
This is a repository copy of Improving utility of GPU in accelerating industrial applications
with user-centered automatic code translation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/150871/

Version: Accepted Version

Article:

Yang, P. orcid.org/0000-0002-8553-7127, Dong, F., Codreanu, V. et al. (5 more authors)
(2018) Improving utility of GPU in accelerating industrial applications with user-centered
automatic code translation. IEEE Transactions on Industrial Informatics, 14 (4). pp.
1347-1360. ISSN 1551-3203

https://doi.org/10.1109/tii.2017.2731362

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Reproduced
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

This is a repository copy of Improving Utility of GPU in Accelerating Industrial Applications
With User-Centered Automatic Code Translation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/150871/

Version: Accepted Version

Article:

Yang, P orcid.org/0000-0002-8553-7127, Dong, F, Codreanu, V et al. (5 more authors)
(2018) Improving Utility of GPU in Accelerating Industrial Applications With User-Centered
Automatic Code Translation. IEEE Transactions on Industrial Informatics, 14 (4). pp.
1347-1360. ISSN 1551-3203

https://doi.org/10.1109/tii.2017.2731362

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

 
Abstract—SMEs (Small and medium-sized enterprises),
particularly those whose business is focused on developing
innovative produces, are limited by a major bottleneck on the
speed of computation in many applications. The recent
developments in GPUs have been the marked increase in their
versatility in many computational areas. But due to the lack of
specialist GPU (Graphics processing units) programming skills,
the explosion of GPU power has not been fully utilized in general
SME applications by inexperienced users. Also, existing automatic
CPU-to-GPU code tr anslators are mainly designed for research
purposes with poor user interface design and hard-to-use. Little
attentions have been paid to the applicability, usability and
learnability of these tools for normal users. In this paper, we
present an online automated CPU-to-GPU source translation
system, (GPSME) for inexperienced users to utilize GPU
capability in accelerating general SME applications. This system
designs and implements a directive programming model with new
kernel generation scheme and memory management hierarchy to
optimize its performance. A web-service based interface is
designed for inexperienced users to easily and flexibly invoke the
automatic resource translator. Our experiments with non-expert
GPU users in 4 SMEs reflect that GPSME system can efficiently
accelerate real-world applications with at least 4x and have a
better applicability, usability and learnability than existing
automatic CPU-to-GPU source translators.

Index Terms— Usability, Parallel Computing, GPU, Automatic
Translation

I. INTRODUCTION

MEs, particularly those whose business is focused on
developing innovative products, are subject to many
pressures in maintaining and growing their market share

and ensuring that their products remain competitive in an age
of rapid technological change. In many high-tech fields, users
are experiencing a huge growth in data, with increases in
quantity, in resolution, in variety, etc., while the work often
present significant time constraints on the associated data
processing. This leads to a continual upward pressure on
computational resources and, indeed, the speed of computation
is now a major bottleneck that dramatically limits the
applicability of available technology in many applications in
SMEs.
 The major challenges in many high-tech applications in SMEs
relate to a huge growth in data processing requirements through
increases in quantity, in resolution, in variety etc. demanded by

general applications. Parallel computing techniques [1] have
gained wide popularity among researchers and developers to
overcome these challenges. Many computing tasks exhibit a
parallel nature and are hence suitable for parallel computing.
The concept of parallel computing is to split large problems into
small components and distributing them among multiple
processors. Conventional parallel computing takes place using
multi-core CPUs or via distributed, grid, high performance
computers. The remarkable rise in performance of Graphics
Processing Unit (GPU) [2] in recent years offers a very
attractive alternative, which can handle many demanding tasks
by only harnessing local computing resource in low-cost
computer platforms.
 The most important development in GPUs in recent years has
been the marked increase in their versatility. Their capabilities
are now much more widely applicable and they have become
used in many computational areas - this is known as General
Purpose GPU programming (GPGPU) [3]. OpenCL [4] and
NVIDIA’s CUDA [5] are two mainly widespread GPU parallel
programming languages designed to help users manage GPU
utilization. If the capacities of the GPU are harnessed properly,
the achieved speed-up can be significant. But the parallelization
of CPU code for execution on GPUs is not light and handy to
general users. This process requires an in-depth knowledge of
the complex underlying GPU architecture and the GPU
memory optimization schemes. These skills are still in
relatively short supply to non-expert GPU users. It is highly
desirable to have a cost-effective approach that enables
inexperienced users to easily utilise GPU technology for
accelerating their general applications.
 Automatic CPU-to-GPU source translation technique can be
a candidate to make GPU technology more accessible to the
inexperienced user. To date, numerous automatic CPU-to-GPU
source parallelization translation tools [9-27], including
algorithmic skeleton based [14-16], polyhedral model based [9-
13], or directive based [17-23] have been developed for
academic and commercial use. While their acceleration is
promising, utilizing them by normal users in general real-word
applications is still challenging. Many tools are originally for
research purposes with a non-availability of public-access and
a limited applicability of supporting different algorithm
structures. Simultaneously, the usability and learnability of
these tools are not prospective, since their attentions are mostly
on improving

Improving Utility of GPU in Accelerating
Industrial Applications with User-centred

Automatic Code Translation

S

2

Table 1. Comparison of properties of typical automatic parallelization source translation tools

 Acceleration Applicability Usability Adaptability
PoCC [10] 1x-10x 8 benchmarks C-to-optimized C Open source, programming in Linux
Pluto [11] 2x-12x 13 benchmarks OpenMP to C Open source, programming in Linux
R-Stream [12] >10x Matrix multiplication, Guass Seidal C-to-C (Binary) Non public avaiable source
Par4All [13] 2x-128x 6 benchmarks C-to-CUDA/OpenCL Open source, programming in Linux
SkePu [14] 10x 7 skeletons (map, mapArray, reduce, etc) C-to-CUDA/OpenCL Non public avaiable source
HMPP [25] -10x Multipe types of loops C-to-CUDA/OpenCL Commercial product
Bones [16] 1x-13x 8 benchmarks C-to-CUDA/OpenCL Open source, programming in Linux
CUDA-lite [17] 2x-17x MRI-FHD, TPACF CUDA-to- optimized CUDA Non public avaiable source
hiCUDA [18] -18x 9 benchmarks, MCML C to CUDA Open source, programming in Linux
MINT [19] 10x-16x Stencil computing C to CUDA Open source, programming in Linux
OpenMPC [20] -50x JACOBI, SPMUL OpenMP-to-CUDA Non public avaiable source
PGI [21] 10x Multipe types of loops Fortran, C, C++ to CUDA Commercial product
PPCG [24] 1x-100x 30 benchmarks C to CUDA Open source, programming in Linux

speedup performance rather than making them more accessible
to general users. Also, the diverse types of algorithms and loops
in general applications pose significant challenges towards the
use of these tools. So there are no existing CPU-to-GPU source
translation tools reported in literature to provide an outstanding
solution for non-expert GPU users with reasonable acceleration,
wide applicability, good usability and well learnability. The
motivation of this work is to seek out a solution to satisfy the
above requirements.
 In this paper, we propose a web-service based automated
CPU-to-GPU source translation system, (GPSME) for
inexperienced users to utilize GPU capability in accelerating
general SME applications. We design and implement a
directive based programming model that is capable of carrying
out semi-automatic CPU-to-GPU source-to-source translation
on moderately priced standard GPU cards and off-the-shelf
GPU clusters. A web-service based interface is particularly
designed for inexperienced users to easily and flexibly invoke
the automatic resource translator. Our experiments with non-
expert users from 4 SMEs reflect that GPSME system can
efficiently accelerate general real-world applications with at
least 4x; and also have an improved applicability, usability and
learnability than existing CPU-to-GPU source translation tools.
The main contributions of this paper are below:
 A comprehensive requirement analysis of inexperienced

users for utilizing GPU technology in general SMEs
applications is given. It is benefit to improve the accessibility
and the applicability of existing automatic CPU-to-GPU
source translators in real-world applications.

