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Abstract. Structural damage tomography (SDT) uses full-field or distributed measure-

ments collected from sensors or self-sensing materials to reconstruct quantitative images

of potential damage in structures, such as civil structures, automobiles, aircraft, etc. In

approximately the past ten years, SDT has increased in popularity due to significant gains

in computing power, improvements in sensor quality, and increases in measurement device

sensitivity. Nonetheless, from a mathematical standpoint, SDT remains challenging because

the reconstruction problems are usually nonlinear and ill-posed. Inasmuch, the ability to

reliably reconstruct or detect damage using SDT is seldom guaranteed due to factors such

as noise, modeling errors, low sensor quality, and more. As such, damage processes may be

rendered invisible due to data indistinguishability. In this paper we identify and address

key physical, mathematical, and practical factors that may result in invisible structural

damage. Demonstrations of damage invisibility and data indistinguishability in SDT are

provided using experimental data generated from a damaged reinforced concrete beam.

Keywords: Electrical resistance tomography, inverse problems, nondestructive evaluation,

structural health monitoring, tomography

1. Introduction

Structural damage tomography (SDT) utilizes full-field or distributed measurements from

area/point sensors or self-sensing materials (i.e. carbon-based [1, 2], cement-based [3], etc.)

to reconstruct 2- or 3D tomographic images of potential damage. SDT has gained significant
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traction over the past ten years in the fields of nondestructive testing (NDT) and structural

health monitoring (SHM), much of this owing to gains in computing power, improvements

in sensor quality, and increased sensitivity of measurement devices [4]. Moreover, numerous

stationary and non-stationary modalities have been used, such as electrical resistance

tomography (ERT) [5, 6, 7], electrical-based enclosure methods [8], guided wave based

tomography [9, 10], elasticity imaging [11, 12], and digital image correlation [13, 14]. Most

commonly, reconstructions generated by these imaging modalities are computed by solving

an inverse problem. The inverse problems are generally nonlinear and ill-posed, broadly

meaning that the parameters reconstructed θ are highly sensitive to changes in the input

data d. It is therefore clear that even small sources of error in d, such as corrupting noise, have

a significant impacts on θ. To examine this further, we write down the typical observation

model for a damage tomography problem as

d = U(θ) + e (1)

where U(θ) is a numerical model and e is an additive error term. As an overarching statement,

the general aim of a single-state SDT inverse problem is to match the left and right hand

sides of Eq. 1 as closely as tolerably possible. As an intuitively appealing extension, one

may immediately ask: How large can e be before SDT reconstructions are no longer reliable?

This question is not well understood in current SDT literature [4] and is a central theme

of this article. However, in addressing this query, we must first recognize that (typically‡)

in order to asses damage, we require the comparison of two states, as noted in the second

axiom of SHM [17]:

“Axiom II: The assessment of damage requires a comparison between two system

states.”

Based on this realization, consider parameter fields θu and θd corresponding to undamaged

(subscript u) and damaged states (subscript d), respectively. Accordingly, we also have

measured data du and dd. Informally, it is apparent that states θu and θd are only

distinguishable if du − dd is above some threshold et, i.e. du − dd > et. In other words,

when du − dd < et, potential damage contained in θd is invisible due to indistinguishable

measurements du and dd.

Quite possibly, the first formal distinguishability criterion was derived by Isaacson [18].

In this seminal work, Isaacson found that two parameter fields were distinguishable, in the

least squares sense, when the following criteria is met

||d1(θ1)− d2(θ2)|| > ep (2)

‡ Other methods for damage tomography using only one data set, such as baseline-free methods [15, 16],

have also proven successful. Definitions of invisibility and indistinguishability in such contexts will be defined

in later work.
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where d1 and d2 are data corresponding to parameters θ1 and θ2 and ep > 0 was surmised to

be the measurement precision. In the original work, Isaacson studied the distinguishability

of two conductivity fields in the context of ERT. While the original work was only applied to

ERT, the criterion in Eq. 2 has provided fundamental insight into the “reconstructability”

of many other inverse problems [19, 20, 21, 22, 23] as well as optimization of measurement

schemes [24, 25]. In cases where measurement noise is the prevailing factor in reconstruction

quality, Eq. 2 is an excellent criteria for distinguishability.

