 

Manual  
Speedup 

Auto-GPU running 
time 

 
SCS : 
Centerline extraction 

Small 3D Model A 2.11 4.56 78 ms 
B 2.34 4.68 56 ms 

Big 3D model A 3.14 24.38 448 ms 
B 3.25 24.68 128ms 

 
 
IME : 
Centerline extraction 

Denosing filter kernel region 
for single image 

A 6.17 13.25 8.32 s 
B 4.23 7.23 3.91 s 

Whole program for single 
image 

A 4.29 10.56 19.7 s 
B 3.40 7.12 8.28 s 

Denosing filter kernel region 
for image sequence 

A 6.21 13.54 5m 25 s 
B 4.35 7.56 2m 34 s 

Whole program for image 
sequence 

A 4.31 11.23 11m 47 s 
B 3.78 7.34 4 m 48 s 

RotaSoft :  
Feature extraction in augmented reality  

ASFIT algorithm for feature 
extraction 

C 4.76 5.56 14.6 s 
D 8.09 13.6 3.2 s 

AnSmart :  
Eye recognition with morphological filtering 

People Eye 1 (1285 × 751) A 2.91 5.23 847 ms 
People Eye 2 (1279 × 721) A 3.72 6.65 780 ms 
People Eye 3 (640 × 480) A 2.68 6.12 458 ms 
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To sum up, the acceleration ability of the GPSME system is 
outstanding. With necessary code revisions on original CPU 
applications, GPSME system successfully semi-automatically 
converts C/C++ code into either CUDA or OpenCL code. On 
average their applications can be sped up to 3-4x times, even up 
to over 10 times for a high-grade GPU system. Considering that 
the targeted applications are all real-world programs, the overall 
acceleration is very good.  

B. Applicability  
Applicability is another important factor for the GPSME system. 
We expect the system to be applicable to a wide range of 
industrial applications. To this end, we have evaluated the 
GPSME system in a variety of application scenarios.  

Document Segmentation: Large-scale document digitalisation 
is a popular topic for many libraries and museums in recent 
years. It involves a significant amount of document layout 
analysis, region segmentation and text line segmentation. For 
large scale document digitalisation, this is a time-consuming 
task due to the amount of newspapers, magazines and other 
documents required to be scanned at high-resolution on a daily 
basis. We have used dilation and erosion algorithms to process 
some sample newspaper documents images from IMPACT, 
which is the most successful large-scale document digitalisation 
project in the last 10 years. The processed newspaper document 
images are set to be evaluated by a region segmentation method. 
The image resolution is 3595 × 5194. The GPSME system is 
capable of processing C++ code, and the results are shown in 
Table 5. 
Table 5. Document Analysis code evaluation by GPSME 

The evaluation results in Table 5 show that for dilation or 
erosion operators with size over 5 × 5, the GPSME system can 
speed up the application performance up to 1-3 times. For 
dilation or erosion operator on less than 5 × 5 sub-windows, the 
GPU performance is even slower than the CPU performance. 
This phenomenon implies that if the dilation or erosion operator 
is less than 5 × 5 sub-windows, the benefit of GPU acceleration 
is cancelled out by the introduced overheads (e.g. data 
transmission between CPU and GPU) and by other commitment 
introduced on the CPU side, e.g. the extra CPU code employed 
for the purpose of processing the pragmas, etc. 
Sliding Window Image FIlter:  Sliding Window Operation is 
a very popular technique in image processing. Typically, 
Sliding Window Operation repeatedly applies an image filter to 
a predefined small size sub-window that is shifted across a 
target image. This operation involves high computing 
complexity if the image filter contains many loops or iterations 
with high floating-point arithmetic intensity. This particular 
structure fits very well with the GPU date parallel programming 
model. The IME users have implemented several statistic 

measurements for image filter algorithms. Ten typical SWO 
image operators were selected as benchmarks. A high 
resolution image by using different size of sliding windows. 
The size of the evaluated sliding window is respectively given 
as 3×3, 5×5, 7×7, 9×9. The resolution of the evaluated image is 
3325×4765. The baseline is the performance of the original 
CPU code running on conventional hardware without using 
multi-threads. It compares the speedup ratio of the GPSME-
generated CUDA, MINT-generated CUDA and OpenMP over 
this baseline. For the simplicity, here we only demonstrate the 
speedup ratio of the above ten benchmarks with sliding window 
5×5. The results are shown in Figure 7.  