 A web-service based automated CPU-to-GPU source
translation system, GPSME, is presented and implemented.
This tool introduces a new kernel generation scheme and a
memory management hierarchy to optimize its performance.

 A thorough performance evaluation of GPSME system with
general SMEs applications has been carried out. The results
suggest that the proposed tool can effectively and efficiently
accelerate general real-world applications, and have
improved applicability, usability and learnability over
existing automatic CPU-to-GPU source translation tools
[23-30].

 The rest of the paper is organized as follows. Section 2
reviews notable automatic CPU-to-GPU source translators.
Section 3 analyses the general requirement of inexperienced
GPU users. Section 4 presents the design and implementation
of GPSME system. Section 5 shows the experimental validation
results. Section 6 gives a conclusion and future work.

II. RELATED WORK

A large amount of research has been dedicated to automatic
converting CPU code to GPU code. This section reviews
existing typical automatic parallelization source translators
regarding acceleration, applicability, usability and adaptability.
Polyhedral model [9-10] for performing loop transformations
has been the basis of early attempts for automatic optimization
and parallelization of CPU programs. With the emergence of
GPUs, the polyhedral model is adopted to develop efficient
CPU-to-GPU source translators such as Pluto [11], R-Stream
[12], Par4All [13], and PPCG [24]. They translate source code
with affine loop structures by performing dependency analysis
and loop transformations. These tools normally require little or
no input from the users, and have a promising acceleration
performance; but they have some drawbacks on applicability
and adaptability. R-Stream supports C-to-CUDA compilation
but is not publicly available yet. Pluto automatically generates
CUDA kernel code; but the CUDA host code has to be written
manually by users. Par4All compiler is a public available tool
supporting automatic integrated compilation of applications for
hybrid architectures including GPUs. Yet some restrictions and
code restructuring might be required for reaching a promising
performance.
 Algorithmic skeleton based tools adopt an idea of generating
efficient target code by a specific algorithm class. Examples of
such tools are SkePU [14], SkelCL [15], and Bones [16]. Each
algorithm skeleton is coded as a template of specific algorithm
class on target architecture. These tools have highly optimized
library implementations for classes of algorithms instead of
individual algorithm, as a result of dramatic acceleration.
Algorithmic skeleton and polyhedral model based tools both
have a well usability since they do not require users having deep
GPU knowledge to identify parallel region and memory transfer
in CPU code. Yet, their applicability is relatively narrow and
highly sensitive to the characteristics and data structure of CPU
algorithms. This shortcoming limits their wide acceptances by
general users.
 For the purpose of allowing automatic CPU-to-GPU
translators to be more applicable, directive-based source
translators [17-23] became popular. By using these tools for
generating target GPU code, users only need to provide some
basic annotations about parallelism exploitation and also
annotations that deal with data transfer. CUDA-lite [17]
introduces some directives to improve the memory hierarchy of

3

Table.2. Detailed information of inexperienced GPU users from industry

CUDA by directly inserting the directives into the CUDA code.
hiCUDA [18] provides a set of pragmas mapping to typical
CUDA operations for programmers. CUDA code generated
from hiCUDA is optimized by operating global memory and
transformations to leverage the complex memory hierarchy.
But a prerequisite of hiCUDA is that users have to understand
sufficient GPU knowledge for specifying the threads and thread
blocks. OpenMPC [20] project proposes a Cetus compiler
framework for translating standard OpenMP shared-memory
programs into CUDA-based GPGPU programs. Despite the
significant speedup of OpenMPC, its adoption was slowed by a
manual revision of input source as OpenMP programs.
Similarly, PGI compiler [21] accelerates applications written in
C++ by adding standard OpenACC [22] directives; But its
pragmas are far too complex, and the GPGPU code it outputs is
almost unreadable (since PGI is designed as a compiler instead
of a source-to-source translator). Besides, MINT [19] is a very
easy-to-use C-to-CUDA source translator containing only five
types of pragmas. It is designed for speedup stencil
computations on NVIDIA GPUs only. This translator accepts C
source input with some intuitive MINT directives to generate
highly optimized CUDA C which may produce performance
gains of up to 10x. Directive-based tools have a better
applicability in dealing with complex CPU algorithms due to
their flexibility of adding annotations in the CPU source code.
However, their usability is not very good, since users have to
identify the parallelization region and manage the complex
memory hierarchy by themselves. Also, hard-learning
directives and unreadable output code in the tools increase the
difficulties for inexperienced users to harness them.

III. REQUIREMENT ANALYSIS

This section identifies and analyses general expectations of
inexperienced GPU users on an automatic CPU-to-GPU source
translator for accelerating their applications. The participated
users are from four companies in the EU funded project
GPSME [29]: Imagemetry Ltd (IME) [30], Biocomputing
Competence Centre (B3C) [31], Rotasoft [32] and AnSmart
[33]. Their products involve a wide applicable area including
Image forgery detection, augmented reality book and virtual
physiological human. Table.2 illustrates the applicable area of
each company and the problem they face. For collecting a
general requirement of their non-expert GPU users, IME Ltd
communicated with the other three companies and collected
their feedbacks in three months through emails or project
meetings. Inexperienced GPU users have some common
objectives such as:

 No need on having an in-depth understanding of GPUs
 Full or semi-automatic CPU-to-GPU source

translation
 Support C++ programming language

 Support either CUDA or OpenCL
 Efficient speedup performance and no accuracy loss
 Source code protection
 Report the system process and error diagnostics

Regarding the above general objectives, it appears that existing
CPU-to-GPU source translators in Table.1 hardly satisfies the
full needs.
Non-expert GPU users expect a system that enables them to
quickly take advantage of current GPU capability to effectively
and economically speed up their products. In terms of this goal,
an explicit requirement analysis of their expectations on this
system is given as below:
 Acceleration: They expect their general CPU applications

to be accelerated significantly on moderate hardware
platforms. Non-expert GPU users are more interested in
actual time saved in their applications instead of a high
speed-up ratio of GPU over CPU. However, existing CPU-
to-GPU translators focus more on the improvement of their
speed-up ratio for reflecting their parallel efficiency. Their
acceleration results are mostly achieved by running simple C
code samples though a high-level GPU hardware. Their
utilization in practical applications cannot reach and can
even decrease the performance since some indispensable
CPU source code revisions are required. So the acceleration
capability of the GPSME system in this paper need be
evaluated by practical applications, and not only the sample
code for the parallel region.

 Applicability : They look forward to a system with wide
applicability, which can solve time-consuming problems in
various types of products. Among the existing CPU-to-GPU
translators, algorithm skeleton based tools like Bones [16]
has limited classes so they cannot support the applications
with complex or diverse loop types. Directive-based tools
like OpenMP [20], hiCuda [18] and PGI [21] have wide
applicability guaranteed by flexible usage of standard
pragmas. But the understanding and learning of these
pragmas become hard tasks for non-expert users. There has
to be a trade-off of these tools between applicability and
directive complexity. The directives of GPSME system have
to be simple but enable supporting all types of algorithms
skeleton and loop patterns from their general applications.