In SDT, however, measurement precision, as it relates to noise, is often not the only

(or even primary) factor affecting the distinguishability of data sets and therefore the

visibility/invisibility of damage interpreted from θd. In many cases, SDT data is taken from

large structures that are inhomogeneous in material constitution, highly nonlinear, have

uncertain boundary conditions, and have highly localized damage that is small relative to

the structure/sensor size, etc. Moreover, due to their large size and environmental exposure,

sensor properties often vary both spatially and temporally [26]. The combination of these

factors, and others, create challenging modeling conditions (i.e. decreasing the accuracy of

U), testing conditions, and add uncertainties into SDT inverse problems [27]. As such, the

classic distinguishability criteria in Eq. 2 is insufficient for many SDT applications.

At present, indistinguishability and damage invisibility are not well understood in the

context of SDT. In this work, we aim to bridge this gap in knowledge. We begin by developing

a new distinguishability model and damage visibility criterion for SDT, including components

relevant to practical applications. Based on this model, we then use experimental data to

demonstrate damage invisibility resulting from data indistinguishability in the context of an

emerging SDT imaging modality: ERT. Following, discussion and conclusions are provided.

2. A distinguishability model for damage tomography and the visibility

criterion

In this section, we first derive a general model for distinguishability in SDT and discuss the

contributing factors. Following, we clearly define the SDT damage visibility criterion. We

begin by writing the observation models for both undamaged and damaged states

du = U(θu) + eu

dd = U(θd) + ed

(3)

where eu and ed are the error terms for the undamaged and damaged states, respectively.

We then substitute observation model data sets into Eq. 2 as follows

ep < ||du − dd|| (4)

where we assume that ep is a sufficient lower bound for data distinguishability in SDT – which

is a reasonable assumption given the low noise floor of many contemporary SDT electronic

measuring systems [28]. We now add an additional term to this inequality by writing
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ep < ||du − dd|| < eSDT (5)

where eSDT is an upper bound on data distinguishability. The physical interpretation of the

upper bound eSDT is related to the maximum feasible distance between vectors du and dd

measured here with the Euclidean norm. In the purest sense, it is certainly true that – for a

fixed degree of damage – even when the data difference du−dd is exceedingly high as a result

of SDT errors alone, the information contained in dd may indeed visible (in the sense that

θd may be reconstructed). However, for such a fixed degree of damage, when the auxiliary

errors dominate or behave as the main error source, to distinguish θd from θu, an upper

constraint is required in Eq. 5. From a pragmatic SHM viewpoint, this means that when

||du − dd|| > eSDT, assessment of damage via SHM Axiom II is not meaningful.

It is important to remark here that the data difference term ||du − dd|| is merely

a mechanism for assessing SDT errors intrinsic in du and dd. Specifically, we are

interested in the auxiliary errors present in the data, ultimately resulting in data

distinguishability/indistinguishability. Nonetheless, the use of ||du−dd|| is practical because

decoupling and exactly quantifying all sources of SDT errors in du and dd is not possible

since there are an infinite number of SDT conditions, physical environments, geometries,

sensors, etc.

Nonetheless, we are often interested in approximating the aforementioned errors [29].

In doing this, we may reformulate Eq. 5 by substituting du and dd from Eq. 3 into Eq. 5 to

obtain

ep < ||U(θu) + eu − U(θd)− ed|| < eSDT (6)

which can be rearranged into a more compact expression

ep < ||U(θu)− U(θd) + ec|| < eSDT (7)

by combining the error terms, i.e. ec = eu−ed. The SDT distinguishability criterion is now given by

the equivalent expressions in Eq. 5 and Eq. 7, where the error term ec encapsulates the prevalent

SDT errors due to noise, en, numerical modeling errors em, discretization errors ed, interpolation

errors eI , and errors resulting from sensor quality es. In other words ec ≈ en + em + ed + eI + es,

which clearly indicates that the SDT upper bound on distinguishability is much larger than the

measurement precision alone, i.e. eSDT ≫ ep§. We therefore expect an overall lower likelihood of

visible damage(s) potentially present in θd than if measurement precision, alone, was responsible for

data distinguishability. Further, we note that the symbol ’≈’ is used because there are other sources

of error of secondary importance, such as computational round off errors [30]. For completeness,

we describe the major components of error in SDT and important resulting considerations in the

following.

