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Viral infections are a common cause of asthma exacerbations, with human rhinoviruses

(RV) the most common trigger. RV signals through a number of different receptors,

including toll-like receptor (TLR)3. Tenascin-C (TN-C) is an immunomodulatory

extracellular matrix protein present in high quantities in the airway of people with

asthma, and expression is also upregulated in nasal lavage fluid in response to RV

infection. Respiratory viral infection has been demonstrated to induce the release of

small extracellular vesicles (sEV) such as exosomes, whilst exosomal cargo can also

be modified in the bronchoalveolar lavage fluid of people with asthma. These sEVs may

potentiate airway inflammation and regulate the immune response to infection. This study

characterizes the relationship between RV infection of bronchial epithelial cells and the

release of TN-C, and the release of sEVs following stimulation with the TLR3 agonist and

synthetic viral mimic, poly(I:C), as well as the function of the released protein/vesicles.

The BEAS-2B airway epithelial cell line and primary human bronchial epithelial cells

(PBECs) from asthmatic and non-asthmatic donors were infected with RV or treated

with poly(I:C). TN-C expression, release and localization to sEVs was quantified. TN-C

expression was also assessed following intra-nasal challenge of C57BL/6 mice with

poly(I:C). BEAS-2B cells and macrophages were subsequently challenged with TN-C,

or with sEVs generated from BEAS-2B cells pre-treated with siRNA targeted to TN-C

or control. The results revealed that poly(I:C) stimulation induced TN-C release in vivo,

whilst both poly(I:C) stimulation and RV infection promoted release in vitro, with elevated

TN-C release from PBECs obtained from people with asthma. Poly(I:C) also induced the

release of TN-C-rich sEVs from BEAS-2B cells. TN-C, and sEVs from poly(I:C) challenged

cells, induced cytokine synthesis in macrophages and BEAS-2B cells, whilst sEVs from
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control cells did not. Moreover, sEVs with ∼75% reduced TN-C content did not alter the

capacity of sEVs to induce inflammation. This study identifies two novel components of

the inflammatory pathway that regulates the immune response following RV infection and

TLR3 stimulation, highlighting TN-C release and pro-inflammatory sEVs in the airway as

relevant to the biology of virally induced exacerbations of asthma.

Keywords: human rhinovirus, asthma exacerbations, tenascin-C, exosomes, extracellular matrix protein,

inflammation

INTRODUCTION

Asthma is a chronic disease characterized by airway
inflammation, remodeling, and airway hyperresponsiveness
(AHR) (1). Around 5–10% of those with the disease have
severe asthma with poorly controlled symptoms (2), and
exacerbations are an acute, frequently occurring, and potentially
severe manifestation of this illness (3). One of the main
causes of asthma exacerbations are respiratory viruses,
with the most common viruses responsible being human
rhinoviruses (RV) (4).

RV are single-stranded RNA, non-enveloped viruses, which
are members of the Picornaviridae family and encompass around
160 serotypes. These viruses are classified either by the A-B-
C classification system (based on the similarity in the RNA
sequences of the viral protein 1), whereas the major-minor-
C classification system is based on the entry receptor used
by the virus to enter the cell (5–7). Major serotypes bind
to intracellular adhesion molecule 1 (ICAM-1) on the cell
surface, minor serotypes use various low density lipoprotein
receptors (LDLRs) (6) and RV-C was identified in 2006 and uses
cadherin-related family member 3 (CDHR3) for binding and
replication (7).