 Usability: Inexperienced GPU users have strong demands
on usability of the GPSME system. First, the input and
output languages are essentially to support C/C++ and
CUDA/ OpenCL. Second, they suggest using a web-service
interface to achieve a cross-platform (Windows and Linux)
usage of code translation. A user file management system
with source code protection scheme is required for this
interface. Among existing CPU-to-GPU source translators,
most of their interface are C-to-CUDA based command line
tools under Linux. A system with better usability for non-
expert GPU users is expected.

 Langauge Product Area Problem
IME C++ Image forgery detection Time consuming task in detecting suspicious and altered parts of the image or video.
B3C C++ Virtual physiological human Many VPH applications are computationally demanding.
ROTA C++ Augmented reality book Imge processing speed in real time AR books.
AnSmart C++ Eye Tracking Medical image analysis in diagnosising eye diseases.

4

 Adaptability: The easy-to-learn nature of the tool is
paramount to inexperienced GPU users. GPU technology
and programming skills are hard to grasp. The existing CPU-
to-GPU source translators still need users to study the usage
of the directives. In fact, the simplicity of the directives is
crucial to the adaptability of the system. This paper aimed to
design simple, flexible and efficient directives.

IV. GPSME SYSTEM OVERVIEW

GPSME system is a deliverable of the GPSME [29] EU funded
project. The significance of this tool distinguishing from other
CPU-to-GPU source translators is that relatively much attention
has been paid to the usability and adaptability. Also, driven by
the potential difficulties of having a local GPSME installation
and the increased visibility of the system, access to GPSME
system through a remote web server is more suggested. The
main system architecture of the GPSME system includes two
components: GPSME web-interface and GPSME core library.
The communication between these two components is handled
through a web-service. Though the web-interface,
inexperienced GPU users can upload their CPU source files;
execute translations by invoking the core library; and download
the generated GPU source files.

A. GPSME Web Interface
GPSME web-interface is designed and implemented using the
ExtJS framework for providing appearance and user experience
close to desktop applications. The web application of GPSME
includes file explorer, rich text editor, interactive help system
and tabbed information windows. Also, it encrypts users’ code
to protect their intelligent properties and facilitates a translation
of users’ source code, not needing anything related to the
system locally installed on the users’ machines. The GPSME
web interface is presented in in Figure.1.

Fig. 1. GPSME web interface

The typical usage of the GPSME web application is as follows:
• The user creates an account with his/her details.
• The user uploads C/C++ source file and necessary header files.
• The user selects the desired output type and initiates the code
translation process.

• It takes a few seconds for the GPSME web server to process
the user files. If success, the results can be retrieved under the
‘Processed files’ tab.
The user does not run the system locally on a Linux machine
but will be instead making use this remote web server.
• If CPU source code has an external dependency then it must
be presented or installed on the remote webserver (in addition
to user’s local machine). Users need to contact the server
administrator to get the dependencies installed if so required.
• When uploading a C++ file for parallelisation users must also
upload any of their own headers on which the C++ file is
dependent. It is assumed that these belong in the same directory
as the C++ source file, so users avoid deep paths in their
#include statements.

B. GPSME Core Library

The design of GPSME core library is inspired by MINT [19],
which is developed on Linux by using the ROSE compiler
framework [34] at Lawrence Livermore National Laboratory.
ROSE provides an open source compiler with API to develop
customized source-to-source translators for performing code
transformations, analyses and optimizations. The structure of
GPSME core library is similar to MINT [19] but with some
extended components. The system structure and translation
flow of implementing the core library is illustrated in Figure.2.

Fig. 2. Structure of GPSME core library

The input of GPSME system is a set of C/C++ source files
annotated with GPSME directives. Once source files are read,
the ROSE frontend constructs an Abstract Syntax Tree (AST).
The core library traverses the AST and queries parallel regions
containing data parallel for loops. The Identifier is responsive
to identify and classify loop pattern, variables and device
information from the AST. Regarding the identifications, the
Analyser and the Optimizer investigate the possibility of using
predefined approaches in GPSME system for

5

Table 3. Listing of GPSME directives (some are inherited from and MINT [19])

AST transformations. The Translator adopts similar rules in
MINT Baseline Translator to perform transformations on the
AST. But it enhances the functionalities of MINT, whose
details are presented in section I. GPSME core library supports
both CUDA and OpenCL code by unparsing the transformed
AST. Due to the similar code generation procedure between
CUDA and OpenCL, this paper mainly discusses the generation
of CUDA code using the GPSME core library.

C. Interaction
The interaction between GPSME web application and GPSME
core library is designed and implemented by utilizing the
jQuery Framework and Java Servlet. At the server side,
RESTful web-services are deployed to Tomcat 7 servlet
container for handling the AJAX requests including file upload,
edit and execute. Figure 3 illustrates an interactive workflow
between GPSME web interface and core library at GPSME
server.

Fig. 3. Interaction between GPSME web interface and core library

In Figure.3, users firstly register and upload their source files
though GPSME web interface. They receive a private key for

decrypting uploaded source files in their emails. The public key
was generated and stored in server database for encrypting
uploaded source files. Users need key in a correct private key
to display, edit, save or translate the source files. In code
process, an AJAX request will be sent to the REST service end
point and invoke the GPSME core library to execute command
line tools. Once execution finished, the outputted files and log
files are collected and returned to GPSME web interface. User
can view the diagnosis and error reporting information and
download the CUDA or OpenCL source files. Meanwhile,
some sample codes and tutorials are provided in web interface
for users to learn and experience.

D. GPSME Directives
In MINT [19], five types of different directives are employed
for three main tasks: a) Identification of parallel region. b)
Memory management. c) Kernel generation. The MINT for
directives in MINT is the most important since it identifies a
parallel for loop nest and helps guide optimization and
generation of kernel code. The MINT copy directives help users
manage the separate host and device memory space. However,
the utilization of MINT in general applications faces to three
challenges below:

 The MINT directives indicating parallel regions and kernel
regions are too simple to use for complicated algorithms. The
directive parallel marking a parallel region must be located
immediately behind the directive copy. It cannot handle
algorithms in which users need to insert source code between
these two directives.

 The copy directives combining memory allocation and data
transfer is too extensive to support high level storage setup
and management. Particularly, in practical applications, it
requires separating the operations of memory allocation and
data transfer to allow the reuse of the allocated memory for
data transfer.

 The MINT kernel generation directives only support stencil
computing. Many algorithm skeletons in general
applications are beyond stencil computing, which hardly
copy with by MINT kernel.

 Directives Descriptions

Basic pragma

Parallel (MINT) To identify a region generating a kernel function
For (MINT) To mark the succeeding “for” loop for GPU acceleration
Single (MINT) To indicate serial regions in the GPSME
Parallel region

To identify a parallel region containing parallel work

Memory
Management

Copy (MINT) To express the declaration, allocation, data transfers between the host and device
CopyByTexture To create a CUDA texture on a device, and bind or unbind with 2D data
CopyMalloc1DArray To create a CUDA array on a device, associating it with a CUDA texture on the device
CopyMemcopy2D To create a CUDA cudamemcpy2D function to copy a matrix between CPU and GPU memory
CopyMemcopy2DToArray To create a CUDA function cudaMemcpy2DToArray to copy data between CPU and GPU memory
CopyBindTexture To bind the created texture memory to a CUDA global array
Copy2DArrayTo1DArray

To convert the array with different dimensions on the CPU memory buffer

Kernel
Generation

For, nest, tile, chunksize (MINT) To generate CUDA kernel for each parapllel “for” loop with given thread blocks and threads.