Error due to random noise, en: Random noise has a direct influence on measurement

accuracy and precision. For SDT applications, we define measurement accuracy as the closeness of

§ An intrinsic assumption in the additive error model ec = ec(·) is that all sources of errors are independent.



Invisibility and indistinguishability in structural damage tomography 5

R

R
r

(a) (b)

Figure 1. Schematic manifold example demonstrating the effect of geometry on the

visibility of damage. Schematics, (a) contracted cylinder with end radii R and constricted

radius r and (b) damaged geometry with left hand side local boundary measurements d and

right hand side damage. As r → 0, a singularity is formed and the damage inferred from d

is invisible.

a measurement to the true value, while measurement precision is the repeatability of a measurement.

As a first-order thought experiment, it is often assumed that when all other sources of error are zero

and en = 0, a solution to a SDT inverse problem is viable. This is because the signal d to noise ratio

tends to infinity; i.e. as en → 0, d/en → ∞. While this assumption is often reasonable for simple

applications of SDT, the general case is more complicated [31]. Take for example the geometry

shown in Fig. 1a, where two parts of a constricted cylinder (large radius R) are connected by a

constricted area (small radius r). It is obvious that as r → 0 a singularity develops at the location

of the constriction. Therefore, in the example case shown in Fig 1b, as r → 0 the damage (right

hand side) inferred by local boundary measurements (left hand side) becomes invisible. Moreover,

it is apparent that the visibility of the damage is dependent on R/r resulting from the accuracy

and precision of measurement d = d(R/r). As such, if en is present in d, i.e. if d = d(R/r, en), the

damage becomes invisible at a relatively higher radius r (or, alternatively at a lower R/r) than if

en was not present. We therefore infer that the visibility of a damage process is directly linked to

en and the SDT geometry.

Numerical modeling errors, em: Every numerical model has error [32]. In the case of the

finite element method (FEM), which is possibly the most popular numerical method employed in

SDT, it is well known that FEM solutions converge exponentially with the simultaneous refinement

of discretization size h and increase of interpolation polynomial order p [33, 34, 35]. In reality,

h = 0 and p = ∞ is impossible, so we must live with a non-zero em. The severity of em is directly

linked to the accuracy of the numerical model. In SDT cases where the material constitution is

heterogeneous or highly non-linear, one can expect an increase in em relative to, e.g. an isotropic

linear constitution [36]. In addition, em may also include errors due to uncertainty in source terms

or boundary conditions, factors that commonly contribute to errors in SDT [4].

Discretization errors, ed: When SDT approaches are formulated such that a continuous

model with an infinite-dimensional space Ω is discretized to Ωh – a practical requirement –

discretization error occurs [37]. Since convergence of, e.g. the FEM, is guaranteed as h → 0,

it is therefore expected that coarse discretiaztions (large h) have more discretization error than

finer discretizations. This reality is ever present in large inverse problems as representing Ωh with

an ultra-fine h results in significant computational demand. Due to the significance of ed in inverse
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problems, works such as [37] have developed Bayesian Approximative Error (BAE) approaches for

dealing with ed. In fact, ed and em may be lumped in the same error model using BAE [38].

Interpolation errors, eI : Interpolation errors in SDT result from situations where a

measured data field is interpolated onto a mesh. The severity of interpolation errors scales with the

accuracy of the interpolation method. For example, in 2D cases where over fitting is not expected,

interpolation schemes ranging from lowest to highest accuracy would be: nearest neighbor → bi-

linear → bi-quadratic → ... . In SDT, interpolation errors are prevalent in, e.g. elasticity imaging

[11] and FEM-based digital image correlation [39].

Errors resulting from sensor quality, es: There are many sources of systematic and

random errors in point and area sensors. Error sources range from inhomogeneous distributions in

area sensor thickness [27] to quantum deviations in optical sensors [40]. While much of the sensor

error may be mitigated with quality control [41], some sources of error related to sensor quality may

be difficult to avoid, such as contemporary limitations in manufacturing [42] or quantum factors

[43].