 
Figure. 6. Performance evaluations of the SWO image filters 

Blur moment invariants:  Blur moment invariants are widely 
used in digital image processing. They are functional invariant 
with respect to blur. These blur invariants are employed by 
IME to identify near-duplicated regions in a digital image. This 
is carried out in a few main steps: 1. Tiling the image with 
overlapping blocks, 2. Moment blur invariants representation 
of the overlapped blocks, 3. Principal component 
transformation, 4. K-d tree representation, 5. Blocks and 
neighbours analyses (matching), 6. Near-duplication map 
creation. The image is tiled by overlapping blocks of R × R 
pixels. Blocks slide by one pixel along the image from the 
upper left corner right and down to the lower right corner. The 
total number of overlapped blocks for an image of M × N pixels 
is (M – R + 1) × (N – R + 1). For instance, an image with the 
size of 2000 × 2000 with blocks of size 16 × 16 will produce 
3.940.225 overlapped blocks. The moment blur invariants 
representation for each block is computed separately making 
the run-time of the method too expensive. Thus, this is the part 
that we can accelerate using the GPSME system. The 
experimental results are shown in Table 6. 

Table 6. Blur moment invariant evaluation by GPSME 

 Photos 
Size 

CPU CPU (no 
OpenCV) 

GPU 
Manual 

GPU by 
GPSME 

Speedup 
Ratio 

1000 × 
1000 

70.2s 69.7s 22.56s 23.44s 2.99 

2000 × 
2000 

287.1s 285.5s 90.6s 96.16s 2.98 

3000 × 
3000 

652.1s 647.4s 207.5s 218.0s 2.987 

PRNU estimation in video signals: PRNU stands for photo 
response nonuniformity (PRNU) and it is the key information 
estimated from the video signals enabling us to provide image 

System A (seconds) System B (seconds)  

CPU GPU Times CPU GPU Times Details 

0.26 1.0 0.26 1.3 1.6 0.81 3 × 3 dilation 

1.19 1.2 0.92 4.3 1.9 2.22 5 × 5 dilation 

3.69 1.2 2.92 18.2 2.3 7.87 9 × 9 dilation 

0.24 1.03 0.24 1.5 2.3 0.68 3 × 3 erosion 

1.10 1.0 1.07 5.7 2.1 2.73 5 × 5 erosion 

3.35 1.1 2.87 16.8 2.5 6.62 9 × 9 erosion 
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and video ballistics services. Having a video signal consisting 
of thousands of frames, PRNU is estimated separately for each 
frame, this being very computationally expensive. An essential 
step in estimating PRNU is de-noising the image in every JPEG 
block (compressed block) separately. Moreover, in every block 
we need to compute the residual of the image and its de-noised 
version. This should be done in thousands of frames for an HD 
video. For example, a 1280×720 video of 10 minute length 
having 30 frames per second generates 4.320.000 blocks that 
should be analysed separately. Thus, the need for GPU 
acceleration is obvious. The experimental results are shown in 
Table 7. From Table 7, it appears that the revised CPU 
application by removing the use of the OpenCV library brings 
a significant improvement over the original CPU code (three 
times faster). The machine-generated GPU code can speed up 
the original CPU application about 6-8x. The GPSME system 
is therefore well suited for dealing with this application. 

Table 7. PRNU estimation in video signals evaluation 

 Photos 
Size 

CPU CPU (no 
OpenCV) 

GPU 
Manual 

GPU by 
GPSME 

Speedup 
Ratio 

1000 × 
1000 

0.344s 0.110s 0.143s 0.082s 4.19 

2000 × 
2000 

1.348s 0.434s 0.257s 0.213s 6.32 

3000 × 
3000 

2.988s 0.967s 0.495s 0.451s 6.625 

4000 × 
4000 

5.252s 1.691s 0.821s 0.729s 7.204 

5000 × 
5000 

8.21s 2.624s 1.192s 1.104s 7.436 

6000 × 
6000 

31.43s 9.177s 3.892s 3.760s 8.36 

Support vector machine (SVM): In order to further evaluate 
the applicability of the GPSME system, we have chosen to test 
it on a different class of application, this time from the field of 
machine learning. We have decided on an application for 
handwritten digit recognition, and we chose the support vector 
machine (SVM) as the learning algorithm. Although the 
accuracy of the SVM is good for a multitude of classification 
tasks, its execution time tends to be very high, especially for 
large datasets comprised of large feature sets. We have applied 
the GPSME system in two key stages of the SVM execution: 
the generation of the kernel matrices and the actual SVM 
training. The datasets used was the standard MNIST and the 
Indian Bangla digit dataset. Both datasets are comprised of 
around 10000 training examples, each example being described 
by a feature space with 784 dimensions. The experimental 
results clearly outline the effectiveness of the system, being 
highly close in terms of performance to the highly optimized 
CUBLAS-based GPU-LibSVM implementation, and faster 
than the OpenMP and OpenACC implementations. By having 
a fast GPSME-based implementation we can run several 
simulations for parameter tuning, pushing further also the 
accuracy results. The results are shown in Table.8. 