Initialisation To define a one dimensional array for storing the data in a sliding window
Transfer To transform the code of putting the data in a sliding window into a local variable within a “For”

loop
Remain To transform the operations on a sliding window from CPU algorithm to the GPU kernel.
Assign To assign the new data to the relevant GPU buffer with the correct index.

6

For overcoming the limits to MINT directives, the design of
GPSME directives consider the practical requirements in
section 2. The detailed information of GPSME directives are
reported in our early work on GSWO programming model [37].
First, the basic GPSME directives are inherited from MINT as
shown in Table.3. The primary extension of GPSME directives
is that its memory management directives have an enhanced
hierarchy. GPSME introduces a set of memory management
pragmas to control GPU memory allocation, CPU-to-GPU
memory transfer and CPU memory conversion, respectively. It
also provides pragmas to allow for the use of texture memory
(in addition to the use of global memory). These new pragmas
bring the flexibility and effectiveness to memory management
that is needed in general applications for image processing.
Also, GPSME introduces a set of newly defined kernel
generation directives. These were designed for Sliding Window
Operations based image processing applications by following a
typical procedure, which contains initiation, transfer, remain
and assign. They are simple and can be applied to all types of
parallelizable operations in sliding windows. Our experiments
showed that using GPSME directives provides a significant
improvement in usability and productivity when compared with
other CPU-to-GPU translators.
The final improvement of GPSME directives is that it extends
the directive parallel of MINT into two directives parallel and
parallel region to distinguish the kernel region from the parallel
region. The parallel region indicates the start of a parallel
region containing the CPU source code for parallelization,
whereas the parallel marks a loop for generating a GPU kernel
function. This extension is highly similar to the directives
parallel and kernels in the OpenACC standard, but is less
complicated and more easy to use by non-expert GPU users.
With these two directives, the GPSME system can support more
complicated algorithmic structures than MINT.

V. KEY ENHANCEMENTS

The GPSME system has some functional extensions to MINT
[19], including C++ and multi-file support, preliminary
OpenCL output, and a user-friendly interface. Besides, some
key enhancements on improving its acceleration capability and
applicability were also implemented.

A. Supporting Triangular Loops

In earlier work [35], GPSME system with original MINT kernel
was applied to the PolyBench [23] benchmarking suite in order
to assess the resulting performance increase. During this
process, the lack of support for triangular loops was identified
as an inhibiting factor of the auto-parallelization process. MINT
kernel was still able to process the outermost loop but this
yielded significantly lower performance that that which was
theoretically obtainable.
An example of such a problematic triangular loop is shown in
Table.4, and the iteration space is depicted visually in Figure.4.
Note how the initial value of j2 in the inner loop is dependent
on the current value of j1 in the outer loop. Mint was still able
to process the input code but generated a non-compilable output

which attempted to make use of variables prior to their
declaration.
GPSME have therefore implemented triangular loop support as
an extension to the MINT. We define a rectangular iteration
space over the full range of values which j1 and j2 can assume,
and then overlay a grid of CUDA thread blocks. The CUDA
kernel checks whether the current iteration does indeed fall
within the triangular part of the iteration space, and skips
execution if this test fails.

Table.4. Example of problematic triangular loop

Algorithm
1: #pragma mint copy(data,toDevice, M, N)
2: #pragma mint copy(mean,toDevice, M)
3: #pragma mint copy(symmat,toDevice, M, N)
4: #pragma mint parallel
5: {
6: ... //Some code omitted for brevity
7: #pragma mint for nest(2) tile(16, 16)
8: for (j1 = 0; j1 < M; j1++)
9: {
10: for (j2 = j1; j2 < M; j2++)
11: {
12: ... //Some code omitted for brevity
13: }
14: }
15: }
16: #pragma mint copy(symmat,fromDevice, M, N)

With this in mind, a thread block can be categorized as being in
one of three states with respect to the number of threads which
need to execute:
 Full: All threads are part of the triangular iteration space

and must be executed. No processing capability is wasted
in this scenario.

 Empty: None of the threads are part of the triangular
iteration space. All threads will fail the membership test
implemented in the kernel and return immediately.

 Half-full: In this case the running time of the thread block
is determined by the threads which do need to run. Threads
which do not need to run must still wait upon those that do,
and this represents some wasted processing capability.

Fig. 4. Iteration space of the two-level covariance loop

7

This approach has yielded a performance increase greater than
that which was obtained from OpenACC, and more than 30
times greater than that which was obtained from the original
Mint. The proportion of half-full blocks decreases as the
problem size increases, which limits the impact of the GPU's
relatively poor performance in the presence of divergent
operations.
GPSME system has evaluated the triangular loop support on a
sample CPU code for the computation of colon centerlines to
be used for the purpose of virtual endoscopy. When running on
the CPU, the provided code took approximately five minutes to
fully process a CT dataset with a resolution of 512x512x512
voxels. This code was optimised prior to GPUification such that
it ran in 48 seconds on a single core. The GPSME system was
then able to achieve a three-fold speed increase bringing the
execution time down to 17 seconds, which was comparable to
the 15 seconds taken by the four-core CPU version. A manual
implementation was able to further decrease the runtime to only
1.2 seconds [36].
While the GPSME system was effective in parallelizing this
application, the main problem was the large memory usage. Our
manual implementation was able to be much smarter about the
allocation and copying of memory which led to a significant
speed increase. However, this manual implementation did take
several days of work, whereas the auto-parallized version only
took one hour to add the directives and perform some minor
debugging.

B. Single-dimensional vs Multi-dimensional Arrays
Another improvement to the GPSME system is that it adds
more optimization opportunities when applied to code that use
multi-dimensional arrays. The optimizations are in terms of
better register reuse, as well as better shared memory usage.
This assumption was evaluated on some of the Polybench tests
[26]. For the 2MM and SYR2K tests, a further 25%
performance increase is obtained when using two-dimensional
addressing instead of the default flattened array addressing.
The changes from single-dimensional to multi-dimensional
array accesses were done in a manual manner, as in Polybench
all tests are written with flattened array accesses. However, with
extra hints from the programmer the GPSME system should be
able to treat the single dimensional arrays as multi-dimensional
ones. An interesting observation is that when faced with the
same two-dimensional arrays in the 2MM and SYR2K tests, the
OpenACC compiler reports more than two times worse
performance. The reasons for this are not currently clear and
will be the subject of some future investigation.

 C. Kernel generation scheme for SWO

Considering the limitation of MINT kernel generation, another
kernel generation scheme in GPSME system is designed into
our early work (GSWO model [37]) to orchestrate the GPU
kernel code generation. Figure.5 shows an example workflow
of the kernel generation scheme for median filter. We have
designed new “single” pragmas for kernel code generation, four
of which are defined below.

 Single Initialisation: generates CUDA kernel code that
defines a 1D array with size I×J for storing the data in the
sliding window.

 Single Transfer generates CUDA kernel code to transfer the
data of the sliding window into the 1D array defined in the
Single Initialisation directive.

 Single Remain generates CUDA kernel code that
corresponds to the operations on the sliding window.

 Single Assign generates CUDA kernel code that copies the
processed data in the sliding window to the relevant GPU
buffer obtained via the thread and block IDs.

Figure. 5. Working flow of Kernel Generation Pragmas

VI. PERFORMANCE EVALUATION

In this section, the effectiveness of the GPSME system is
evaluated on the general applications of four companies from
the GPSME project [29]. The evaluation methodology used in
this paper is based on the measurement of acceleration ratio
between GPU and CPU performance without losing the original
algorithm’s accuracy. The baseline is the performance of the
original CPU code running on conventional hardware without
using multi-threading. The evaluation platforms were: (a) Intel
Core i7-2670QM CPU and NVIDIA GeForce GT 540M; (b)
Intel Core i7-3770K CPU and NVIDIA GeForce GTX 690; (c)
Intel Core i3-2.1GHz CPU and NVIDIA GeForce GT 520M;
(d) Intel Core i7-3.4GHz CPU and NVIDIA GeForce GTX
680M; All GPU implementations used NVIDIA GPU SDK
version 4.1. OpenMP programs were compiled using Visual
Studio 2008, and all computation used double precision.