With error sources and mathematical preliminaries provided, we now define the criteria used in

solving SDT visibility problem: is damage inferred from θd visible with respect to θu? The question

is shown schematically in Fig. 2. The solution to the SDT visibility problem hinges on whether or

not the distinguishability criteria (Eqs. 5 or 7) between data from damaged and undamaged states

is met. In other words, for a specific SDT application (fixed geometry, sensor type, measurement

scheme, numerical model, and time of measurement), damage is invisible when the following is

satisfied:

Damage invisibility criterion: ||U(θu)−U(θd)+ec|| < ep or ||U(θu)−U(θd)+ec|| > eSDT.

Conversely, damage is visible when the following is satisfied:

Damage visibility criterion: ep < ||U(θu)− U(θd) + ec|| < eSDT.

We remark that a number of equivalent useful statements may also be written by substituting

expressions from Eq. 3.

Ωℎ 𝑑𝑢
Ωℎ 𝑑𝑑

Ωℎ
𝑒𝑝< ||𝑑𝑢 − 𝑑𝑑|| < 𝑒𝑆𝐷𝑇?

SDT visibility problem: is      inferred from θ𝑑
visible or invisible w.r.t θ𝑢?

Undamaged Structure Damaged Structure

θ𝑢 θ𝑑

Figure 2. Schematic representation of the SDT visibility problem. Left column, a

discretized undamaged structure with measured data du; middle column, a discretized

damaged structure with measured data dd (damage depicted as a red sig-zag); right column,

an illustration of the SDT visibility problem.
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At this point, we have established criteria for damage visibility and data distinguishability.

However, while ep can be measured using straightforward experimental measurements, the value of

the scalar eSDT is not numerically defined. This is because eSDT is unique for a given problem, and

it must therefore be computed on a case-by-case basis. One possible regime for estimating eSDT,

among other possible methods, would be to use of a goodness of fit measure between reconstructions

of θu and θd. For example, one could take advantage of the Pearson correlation coefficient (PCC),

where PCC(θu, θd) = 0 (linearly uncorrelated) when the following criterion is met

||U(θu)− U(θd) + ec|| = eSDT. (8)

There are many ways in one may optimize Eq. 8 computationally such that PCC(θu, θd) ≈ 0. For

example, one could conduct simulations for ground truth distributions θu and θd and iterate over

random Gaussian distributions or summing random distributions for ec with an objective function

aiming to reach PCC(θu, θd) = 0. It is important to note here that, for SDT problems in general,

eSDT ∈ (ep,∞) since a given SDT problem can consist of a data set with arbitrary size, noise

corruption, and/or a numerical model with arbitrary modeling error. However, to these ends, since

the aim of this work is primarily to present the SDT distinguishability model, the visibility criterion,

and provide relevant examples of damage invisibility, we defer the presentation of advanced regimes

for computing eSDT to future work.

3. Structural damage invisibility in ERT

In this section, we provide examples of damage invisibility/visibility using an emerging SDT imaging

modality: ERT. We begin by detailing the ERT inverse problem and solution regime. Following, we

(i) demonstrate damage invisibility and data indistinguishability and (ii) approximate eSDT using

experimental data generated from a damaged reinforced concrete member with an applied sensing

skin. Lastly, a brief discussion is provided.

3.1. Damage invisibility in ERT

In this work, we aim to reconstruct a crack in an area sensor painted atop a reinforced concrete

beam element. For this, we utilize ERT, which is a diffusive imaging modality where we aim to

reconstruct the electrical conductivity σ from electric potential measurements V [44, 45]. The

resulting observation model for this problem is written as

V = U(σ) + eERT (9)

where eERT is the additive ERT error term. For U(σ), we utilize the complete electrode model

(CEM) discretized using the FEM. For further details related to the numerical implementation of

the CEM, we refer the reader to [3, 46]. Resulting from Eq. 9, we have a one-state least squares

optimization problem where we aim to minimize the functional

ΨERT (σ > 0) = ||Le(V − U(σ))||2 +Rσ(σ) (10)

where Le is the Cholesky factorization of the inverse noise covariance matrix W−1 (i.e. LT
e Le =