Bronchial epithelial cells are the principle site of RV binding
and replication, and RV are recognized by pattern recognition
receptors (PRRs) including toll-like receptors (TLR)2 and TLR3,
and the Retinoic acid-inducible gene-I (RIG-I)-like receptors
(RLRs) melanoma differentiation-associated-protein 5 (MDA5)
and retinoic acid-inducible gene (RIG-I) (8, 9). TLR and RLR

Abbreviations: AA, Atopic Asthmatic; AHR, Airway Hyperresponsiveness; BALF,

Bronchoalveolar Lavage Fluid; CD9, Cluster of Differentiation 9; CXCL8, C-X-C

Motif Ligand 8; ECM, Extracellular Matrix Protein; ELISA, Enzyme-Linked

Immunosorbent Assay; FNIII, Fibronectin Type III-Like; EGF, Epidermal Growth

Factor-Like; EV, Extracellular Vesicle; FBG-C, Fibrinogen Globe-Like; GRP94,

Glucose Regulated Protein 94; RV, Human Rhinovirus; IRF, Interferon Regulatory

Factor; LAL, Limulus Amebocyte Lysate; lEV, Large Extracellular Vesicle;

LPS, Lipopolysaccharide; MAPK, Mitogen Activated Protein Kinase; MMP9,

Matrix Metalloproteinase 9; MDA5, Melanoma Differentiation-Associated

Protein 5; MOI, Multiplicity of Infection; MTT, 3-(4,5-Dimethylthiazol-

2yl)-2,5-Diphenyltetrazolium Bromide; NADPH, Nicotinamide Adenine

Dinucleotide Phosphate; NANA, Non-Atopic Non-Asthmatic; PBEC, Primary

Bronchial Epithelial Cell; PBMC, Peripheral Blood Mononuclear Cell; Poly(I:C),

Polyinosinic:Polycytidylic Acid; RA, Rheumatoid Arthritis; RIG-1, Retinoic

Acid-Inducible Gene I; RLR, RIG-I-Like Receptor; RSV, Respiratory Syncytial

Virus; SNP, Single Nucleotide Polymorphisms; sEV, Small Extracellular Vesicle;

TA, Tenascin-Assembly; TCA, Trichloroacetic Acid; TGFβ, Transforming Growth

Factor beta; TLR, Toll-Like Receptor; TN-C, Tenascin-C; TNFα, Tumor Necrosis

Factor alpha.

activation induces interferon regulatory factor (IRF), mitogen-
activated protein kinase (MAPK) and NF-κB signaling, leading
to cytokine and interferon production (10, 11). Whilst this
inflammation is typically readily resolved, RV infection can lead
to an exaggerated response in people with asthma, resulting in
excessive cytokine release and mucus hypersecretion that are
characteristic of asthma exacerbations (12).

RV can promote the deposition of extracellular matrix (ECM)
proteins, with tenascin-C (TN-C) mRNA expression enhanced in
nasal cells following infection (13). TN-C is composed of four
main domains: the tenascin assembly (TA) domain, epidermal
growth factor (EGF)-like repeats, fibronectin type III (FNIII)-like
repeats and fibrinogen globe-like (FBG-C) domain (14). It can
range in size from 180 to 330 kDa, and expression is low in the
healthy adult airway but is increased in the basement membrane
of people with asthma (15). TN-C expression correlates with
asthma severity in humans (15), AHR in mouse models of
asthma is reduced in TN-C KO mice (16), and a single
nucleotide polymorphism (SNP) in the structure of TN-C
associates with adult bronchial asthma (17). TN-C is a key driver
of chronic inflammation in a number of different pathologies
[summarized in (18)] through both FBG-C-TLR4 and FNIII-
integrin interactions. This is well-established in models of
rheumatoid arthritis (RA), with the FBG-C domain interacting
with TLR4 receptors on the surface of synovial fibroblasts and
macrophages (14, 19). However, despite evident roles for TN-C
in asthma biology, the expression of TN-C in bronchial epithelial
cells and the role of TN-C in RV-induced inflammation have not
been studied.