Table 8. SVM evaluation by GPSME 

SVM 
implementation 

Accuracy 
[%] 

Standard 
deviation[%]  

Time 
[s] 

Dataset/ 
Feature 

OpenMP 97.34 0.45 117.1  
Bangla/ 
Pixel 
features 

LibSVM  96.70 n/a 60.5 
GPU-LibSVM  96.70 n/a 10.5 
PGI 97.34 0.45 36.3 
GPSME 97.34 0.45 17.4 

OpenMP 97.65 0.18 136.1  
MNIST/ 
Pixel 
features 

LibSVM 97.17 n/a 35.5 
GPU-LibSVM 97.17 n/a 7.8 
PGI 97.65 0.18 43.8 
GPSME 97.65 0.18 17.4 

C. Usability and Adaptability  
The usability of GPSME system mainly lies in the friendliness 
of GPSME web-interface. The general users have used the 
GPSME web-interface to upload, convert their C/C++ source 
code, and download the machine generated CUDA or OpenCL 
code. The evaluation procedure involves the test of the server 
functions, user-friendliness, efficiency and accuracy. Most of 
the essential functions stated in the user requirements have been 
achieved by providing the server service. This includes the 
transfer of source codes for analysis, converting CPU source 
code for GPU processing, running performance diagnostics 
with the system, validation of converted source codes and 
creating reports/logs. In addition, the sample files can be 
accessed in the web-interface of the GPSME system after user 
logs in; a reminder message for the private key automatically 
occurs when users log in for their first time; users can add 
pragma by either keying in or using a dialogue box. The 
efficiency of the GPSME system is good. The processing time 
of running the system for each operation is less than 5 seconds, 
which is acceptable by all non-expert GPU users from industry. 
The adaptability of the GPSME system indicates how easily and 
efficiently is for novices to learn how to use the GPSME system. 
GPU programming requires a steep learning curve for novices. 
The GPSME system features a great potential in bringing a 
cost-effective solution for accessing GPU power. The 
evaluation of the adaptability involves four parts, including the 
understanding of loop patterns, algorithmic skeletons, pragmas 
and warning messages. In summary, the adaptability of the 
GPSME system is good. While the understanding of the kernel 
generation pragmas is still hard to new users, the loop pattern 
and algorithm skeleton appear to be easy to understand by users. 
Also, the use of warning messages is well-received by users.  
We also designed a questionnaire to collect feedbacks from 
non-expert GPU users after evaluating the GPSME system. The 
results are shown in Table. 9 

Table 9. Learning and using GPSME system by inexperienced 
GPU users 

  IME  B3C AnSmart Rotasoft 
Understand loop 
pattern 

Easy easy easy easy 

Understand 
Basic pragma  

Easy easy easy easy 

Understand 
advance pragma  

moderate moderate moderate moderate 

Web-interface 
user-friendly  

Yes Yes Yes Yes 

File-editor easy-to-
use 

Yes Yes Yes Yes 

Running 
sufficiently fast  

Yes Yes Yes Yes 

Error and warning 
reporting  

Satisfied Satisfied Satisfied Satisfied 

Code protection Satisfied Satisfied Satisfied Satisfied 
Easy to learn Yes Yes Yes Yes 
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Table 10. Comparision of properties of other CPU-to-GPU tools

D. Competitiveness 
In order to know how the GPSME system behaves compared to 
other CPU-to-GPU translators, we attempt to use MINT, Bones, 
Par4All, OpenACC and OpenMP to evaluate some sample  
codes. We identify a number of typical directive based source 
translators and compare their performance in Table 10. 