W−1) and Rσ(σ) is a regularization term that incorporates prior information and adds stability

to the otherwise non-unique and ill-posed problem in Eq. 10. In order to estimate the contact

impedances, we computed the (assumed) homogeneous impedances zhom simultaneously with the
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best homogeneous estimate of the conductivity σhom. To do this, we solved the following two-

parameter minimization problem: (σhom, zhom)=argmin{||Vu − U(σ, z)||2} where σhom was also

used as the initial guess for σ. Since we are interested in reconstructing cracks, we utilize total

variation (TV) regularization, which is well-known for its edge-preserving characteristics [47] and

well-suited for crack detection in SDT [27]. Moreover, we utilize the interior point method with

second-order polynomial barrier functions in the constrained optimization of ΨERT (σ > 0). For

solving the optimization problem, we utilize a Gauss-Newton regime equipped with a line search as

described in [4]. In the following, this ERT regime will be implemented in a case study investigating

the visibility/invisibility of a small crack in a concrete beam.

3.2. Case study: Visibility and invisibility of a small crack in a concrete beam imaged with

ERT

In this case study, we investigate the visibility of a qualitatively small crack generated by

mechanically loading a 152 × 508 × 152 mm lightly-reinforced concrete beam in 3-point bending

(full experimental details provided in [4]). A photograph of the beam and sensing skin are shown in

Fig. 3. To image the concrete beam using ERT, a rectangular electrically conductive silver sensing

skin was painted atop 28 boundary electrodes affixed to the beam surface. In the measurement

program, 54 DC injections with an amplitude of 1 mA were applied between electrodes i and j,

i = 6, 21 and j = 1, ..., 28, i 6= j. For each current injection, a total of 1,458 adjacent electrode

potentials measurements were taken. The measurements were taken from an in-house system

consisting of a power supply, 32-channel switch (28 channels used here), and a PC equipped with a

Java code to execute the ERT measurements. Moreover, the channel-wise SNR of the system was,

on average, 63 dB using repeated measurements. In solving the numerical forward model U(σ), we

used an unstructured rectangular FEM mesh with Nel = 2,572 triangular elements and Nn = 1, 406

nodes.

We note that, in the experimental program, measurements from cracking patterns ranging

from one barely visible crack to multiple large cracks were taken. While the ability of ERT to

reconstruct large complex cracking patterns was confirmed in [48], this theme is not the focus of

this work. Rather, we are more interested in investigating the visibility of small damages, where the

difference between the undamaged measurement Vu and damaged measurement Vd is smallest. In

other words, ||Vu−Vd|| is the lowest and therefore the measurements have a higher likelihood of being

indistinguishable than in cases with higher cracking. As such, we study the visibility/invisibility

of the smallest visible crack visible by eye on the sensing skin during the loading process. The

highlighted crack is shown in the top row of Fig. 3.

In the data analysis, it was found that the potential measurements corresponding to the small

crack case were well within the distinguishability range, i.e. ep < ||Vu − Vd|| < eSDT. Therefore,

the crack was visible in the ERT reconstruction, as demonstrated in Fig 3a. Therefore, to test the

visibility of the crack in a suite of cases with increasing errors, we introduce errors into the forward

model term U(σ) by rewriting Eq. 5 as ep < ||Vu −U(σ) + ec|| < eSDT. Through this substitution,

we may add modeling errors directly into the forward problem U(σ) in addition to adding noise

into Vu. For this, progressively increasing modeling error was added to U by adding random

horizontal and vertical perturbations ∆el to the center locations of the top/bottom electrodes and

side electrodes, respectively. The maximum magnitude of the perturbations was within the range

of 1.0 ≤ ∆el ≤ 6.0% of the electrode widths. In addition, 2.0% noise standard deviation was added

to the contact impedances ηz and undamaged potential measurements ηV (i.e. Vu = Vu+ηV ). This
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𝜎(𝑆)

Cracked

Beam Small crack

∆ 𝑒𝑙=0%η𝑧 =0%η𝑉 =0%∆ 𝑒𝑙=1.0%η𝑧 = 2.0%η𝑉 =2.0%∆ 𝑒𝑙=2.0%η𝑧 = 2.0%η𝑉 =2.0%∆ 𝑒𝑙=3.0%η𝑧 = 2.0%η𝑉 =2.0%∆ 𝑒𝑙=4.0%η𝑧 = 2.0%η𝑉 =2.0%∆ 𝑒𝑙=5.0%η𝑧 = 2.0%η𝑉 =2.0%∆ 𝑒𝑙=6.0%η𝑧 = 2.0%η𝑉 =2.0%