In this study we investigated bronchial epithelial cell TN-C
expression and release following RV infection, and determined
the function of the protein. We observed release of TN-C upon
infection, and established that purified recombinant FBG-C had
the ability to induce inflammatory cytokine release in bronchial
epithelial cells and macrophages. Surprisingly, a large proportion
of TN-C was associated with small extracellular vesicles (sEV),
which have previously been implicated in asthmatic airway
inflammation, and viral challenge increased the concentration of
overall sEV release. sEVs from virally stimulated cells had the
ability to induce inflammatory and antiviral cytokine production
in bronchial epithelial cells, whilst sEVs from control cells
did not. Finally, sEV induced inflammation was determined
to be independent of TN-C. Thus, this study identifies TN-
C and sEVs as two novel drivers of the airway inflammation
that underpins asthma pathogenesis, and therefore may be
potential future therapeutic targets to help control RV-induced
asthma exacerbations.
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MATERIALS AND METHODS

Viral Culture
RV minor serotype 1B (RV-1B) and major serotype 16 (RV-16)
were obtained from ATCC (LGC Standards, Teddington, UK)
and viral stocks generated by infecting HeLa Ohio cells (ATTC)
as previously described (20). The cytopathic effect was then
determined and the multiplicity of infection (MOI) calculated.

Cell Culture
The BEAS-2B epithelial cell line, and primary bronchial epithelial
cells (PBECs) isolated from healthy humans, were purchased
from ATCC and Promocell (Heidelberg, Germany) and cells
were maintained as described (21, 22). PBECs were also
obtained during bronchoscopy from adult (18–55 years old) non-
atopic non-asthmatic controls (NANA) and patients with atopic
asthma (AA) (23), with written informed consent, in accordance
with the Declaration of Helsinki and a protocol approved by
London Bridge Research Ethics committee (reference number
12/LO/1278), and maintained in the same way as the purchased
cells. The AA subjects had a prior clinical diagnosis of asthma,
scored > 0.75 on an asthma control questionnaire, had a
histamine PC20 of <8µg/ml, and atopy was confirmed by a
positive skin prick test to timothy grass pollen (in a panel
of 10 aeroallergens) (23). NANA subjects had a histamine
PC20 of >8µg/ml (23). Peripheral blood mononuclear cells
(PBMCs) were isolated from peripheral venous blood of
healthy volunteers (21), with written informed consent, in
accordance with a protocol approved by South Sheffield Local
Research Ethics Committee (reference number: 05/Q2305/4)
and differentiated into monocyte-derived macrophages using a
previously established method (14).

Cell Stimulation and Infection
Cells were seeded in 6, 12 or 96 well plates, grown to confluency
(80%) and placed in supplement free media overnight. For
stimulation experiments, cells were stimulated with 25µg/ml
polyinosinic:polycytidylic acid (poly([I:C]) (Invitrogen, Paisley,
UK), 10µg/ml gardiquimod (Invitrogen) or 100 ng/ml or
lipopolysaccharide (LPS) serotype 0111:B4 (Sigma-Aldrich) or
EH100 (Enzo, Exeter, UK). For infection experiments, BEAS-2B
cells or PBECs were infected with RV-1B and RV-16 (ATCC)
for the indicated times at optimized MOIs (10). For TN-
C stimulation experiments, recombinant FBG-C protein was
expressed and purified as described (14, 24), before being added
to cells at the indicated concentrations for 24 h. For small
extracellular vesicle (sEV) stimulation experiments, isolated sEVs
(see Supplementary Methods) were added to at the indicated
concentrations for 24 h. Cell free supernatants, mRNA and/or
protein lysates were then harvested and stored appropriately.

Murine Model
This study was carried out in accordance with the principles
of the Basel Declaration and recommendations of Animal
(Scientific Procedures) Act 1986, United Kingdom Home
Office. The protocol was approved by the animal welfare
and ethical review body at the University of Sheffield, and
work was carried out under project license code 40/3726

and establishment license code 50/2509. Under 4% isofluorane
(Abbott Laboratories Illinois, USA), C57BL/6 adult mice
(see Supplementary Methods for more information) were
intranasally stimulated with 50 µl PBS (Oxoid, ThermoFisher,
Basingstoke, UK) or 50 µl PBS containing 100 µg poly(I:C). The
mice were sacrificed and bronchoalveolar lavage fluid (BALF)
collected as previously described (25).