8

A. Acceleration Performance

Acceleration is the most important indicator reflecting the
performance of the GPSME system. In order to evaluate this,
we have compared the execution performance of the original
CPU code, the GPSME system generated GPU code, and the
manually-generated GPU code. The original CPU codes were
provided by inexperienced GPU users from their general
applications. They were revised by the users in order to be
processed by the GPSME system. The system generated the
machine-generated GPU codes. To better represent the
performance of the generated GPU code, we have also
performed the CPU to GPU code conversion manually. The
acceleration performance is shown in Table. 4.
SCS: The application from SCS is centerline extraction for a
given 3D model. The code from SCS is based on C++, and also
calls VTK functions for centerline extraction. The performance
gain from the use of the system is shown in Table.4. It appears
that the GPSME system can accelerate the application from
B3C up to 2-3 times on average, dependent on the GPU devices
used.
IME: The application from IME is to produce a camera
fingerprint by applying de-noising methods to a set of images
that are known to come from a given camera. The sample code
from IME are based on C++, and aims at implementing a 3×3
median filter for de-noising. The image resolution is 3648 ×
2736. The number of images is 39. The algorithm splits the
images into a number Region of Interests (ROIs), which can be
processed in parallel. Table 5 shows the performance gain from
the use of the GPSME system.
It shows that the accuracy of the IME application delivered by
the GPU implementation and the CPU implementation is
exactly the same, which means that the machine generated GPU
implementation does not negatively impact the camera
fingerprint application. Secondly, it appears that on average the
GPSME system accelerates the performance with up to 3-4
times. If only considering the acceleration of the kernel region,
the speedup performance can achieve execution times of up to
6 times shorter than the original CPU application. This proves

that the GPU kernel implementation is certainly capable of
speeding up the CPU code in the parallel regions.
ROTA: The application from Rotasoft uses the highly
viewpoint-invariant ASIFT algorithm for feature extraction in
augmented reality applications. Rotasoft has successfully
evaluated the ASIFT implementations on their own dataset. The
matching accuracy of the GPU implementation is almost the
same as the original CPU implementation. After using GPSME
system, the performance of the application is greatly increased,
as shown in Table. 6. It appears that GPSME system accelerates
the whole application up to 6x times for a lower grade system,
and up to 13.6x for a high performance system.
AnSmart: The application from AnSmart is to use
morphological filter to detect the eye’s region position in a
video. While OpenCV provides some functions to detect the
position of eye regions, the performance is limited by a variety
of issues, such as the lighting, the head position, other noise,
etc. Therefore, AnSmart develops some own morphological
filter based algorithms to segment the eye regions from videos.
The morphological filter relies on the repeated use of dilation
and erosion operations on a binary image. However, the
repeated use of dilation and erosion is a quite time-consuming
task, particularly for high resolution image with large sizes of
window kernels. The GPSME system is capable of successfully
accelerating the performance of morphological filters. The
results are as shown in Table.7. It appears that the GPSME
system can effectively speed up the morphological filtering for
the AnSmart eye detection algorithm with up to 3 times. The
times of repeating the operations of dilation and erosion will
impact the acceleration performance of GPSME system. If the
times for the dilation and erosion operations are increased, the
acceleration performance will be better. Another issue is that
the window size of the running kernel could impact the
acceleration performance. Due to the image resolution, a 9*9
morphological kernel is used in this case. If the window size
increases, the speedup ratio is enhanced significantly.
Oppositely, for small window size kernel, the performance of
GPSME system is close to that of the CPU implementation.

Table 4. Acceleration performance of general applications from industry

Companies Applications Platform GPSME
Speedup

Manual
Speedup

Auto-GPU running
time

SCS :
Centerline extraction

Small 3D Model A 2.11 4.56 78 ms
B 2.34 4.68 56 ms

Big 3D model A 3.14 24.38 448 ms
B 3.25 24.68 128ms

IME :
Centerline extraction

Denosing filter kernel region
for single image

A 6.17 13.25 8.32 s
B 4.23 7.23 3.91 s

Whole program for single
image

A 4.29 10.56 19.7 s
B 3.40 7.12 8.28 s

Denosing filter kernel region
for image sequence

A 6.21 13.54 5m 25 s
B 4.35 7.56 2m 34 s

Whole program for image
sequence

A 4.31 11.23 11m 47 s
B 3.78 7.34 4 m 48 s

RotaSoft :
Feature extraction in augmented reality

ASFIT algorithm for feature
extraction

C 4.76 5.56 14.6 s
D 8.09 13.6 3.2 s

AnSmart :
Eye recognition with morphological filtering

People Eye 1 (1285 × 751) A 2.91 5.23 847 ms
People Eye 2 (1279 × 721) A 3.72 6.65 780 ms
People Eye 3 (640 × 480) A 2.68 6.12 458 ms

9

To sum up, the acceleration ability of the GPSME system is
outstanding. With necessary code revisions on original CPU
applications, GPSME system successfully semi-automatically
converts C/C++ code into either CUDA or OpenCL code. On
average their applications can be sped up to 3-4x times, even up
to over 10 times for a high-grade GPU system. Considering that
the targeted applications are all real-world programs, the overall
acceleration is very good.

B. Applicability
Applicability is another important factor for the GPSME system.
We expect the system to be applicable to a wide range of
industrial applications. To this end, we have evaluated the
GPSME system in a variety of application scenarios.

Document Segmentation: Large-scale document digitalisation
is a popular topic for many libraries and museums in recent
years. It involves a significant amount of document layout
analysis, region segmentation and text line segmentation. For
large scale document digitalisation, this is a time-consuming
task due to the amount of newspapers, magazines and other
documents required to be scanned at high-resolution on a daily
basis. We have used dilation and erosion algorithms to process
some sample newspaper documents images from IMPACT,
which is the most successful large-scale document digitalisation
project in the last 10 years. The processed newspaper document
images are set to be evaluated by a region segmentation method.
The image resolution is 3595 × 5194. The GPSME system is
capable of processing C++ code, and the results are shown in
Table 5.
Table 5. Document Analysis code evaluation by GPSME

The evaluation results in Table 5 show that for dilation or
erosion operators with size over 5 × 5, the GPSME system can
speed up the application performance up to 1-3 times. For
dilation or erosion operator on less than 5 × 5 sub-windows, the
GPU performance is even slower than the CPU performance.
This phenomenon implies that if the dilation or erosion operator
is less than 5 × 5 sub-windows, the benefit of GPU acceleration
is cancelled out by the introduced overheads (e.g. data
transmission between CPU and GPU) and by other commitment
introduced on the CPU side, e.g. the extra CPU code employed
for the purpose of processing the pragmas, etc.
Sliding Window Image FIlter: Sliding Window Operation is
a very popular technique in image processing. Typically,
Sliding Window Operation repeatedly applies an image filter to
a predefined small size sub-window that is shifted across a
target image. This operation involves high computing
complexity if the image filter contains many loops or iterations
with high floating-point arithmetic intensity. This particular
structure fits very well with the GPU date parallel programming
model. The IME users have implemented several statistic

measurements for image filter algorithms. Ten typical SWO
image operators were selected as benchmarks. A high
resolution image by using different size of sliding windows.
The size of the evaluated sliding window is respectively given
as 3×3, 5×5, 7×7, 9×9. The resolution of the evaluated image is
3325×4765. The baseline is the performance of the original
CPU code running on conventional hardware without using
multi-threads. It compares the speedup ratio of the GPSME-
generated CUDA, MINT-generated CUDA and OpenMP over
this baseline. For the simplicity, here we only demonstrate the
speedup ratio of the above ten benchmarks with sliding window
5×5. The results are shown in Figure 7.