𝑽𝒖 + 𝑼 𝜎 + 𝒆𝒄 < 𝒆𝑺𝑫𝑻
𝑽𝒖 + 𝑼 𝜎 + 𝒆𝒄 < 𝒆𝑺𝑫𝑻
𝑽𝒖 + 𝑼 𝜎 + 𝒆𝒄 < 𝒆𝑺𝑫𝑻
𝑽𝒖 + 𝑼 𝜎 + 𝒆𝒄 < 𝒆𝑺𝑫𝑻
𝑽𝒖 + 𝑼 𝜎 + 𝒆𝒄 ≈ 𝒆𝑺𝑫𝑻
𝑽𝒖 + 𝑼 𝜎 + 𝒆𝒄 > 𝒆𝑺𝑫𝑻Invisible crack

Possibly invisible crack

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3. ERT reconstructions of a small crack in a sensing skin painted on a concrete

beam element demonstrating the effect of noise and model error or crack visibility. Top

row, a photograph of the concrete beam, sensing skin, and electrode numbers. Row (a)

reconstruction of the small crack without added modeling error via pertubations in electrode

location ∆el or noise added to the potential measurements ηV and contact impedances ηz.

Rows (b) - (g), reconstructions with the addition of ∆el, ηV , and ηz.

level of added noise was selected since it is likely on the high-end of realistic noise levels for low

temporal resolution SDT-ERT imaging. It was therefore intrinsically assumed that modeling errors

(due to sensor flaws/electrode perturbations) are the dominating culprit for damage invisibility in

this SDT application of ERT. The reconstructions with additional modeling error em and random

noise en, which are cumulative in ec, are shown in Fig. 3b-g.

Based on visual observation of reconstructions shown in Fig. 3, the central cracks in
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Figure 4. Upper distinguishability threshold eSDT for the ERT case study plotted against

reconstructions (a) - (g) having increasing modeling errors induced through pertubations in

electrode location ∆el ranging from 0% to 6% in reconstructions (a) and (g), respectively.

The conservative range of eSDT resulting in crack invisibility is indicated by the space

between the dotted horizontal lines. The regions above and below the horizontal lines are

regions of crack invisibility and visibility, respectively.

reconstructions (b)-(e) are visible via the local reduction in σ. The visibility of the cracks clearly

fade proportional to the magnitude of modeling error induced by ∆el, to the point that the crack

in reconstruction (e) is barely visible. This indicates that data used in (e) is marginally below the

distinguishability threshold eSDT. On the other hand, in reconstruction (f), it is not clear whether

or not the crack is visible or if the locally reduced conductivity in the center is a reconstruction

artifact. Moreover, there are significant artifacts in the background σ of reconstruction (f); as such,

we may surmise that data used in reconstruction (f) is near the upper distinguishability threshold,

i.e. ||Vu−U(σ)+ec|| ≈ eSDT. In the final reconstruction, (g), the crack is invisible and we therefore

conclude that data used in this reconstruction has surpassed eSDT.

From these results, we can approximate the range of eSDT resulting in crack invisibility. To do

this, we conservatively assume that the crack becomes invisible when ∆el > 4.0%. Put differently,

we can assume cracks in reconstructions (f) and (g) are invisible and therefore the input data are

indistinguishable at some point after reconstruction (e). The resulting range of eSDT can be depicted

graphically by plotting ||Vu−U(σ)+ec|| against reconstructions (a) - (g) as shown in Fig. 4. Based

on these assumptions, we find the conservative bounds of eSDT resulting in crack invisibility to lie

approximately within the range 6.5 < eSDT < 9.75. Therefore, for this case, we may conclude that

when 9.75 < ||Vu−U(σ)+ ec||, cracks are invisible. In contrast, when ep < ||Vu−U(σ)+ ec|| < 6.5,

we may conclude that cracks are visible.