Western Blot
Where required, cell lysates were prepared as previously
established (21). For supernatant samples, 4 × SDS loading
buffer was added and samples were analyzed following the
same protocol. Cell-lysate western blot samples were probed
for human TN-C (N-Terminal, mab1908, Merck Millipore,
California, USA), Histidine-Tag (H1029, Sigma-Aldrich), and β-
actin (A5316, Sigma-Aldrich), with TN-C expression normalized
to β-actin, whilst supernatant samples were analyzed for TN-
C only. Mouse BALF was concentrated by trichloroacetic acid
(TCA, Sigma-Aldrich) precipitation prior to analysis and TN-
C expression determined using mouse TN-C antibody (N-
Terminal, T3413, Sigma-Aldrich). sEV isolates were analyzed
for sEV-enriched proteins cluster of differentiation 9 (CD9, sc-
13118, Santa-Cruz Biotechnology, Dallas, USA) and flotillin-
1 (ab13493, Abcam, Cambridge, UK), with the negative
control glucose regulated protein 94 (GRP94, ab7291, Abcam)
utilized to confirm the lack of cellular protein contamination.
Densitometrical analysis was performed using ImageJ software
(Version 1.5i; NIH). Due to multiple variants of TN-C being
expressed, the dominantly expressed band was measured for
each experiment.

ELISA
Cell-free supernatants were collected and quantified for C-X-C
Motif Ligand 8 (CXCL8), CCL5, and IL-5 (R&D, Minneapolis,
USA) and TN-C N-Terminal Kit (Cloud Corp, Texas, USA)
using matched Ab pairs by enzyme-linked immunosorbent assay
(ELISA), following the manufacturer’s instructions. Minimum
detection levels (all pg/ml) were CXCL8: 78.125, TN-C: 125, IL-5:
156.25, and CCL5: 156.25.

MTT Assay
The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium
Bromide (MTT) assay assessed nicotinamide adenine
dinucleotide phosphate (NADPH) activity as a measure of
cell metabolic activity and thus viability, and was performed as
previously described (26).

Nanoparticle Tracking Analysis
The size and concentration of the isolated EVs were analyzed by
the ZetaView R© Nanoparticle Tracking Analyser (Particle Metrix,
Dusseldorf, Germany). Each sample was diluted in filtered PBS
(1:30–1:50) to reach the optimum detection limit in the machine
and measured three times.

Statistics
Data were analyzed and presented via GraphPad Prism v7.0
(California, USA) as mean ± SEM of at least three independent
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experiments, with each replicate carried out on a separate BEAS-
2B cell passage or independent PBEC donor, please see figure
legends for specific experimental replicate numbers. Statistical
tests performed are also detailed within the figure legends with
significant differences indicated by ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p <

0.001; ∗∗∗∗p < 0.0001.

RESULTS

RV Infection Induces TN-C Release in vitro

in PBECs, With Release Greater in PBECs
Obtained From People With Asthma, Whilst
the Viral Mimic Poly(I:C) Induces TN-C
Release Into the Murine Airway
TN-C is a protein that, once released, can have a pro-
inflammatory function upon interaction with cells such as

macrophages (14). Therefore, we first investigated whether
epithelial cell TN-C release occurred in response to RV. PBECs
from NANA (healthy non-atopic non-asthmatic control) and
AA (atopic asthmatic) adult patients were obtained and infected
with RV-1B (a minor group RV) and RV-16 (a major group RV)
in vitro. Western blotting of cell culture supernatant revealed
increased TN-C release upon infection with both RV serotypes.
When analyzed by densitometry and normalized to total protein
concentration (determined by bicinchoninic acid assay), RV-16
infection produced greater TN-C release in AA PBECs compared
to the AAmedia control and to the NANARV-16 treated samples
(Figures 1A,B). Due to previous evidence of TN-C KO mice
having reduced AHR severity (16), the relationship between
poly(I:C) (a TLR3 agonist and viral mimic) stimulation and TN-
C release in an in vivo murine model was also investigated.
C57BL/6 mice were stimulated intranasally with poly(I:C), using
PBS as a vehicle control, sacrificed at the indicated times, and