Figure. 6. Performance evaluations of the SWO image filters

Blur moment invariants: Blur moment invariants are widely
used in digital image processing. They are functional invariant
with respect to blur. These blur invariants are employed by
IME to identify near-duplicated regions in a digital image. This
is carried out in a few main steps: 1. Tiling the image with
overlapping blocks, 2. Moment blur invariants representation
of the overlapped blocks, 3. Principal component
transformation, 4. K-d tree representation, 5. Blocks and
neighbours analyses (matching), 6. Near-duplication map
creation. The image is tiled by overlapping blocks of R × R
pixels. Blocks slide by one pixel along the image from the
upper left corner right and down to the lower right corner. The
total number of overlapped blocks for an image of M × N pixels
is (M – R + 1) × (N – R + 1). For instance, an image with the
size of 2000 × 2000 with blocks of size 16 × 16 will produce
3.940.225 overlapped blocks. The moment blur invariants
representation for each block is computed separately making
the run-time of the method too expensive. Thus, this is the part
that we can accelerate using the GPSME system. The
experimental results are shown in Table 6.

Table 6. Blur moment invariant evaluation by GPSME

 Photos
Size

CPU CPU (no
OpenCV)

GPU
Manual

GPU by
GPSME

Speedup
Ratio

1000 ×
1000

70.2s 69.7s 22.56s 23.44s 2.99

2000 ×
2000

287.1s 285.5s 90.6s 96.16s 2.98

3000 ×
3000

652.1s 647.4s 207.5s 218.0s 2.987

PRNU estimation in video signals: PRNU stands for photo
response nonuniformity (PRNU) and it is the key information
estimated from the video signals enabling us to provide image

System A (seconds) System B (seconds)

CPU GPU Times CPU GPU Times Details

0.26 1.0 0.26 1.3 1.6 0.81 3 × 3 dilation

1.19 1.2 0.92 4.3 1.9 2.22 5 × 5 dilation

3.69 1.2 2.92 18.2 2.3 7.87 9 × 9 dilation

0.24 1.03 0.24 1.5 2.3 0.68 3 × 3 erosion

1.10 1.0 1.07 5.7 2.1 2.73 5 × 5 erosion

3.35 1.1 2.87 16.8 2.5 6.62 9 × 9 erosion

10

and video ballistics services. Having a video signal consisting
of thousands of frames, PRNU is estimated separately for each
frame, this being very computationally expensive. An essential
step in estimating PRNU is de-noising the image in every JPEG
block (compressed block) separately. Moreover, in every block
we need to compute the residual of the image and its de-noised
version. This should be done in thousands of frames for an HD
video. For example, a 1280×720 video of 10 minute length
having 30 frames per second generates 4.320.000 blocks that
should be analysed separately. Thus, the need for GPU
acceleration is obvious. The experimental results are shown in
Table 7. From Table 7, it appears that the revised CPU
application by removing the use of the OpenCV library brings
a significant improvement over the original CPU code (three
times faster). The machine-generated GPU code can speed up
the original CPU application about 6-8x. The GPSME system
is therefore well suited for dealing with this application.

Table 7. PRNU estimation in video signals evaluation

 Photos
Size

CPU CPU (no
OpenCV)

GPU
Manual

GPU by
GPSME

Speedup
Ratio

1000 ×
1000

0.344s 0.110s 0.143s 0.082s 4.19

2000 ×
2000

1.348s 0.434s 0.257s 0.213s 6.32

3000 ×
3000

2.988s 0.967s 0.495s 0.451s 6.625

4000 ×
4000

5.252s 1.691s 0.821s 0.729s 7.204

5000 ×
5000

8.21s 2.624s 1.192s 1.104s 7.436

6000 ×
6000

31.43s 9.177s 3.892s 3.760s 8.36

Support vector machine (SVM): In order to further evaluate
the applicability of the GPSME system, we have chosen to test
it on a different class of application, this time from the field of
machine learning. We have decided on an application for
handwritten digit recognition, and we chose the support vector
machine (SVM) as the learning algorithm. Although the
accuracy of the SVM is good for a multitude of classification
tasks, its execution time tends to be very high, especially for
large datasets comprised of large feature sets. We have applied
the GPSME system in two key stages of the SVM execution:
the generation of the kernel matrices and the actual SVM
training. The datasets used was the standard MNIST and the
Indian Bangla digit dataset. Both datasets are comprised of
around 10000 training examples, each example being described
by a feature space with 784 dimensions. The experimental
results clearly outline the effectiveness of the system, being
highly close in terms of performance to the highly optimized
CUBLAS-based GPU-LibSVM implementation, and faster
than the OpenMP and OpenACC implementations. By having
a fast GPSME-based implementation we can run several
simulations for parameter tuning, pushing further also the
accuracy results. The results are shown in Table.8.

Table 8. SVM evaluation by GPSME

SVM
implementation

Accuracy
[%]

Standard
deviation[%]

Time
[s]

Dataset/
Feature

OpenMP 97.34 0.45 117.1
Bangla/
Pixel
features

LibSVM 96.70 n/a 60.5
GPU-LibSVM 96.70 n/a 10.5
PGI 97.34 0.45 36.3
GPSME 97.34 0.45 17.4

OpenMP 97.65 0.18 136.1
MNIST/
Pixel
features

LibSVM 97.17 n/a 35.5
GPU-LibSVM 97.17 n/a 7.8
PGI 97.65 0.18 43.8
GPSME 97.65 0.18 17.4

C. Usability and Adaptability
The usability of GPSME system mainly lies in the friendliness
of GPSME web-interface. The general users have used the
GPSME web-interface to upload, convert their C/C++ source
code, and download the machine generated CUDA or OpenCL
code. The evaluation procedure involves the test of the server
functions, user-friendliness, efficiency and accuracy. Most of
the essential functions stated in the user requirements have been
achieved by providing the server service. This includes the
transfer of source codes for analysis, converting CPU source
code for GPU processing, running performance diagnostics
with the system, validation of converted source codes and
creating reports/logs. In addition, the sample files can be
accessed in the web-interface of the GPSME system after user
logs in; a reminder message for the private key automatically
occurs when users log in for their first time; users can add
pragma by either keying in or using a dialogue box. The
efficiency of the GPSME system is good. The processing time
of running the system for each operation is less than 5 seconds,
which is acceptable by all non-expert GPU users from industry.
The adaptability of the GPSME system indicates how easily and
efficiently is for novices to learn how to use the GPSME system.
GPU programming requires a steep learning curve for novices.
The GPSME system features a great potential in bringing a
cost-effective solution for accessing GPU power. The
evaluation of the adaptability involves four parts, including the
understanding of loop patterns, algorithmic skeletons, pragmas
and warning messages. In summary, the adaptability of the
GPSME system is good. While the understanding of the kernel
generation pragmas is still hard to new users, the loop pattern
and algorithm skeleton appear to be easy to understand by users.
Also, the use of warning messages is well-received by users.
We also designed a questionnaire to collect feedbacks from
non-expert GPU users after evaluating the GPSME system. The
results are shown in Table. 9

Table 9. Learning and using GPSME system by inexperienced
GPU users

 IME B3C AnSmart Rotasoft
Understand loop
pattern

Easy easy easy easy

Understand
Basic pragma

Easy easy easy easy

Understand
advance pragma

moderate moderate moderate moderate

Web-interface
user-friendly

Yes Yes Yes Yes

File-editor easy-to-
use

Yes Yes Yes Yes

Running
sufficiently fast

Yes Yes Yes Yes

Error and warning
reporting

Satisfied Satisfied Satisfied Satisfied

Code protection Satisfied Satisfied Satisfied Satisfied
Easy to learn Yes Yes Yes Yes

11

Table 10. Comparision of properties of other CPU-to-GPU tools

D. Competitiveness
In order to know how the GPSME system behaves compared to
other CPU-to-GPU translators, we attempt to use MINT, Bones,
Par4All, OpenACC and OpenMP to evaluate some sample
codes. We identify a number of typical directive based source
translators and compare their performance in Table 10.