3.3. Discussion

In this work, it was shown that when either (i) measurement precision is insufficient or (ii) modeling

error and measurement uncertainty exceed a problem-specific threshold (lumped into the term
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eSDT), localized damage is rendered invisible. Moreover, for the purposes of demonstration, it was

shown that bounds on the range of eSDT may be approximated using a simplified visual method. Of

course, in applications where this range is required more precisely, one may utilize Eq. 8 coupled

with a search or optimization algorithm. From a practical perspective, however, we are likely

interested in increasing the range for which SDT measurements are distinguishable such that small

localized damage may be detected. In other words, assuming ep is sufficiently low, we are interested

in increasing the magnitude of eSDT for a given application.

Broadly speaking, this may be accomplished by reducing the error terms using physical and/or

computational means. While the totality of such methods cannot be covered in a single article, a

few useful strategies are discussed in the following:

• Increase the sensitivity of the data to changes in the SDT parameter field. In the case of

single-state ERT, for example, this means increasing the sensitivity of V to changes in σ. This

is particularly relevant in large-scale SDT applications, where the sensitivity of ERT is low

far from the measuring electrodes. In such cases, one may include (non-boundary) electrodes

located within the sensing area, as shown in e.g. [49]. This strategy essentially reduces the

ill-posedness of the SDT problem.

• Approximate modeling errors in U . Bayesian approximative error modeling has proven highly

successful in reducing errors in cases where low-order modeling is used [29]. In doing this, an

approximative error term is incorporated into the inverse problem effectively reducing em and

potentially the discretization error ed.

• Data subtraction is effective in reducing systematic errors. Imagining regimes, such as

difference imagining utilize difference data in reconstructing SDT images [50]. As such, a

large portion of systematic errors are subtracted. One should note that difference imaging is

often qualitative due to linearizing the inverse problem [46].

• Utilize the proper noise model. In many SDT cases, the use of Gaussian models is often

adequate, for example in constructing the noise covariance matrix W . In some SDT

applications, however, noise may have a Poisson or skew-symmetric distribution [4]. In such

applications, the use of a Gaussian model for Poisson/skew-symmetric noise may unnecessarily

increase errors due to noise en.

• Be cautious when selecting the interpolation scheme. In SDT cases where we aim to map

measured data to a grid, such as in elasticity imaging where we map DIC data to a FEM grid,

caution should be taken in the interpolation scheme. Often, the use of high-order interpolation

schemes (e.g. higher than a cubic order) have been perceived as superior to lower order schemes

[51]. As a general statement, this is not true as high order interpolation schemes may result

in over fitting [52], thereby incorporating unnecessary interpolation error eI .

While these takeaways are of pragmatic significance, it is important to realize that it is

difficult to predict the potential for damage visibility and data distinguishability a priori. This

realization is rooted in the fact that structures are exposed to a plethora of environments and

loading conditions, and predicting the extent (or lack) of damage in, e.g. an extreme event can

really only be done probabilistically – often with wide ranges of uncertainty [53, 54]. One possible

method for circumventing this reality is to incorporate Monte Carlo sampling methods in designing

a sensing scheme using simulated – yet realistic – damage processes on the target sensor/structure

[55, 56]. This topic will be covered in a future work.
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Finally, it is worth remarking that visibility and distinguishability framework proposed and

studied herein was realized in the context of SDT. We believe that it can be readily extended to

other applied inverse problems, including application areas such as biomedical imaging applications

(e.g., magnetic resonance imaging, X-ray tomography, and electrical impedance tomography),

industrial process monitoring (e.g., electrical capacitance tomography) and geophysical imaging

(e.g. hydraulic tomography and gravitational methods).

4. Conclusions

In this work, we investigated the ever present, yet scarcely examined, topic of damage invisibility

and data indistinguishability in the context of structural damage tomography (SDT). Owing to the

absence of quantitative criteria for SDT data distinguishability, as it pertains to data sets obtained

from undamaged and damaged states, we formulated a damage visibility and data distinguishability

criterion for SDT. To demonstrate damage visibility and invisibility, the criterion was applied to

an damage detection in an electrically-conductive silver sensing skin using electrical resistance

tomography and experimental data. Key realizations and recommendations were provided aiming

to improve the ability of SDT regimes to detect nearly invisible damage through the use of the

proposed distinguishability criterion.
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