OpenACC and PGI are both commercial GPU programming 
tools with stable applicability but not outstanding acceleration 
performance in practical applications. CUDA-lite introduces 
some directives to improve memory hierarchy of CUDA, but it 
cannot directly support C++. 

hiCuda can optimize CUDA code by dealing with global 
memory and transformations to leverage the complex memory 
hierarchy. But it requires users to have some GPU 
programming experience. Compared to hiCuda, MINT is an 
easy-use CPU-to-GPU source translator containing only five 
types of pragmas. It is designed for accelerating stencil 
computations on the NVIDIA GPU. This translator accepts the 
input of C source with some intuitive MINT directives, and then 
generates CUDA C with a speedup performance of up to 10x. 
    The following issues have been observed regarding these 
existing CPU-to-GPU translators. 
• Applications written in C++ cannot be processed by most of 
the above tools. Bones and Par4All do not accept the C++ 
language as an input source, so they cannot process the given 
applications. Meanwhile, Bones is an algorithm skeleton based 
tool with a limited applicability. 
• Secondly, while MINT and OpenMP can be extended to 
support C++ language, it is indispensable to rewrite the original 
CPU code as an acceptable input for each tool. The actions of 
removing the use of external library and breaking up the 
variable dependencies in the parallelized regions are required.  

E. Other issues  
The security requirement aims to protect the source code of the 
general users. The current GPSME web-interface provides a 
user registration system to access the system. It provides the 
registered users with private-keys to view their source code. In 
general the security scheme can satisfy the user requirement to 
protect their code. One issue that needs some further attention 
is that the user password and private key are currently stored 
into the cookie of the browsers unless users delete the cookies. 
The users can also delete their uploaded files. If they do not 
delete their files, these files are encrypted to store on server for 
30 days. After 30 days, the files will be deleted so users have to 
upload the files again if they need. 

In the GPSME system, we use our existing GSWO model [41] 
to determine the size of block and thread. The selection of block 
and thread size here is based on the pragmas: nest, tile and 
chunksize. They are used for indicating the depth of for-loop 

parallelization within a loop nest, specifying how the iteration 
space of a loop nest is to be subdivided into tiles, and 
aggregating logical threads into a single CUDA thread, 
respectively. The size of a CUDA thread block in the GPSME 
project is the same as in MINT: threads (tx/cx, ty/cy,tz/cz). But 
the impact of selected block and thread size on acceleration in 
GSWO model is not as significant as that in MINT. The kernel 
generator in MINT makes all of the parameters in the function 
argument become kernel call parameters and makes all memory 
references through device memory.  

There are a few minor limitations on memory use in GPSME 
project. In the GSWO model, the memory management 
pragmas are not simple for a non-expert to understand and use 
correctly, though they can be successful with a little care. 
Finally, no optimizations of the CUDA kernels in the GSWO 
model are considered in this GPSME. Hence, traditional 
optimization methods that use shared memory or improve 
memory bandwidth cannot be used directly. We will investigate 
using shared memory to improve kernel acceleration in future 
work. 

VII.  CONCLUSION AND FUTURE WORK  

In this paper, we introduced a web-service based CPU-to-GPU 
source translation system, the GPSME system for general 
applications. This system enables inexperienced GPU users to 
take advantage of current GPU capability without having the 
need for a deep understanding of GPUs. The architecture of this 
system is inspired by an advanced programming model, MINT, 
but with some practical extensions and improvements. The 
functionality of GPSME is more generic, with better flexibility 
and applicability for improving the productivity of practical 
applications than conventional automatic CPU-to-GPU 
programming models with purely research purpose. The 
experimental results prove that this tool has an improved 
efficiency and generality in a variety of real world applications. 
We show that it enables non-expert GPU users to flexibly and 
effectively use automatic CPU-to-GPU code translation. This 
allows them to gain great speed performance and help the 
advance of each application domain by allowing for advanced 
computing models with high complexity. However, the 
limitation of this GPSME system is that its kernel generation 
directives are only benefit to the SWO or stencil computing 
based applications. The future work will consider introducing 
new directives to solve this problem. Meanwhile, it is expected 
to be compatible with the existing research tools to optimize the 
GPU performance of this tool.  

 hiCUDA PGI MINT  CUDA-lite GPSME 
Language support C-to-CUDA C/Fortan-to-CUDA C-to-CUDA CUDA-to-CUDA C/C++-to-CUDA/OpenCL 
Easy-use of  
directives 

Complex Very complex  Easy Easy Easy 

Applicability  Good  Outstanding Limited Good Outstanding 
Speedup 
performance 

Good  Good Outstanding  Good Good 

Optimisation 
option 

Use of shared 
memory  

No particular  
one 

Shared memory and 
loop aggregation 

Improved memory 
hierarchy 

Improved memory hierarachy (use 
CUDA Texture) 
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