OpenACC and PGI are both commercial GPU programming
tools with stable applicability but not outstanding acceleration
performance in practical applications. CUDA-lite introduces
some directives to improve memory hierarchy of CUDA, but it
cannot directly support C++.

hiCuda can optimize CUDA code by dealing with global
memory and transformations to leverage the complex memory
hierarchy. But it requires users to have some GPU
programming experience. Compared to hiCuda, MINT is an
easy-use CPU-to-GPU source translator containing only five
types of pragmas. It is designed for accelerating stencil
computations on the NVIDIA GPU. This translator accepts the
input of C source with some intuitive MINT directives, and then
generates CUDA C with a speedup performance of up to 10x.
 The following issues have been observed regarding these
existing CPU-to-GPU translators.
• Applications written in C++ cannot be processed by most of
the above tools. Bones and Par4All do not accept the C++
language as an input source, so they cannot process the given
applications. Meanwhile, Bones is an algorithm skeleton based
tool with a limited applicability.
• Secondly, while MINT and OpenMP can be extended to
support C++ language, it is indispensable to rewrite the original
CPU code as an acceptable input for each tool. The actions of
removing the use of external library and breaking up the
variable dependencies in the parallelized regions are required.

E. Other issues
The security requirement aims to protect the source code of the
general users. The current GPSME web-interface provides a
user registration system to access the system. It provides the
registered users with private-keys to view their source code. In
general the security scheme can satisfy the user requirement to
protect their code. One issue that needs some further attention
is that the user password and private key are currently stored
into the cookie of the browsers unless users delete the cookies.
The users can also delete their uploaded files. If they do not
delete their files, these files are encrypted to store on server for
30 days. After 30 days, the files will be deleted so users have to
upload the files again if they need.

In the GPSME system, we use our existing GSWO model [41]
to determine the size of block and thread. The selection of block
and thread size here is based on the pragmas: nest, tile and
chunksize. They are used for indicating the depth of for-loop

parallelization within a loop nest, specifying how the iteration
space of a loop nest is to be subdivided into tiles, and
aggregating logical threads into a single CUDA thread,
respectively. The size of a CUDA thread block in the GPSME
project is the same as in MINT: threads (tx/cx, ty/cy,tz/cz). But
the impact of selected block and thread size on acceleration in
GSWO model is not as significant as that in MINT. The kernel
generator in MINT makes all of the parameters in the function
argument become kernel call parameters and makes all memory
references through device memory.

There are a few minor limitations on memory use in GPSME
project. In the GSWO model, the memory management
pragmas are not simple for a non-expert to understand and use
correctly, though they can be successful with a little care.
Finally, no optimizations of the CUDA kernels in the GSWO
model are considered in this GPSME. Hence, traditional
optimization methods that use shared memory or improve
memory bandwidth cannot be used directly. We will investigate
using shared memory to improve kernel acceleration in future
work.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced a web-service based CPU-to-GPU
source translation system, the GPSME system for general
applications. This system enables inexperienced GPU users to
take advantage of current GPU capability without having the
need for a deep understanding of GPUs. The architecture of this
system is inspired by an advanced programming model, MINT,
but with some practical extensions and improvements. The
functionality of GPSME is more generic, with better flexibility
and applicability for improving the productivity of practical
applications than conventional automatic CPU-to-GPU
programming models with purely research purpose. The
experimental results prove that this tool has an improved
efficiency and generality in a variety of real world applications.
We show that it enables non-expert GPU users to flexibly and
effectively use automatic CPU-to-GPU code translation. This
allows them to gain great speed performance and help the
advance of each application domain by allowing for advanced
computing models with high complexity. However, the
limitation of this GPSME system is that its kernel generation
directives are only benefit to the SWO or stencil computing
based applications. The future work will consider introducing
new directives to solve this problem. Meanwhile, it is expected
to be compatible with the existing research tools to optimize the
GPU performance of this tool.

 hiCUDA PGI MINT CUDA-lite GPSME
Language support C-to-CUDA C/Fortan-to-CUDA C-to-CUDA CUDA-to-CUDA C/C++-to-CUDA/OpenCL
Easy-use of
directives

Complex Very complex Easy Easy Easy

Applicability Good Outstanding Limited Good Outstanding
Speedup
performance

Good Good Outstanding Good Good

Optimisation
option

Use of shared
memory

No particular
one

Shared memory and
loop aggregation

Improved memory
hierarchy

Improved memory hierarachy (use
CUDA Texture)

12

REFERENCES

1. S. W. Keckler, W. J. Dally, B. Khailany, and M. Garland, “GPUs and the
Future of Parallel Computing” IEEE Micro. Vol 31, Issue 5, pp7-17, Sep,
2011.

2. W.J. Dally, “The GPU Computing Era”. IEEE Micro. Vol 30, Issue 2,
pp56-69, Mar, 2010.

3. GPGPU. (Nov. 2013), “General-Purpose Computation on Graphics
Hardware.” Available [Online]: http://gpgpu.org/.

4. OpenCL. (Nov. 2013), “Open Computing Language (OpenCL).”
Available [Online]: http://www.khronos.org/opencl/.

5. CUDA. (Nov. 2013), “NVIDIA, 2007. NVIDIA CUDA Programming
Guide v1.1.” Available [Online]:
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUD
A_Programming_Guide_1.1.pdf.

6. J. Enmyren and C. K. Kessler. “SkePU: A multi-backend skeleton
programming library for multi-GPU systems”, In Proc. 4th Int. Workshop
on High-Level Parallel Programming and Applications (HLPP-2010),
Baltimore, Maryland, USA. ACM, pp. 5-14, 2010.

7. M.M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A.
Rountev, and P. Sadayappan., “A Compiler Framework for Optimization
of Affine Loop Nests for GPGPUs”, Proc. Int’l Conf. Supercomputing,
NewYork, USA. ACM, pp. 225-234, 2008.

8. A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C.
Bastoul, and R. Lethin, “A mapping path for multi-gpgpu accelerated
computers from a portable high level programming abstraction”, in
Proceedings of the 3rd Workshop on General-Purpose Computation on
Graphics Processing Units (GPGPU ’10), New York, NY, USA, ACM,
pp. 51–61, 2010.

9. U. Bondhugula, U. Hartono, A. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer”, ACM
SIGPLAN Not. Vol 43, Issue 6, pp.101–113, June, 2008.

10. PoCC 2012. PoCC: the polyhedral compiler collection version 1.1.
http://www.cse.ohio-state.edu/ pouchet/-software/pocc/

11. Pluto, (Dec, 2013), “A polyhedral automatic parallelizer and locality
optimizer for multicores”, Available [Online]:
http://pluto-compiler.sourceforge.net

12. A. Leung, N. Vasilache, B. Meister, M. Baskaran, D. Wohlford, C.
Bastoul, and R. Lethin, “A mapping path for multi-GPGPU accelerated
computers from a portable high level programming abstraction,” In Proc.
3rd International Workshop on General-Purpose Computation on
Graphics Processing Units, pp. 51-61, 2010.

13. HPC Project, (Oct, 2011), “Par4all automatic parallelization,” Available
[Online]: http://www.par4all.org.

14. J. Enmyren and C. K. Kessler. “SkePU: A multi-backend skeleton
programming library for multi-GPU systems”, In Proc. 4th Int. Workshop
on High-Level Parallel Programming and Applications (HLPP-2010),
Baltimore, Maryland, USA. ACM, pp. 5-14, 2010.

15. S. Sato and H. Iwasaki, “A skeletal parallel framework with fusion
optimizer for GPGPU programming”, Programming Languages and
Systems, Lecture Notes on Computer Science, vol 5904, pp 79-94, 2009.

16. C. Nugteren and H. Corporaal. “Introducing ‘Bones’: A Parallelizing
Source-to-Source Compiler Based on Algorithmic Skeletons.” In
GPGPU-5: 5th Workshop on General Purpose Processing on Graphics
Processing Units. ACM, 2012.

17. S.Z., Ueng, M. Lathara, S.S. Baghsorkhi, and W. W. Hwu, “CUDA-lite:
Reducing GPU Programming Complexity “, Proc. Int’l Workshop
Languages and Compilers for Parallel Computing, Berlin, Heidelberg.
Springer, pp. 1-15. 2008.

18. T. Han and T. Abdelrahman, “hiCUDA: High-Level GPGPU
Programming”, IEEE Trans. Parallel and Distributed Systems, vol 22, no.
1, pp. 78-90, Jan. 2011.

19. D. Unat, X. Cai, and S. B. Baden. ” Mint: Realizing CUDA Performance
in 3D Stencil Methods with Annotated C”, In ICS ’11: International
Conference on Supercomputing, New York, NY, USA, ACM, pp. 214-
224, 2011.

20. S.Y. Lee, S. J. Min, and R. Eigenmann, “OpenMP to GPGPU: A compiler
framework for automatic translation and optimization”, PPoPP 2009,
International Conference on Principles and Practice of Parallel
Programming, pp. 101-110, 2009.

21. The Portland Group, (June. 2009), “PGI Fortran and C Accelerator
Programming Model “, Available [Online]:
http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.0.pdf

22. The OpenACC Standard, “The OpenACC™ Application Programming
Interface”, Available [Online]:
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf,
November 2011.

23. L.-N. Pouchet. (Nov. 2011), “PolyBench: The Polyhedral Benchmark
Suite.” Available [Online]: http://www.cse.ohio-
state.edu/~pouchet/software/polybench/

24. S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gomez, C. Tenllado, and F.
Catthoor, “Polyhedral parallel code generation for CUDA”, ACM
Transactions on Architecture and Code Optimization, vol.9, issue.4, Jan,
2013.

25. HMPP 2010. “HMPP workbench: directive-based multi-language and
multi-target hybrid programming model.” Available [Online]:
http://www.caps-entreprise.com/hmpp.html

26. J. C. Linford, J. Michalakes, M. Vachharajani, and A. Sandu, “Automatic
Generation of Multicore Chemical Kernels”, IEEE Trans. Parallel and
Distributed Systems, vol 22, no.1, pp.119-131, Jan, 2011.

27. J. Kurzak, S. Tomov, and J. Dongarra, “Autotuning GEMM Kernels for
the Fermi GPU”, IEEE Trans. Parallel and Distributed Systems, vol 23,
no.11, pp.2045-2057, Nov, 2012.

28. Y. P. Zhang and F. Mueller, “Autogeneration and autotuning of 3D stencil
codes on Homogeneous and Heterogeneous GPU Clusters”, IEEE Trans.
Parallel and Distributed Systems, vol 24, no.3, pp. 417-427, Mar, 2013.

29. GPSME. (Oct, 2013), “A General Toolkit for “GPUtilisation” in SME
Applications”, Available [Online]: www.gp-sme.co.uk

30. IME. (Nov. 2013), Image Forgery Detection, Ltd. Available [Online]:
http://www.imagemetry.com/

31. B3C. (Nov. 2013), Biocomputing Competence Centre. Available
[Online]: http://www.b3c.it/

32. RotaSoft. (Nov. 2013), RotaSoft, Ltd. Available [Online]:
http://www.rotasoft.com.tr/

33. AnSmart. (Nov. 2013), AnSmart, Ltd. Available [Online]:
http://www.ansmart.co.uk/

34. ROSE. (Nov, 2012),”ROSE compiler infrastructure” Available [Online]:
http://rosecompiler.org/

35. D.Williams, V.Codreanu, P.Yang, B.Q.Liu, F. Dong, B. Yasar, B.
Mahdian, A. Chiarini, X. Zhao, and J. B.T.M. Roerdink. “Evaluation of
autoparallelization toolkits for commodity graphics hardware”, In 10th
International Conference on Parallel Processing and Applied
Mathematics. Warsaw, Poland. Springer, 2013.

36. D. Williams, V. Codreanu, J. B.T.M. Roerdink, P. Yang, B.Q. Liu, F.
Dong, and A. Chiarini. “Accelerating Colonic Polyp Detection Using
Commodity Graphics Hardware”, In Proceedings of the International
Conference on Computer Medical Applications. Sousse, Tunisia, pages 1–
6, 2013.

37. M. A. Orgun, and L. Xue, “From Predefined Consistency to User-
Centered Emergent Consistency in Real-time Collaborative Editing
Systems”, IEEE Trans. Systems, Man, and Cybernetics: Part A: System
and Humans, vol 36, no.6, pp.1063-1073, Oct, 2006.

http://www.khronos.org/opencl/
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://pluto-compiler.sourceforge.net/
http://www.par4all.org/
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.caps-entreprise.com/hmpp.html
http://www.gp-sme.co.uk/
http://www.imagemetry.com/
http://www.b3c.it/index_eng.htm
http://www.rotasoft.com.tr/
http://www.b3c.it/index_eng.htm
http://rosecompiler.org/

13

38. M. C. Dorneich, “A system design framework-driven implementation of
a learning collaboratory”, IEEE Trans. Systems, Man, and Cybernetics:
Part A: System and Humans, vol 32, no.2, pp.200-213, Nov, 2002.

39. W. P. BrinkMan, R. Haakma, and D. G. Bouwhuis, “Component-Specific
Usability Testing”, IEEE Trans. Systems, Man, and Cybernetics: Part A:
System and Humans, vol 38, no.5, pp.1143-1155, August, 2008.

40. B. Liu, A.C Telea, J. BTM. Roerdink, G. J. Clapworthy, D. Williams, P.
Yang, F. Dong, V. Codreanu, and A. Chiarini. 2014. ”Parallel centerline
extraction on the GPU”, Computers & Graphics, 41 :72-83

41. P. Yang, G. Clapworthy, F. Dong, V. Codreanu, D. Williams, B. Liu, J.
BTM. Roerdink, and Z. Deng. 2016. “GSWO: A programming model for
GPU-enabled parallelization of sliding window operations in image
processing,” SIGNAL PROCESSING-IMAGE COMMUNICATION, 47:
:332-345

View publication statsView publication stats

https://www.researchgate.net/publication/317870086