FIGURE 1 | RV infection induces TN-C release in vitro and poly(I:C) induces TN-C in vivo, with increased release observed in bronchial epithelial cells from people with

asthma. (A,B) Cell-free supernatants from NANA and AA PBECs, infected with RV-1B and RV-16 for 6 or 24 h, were obtained from the ALLIANCE study. (A) Cell-free

supernatants were analyzed by western blot using antibodies specific to TN-C (one representative blot shown), with media samples (M), RV-1B (1B), and RV-16

samples (16). (B) Densitometry of the large >250 kDa variant was performed in ImageJ and normalized to protein concentration (determined by a bicinchoninic acid

assay). Data shown are mean ± SEM with each replicate carried out using an independent PBEC donor (n = 4). (C,D) Under recovery anesthesia, adult C57BL/6

mice were treated intranasally with 50 µl PBS or 100 µg poly(I:C) in 50 µl PBS for up to 48 h. The mice were then sacrificed, and BALF was collected by washing the

lungs with 3ml of PBS. (C) 150 µl of mouse BALF was TCA precipitated to a final volume of 20 µl and the presence of TN-C at 24 and 48 h was analyzed by western

blot (48 h blot shown). (D) Densitometry of the small ∼250 kDa variant was then performed using ImageJ software and normalized to neutrophil cell count. Data

shown are mean ± SEM from a single experiment, with each point a separate mouse (3 mice for PBS treatment and 7 mice for poly(I:C) treatment). Significant

differences in TN-C secretion are indicated by #p < 0.05; **p < 0.01; ***p < 0.001; analyzed by two way ANOVA with Tukey’s post-hoc test.
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FIGURE 2 | RV induced TN-C release from bronchial epithelial cells is triggered by TLR3 activation and is not RV-serotype specific. PBECs (A–C) and BEAS-2B cells

(D) were treated with poly(I:C) (25µg/ml), RV-1B (MOI 0.6), or RV-16 (MOI 1.5) for the indicated times. Cell-free supernatants were analyzed by ELISA to measure

TN-C release. Data shown are mean ± SEM (N = 3–5) with each replicate a separate BEAS-2B cell passage or independent PBEC donor. Significant differences in

TN-C release are indicated by *p < 0.05; **p < 0.01; ***p < 0.001; analyzed by Kruskal-Wallis one-way ANOVA with Dunn’s post-hoc test (A,C) or two way repeated

measures ANOVA with Tukey’s post-hoc test (B,D).

BALF collected. Western blotting BALF revealed TN-C levels
were increased 48 h post-poly(I:C) stimulation, compared to the
PBS treated controls (Figures 1C,D).

TN-C Expression and Release in Bronchial
Epithelial Cells Is Triggered by TLR3, but
Not TLR7, Activation
TN-C release in response to RV infection of human bronchial
epithelial cells in vitro has not, to our knowledge, been previously
determined. Thus, we further investigated this pathway, as well
as examining the TLRs responsible. TN-C mRNA levels, and
protein expression and release, in response to RV, poly(I:C)
and gardiquimod (a TLR7 agonist) in the BEAS-2B cell line
and PBECs from healthy donors was determined, with TNFα
used as a positive control. TN-C mRNA expression was
analyzed by qPCR and normalized to GAPDH expression. Cell-
associated TN-C expression and TN-C release was assessed by
western blotting cell lysates and cell supernatant, respectively,
and normalized to β-actin (lysates only). TN-C levels in cell
supernatants were further quantified by ELISA.

TN-C release in PBECs in response to RV-1B (Figure 2A)
and RV-16 (Figure 2B) infection was confirmed by TN-C ELISA,
with peak TN-C release occurring at 48–72 h post-infection.
PBECs also released TN-C upon stimulation with poly(I:C)
(Figure 2C), and we confirmed that as expected poly(I:C)
induced the release of CXCL8 (Supplementary Figures 1A,C)
and CCL5 (Supplementary Figures 1B,D) from both BEAS-2B

and PBECs. To confirm the specificity of the TN-C antibody,
recombinant TN-C with a histidine-tag was purified and
compared to PBEC intracellular associated TN-C by western
blot. The purified TN-C displayed the same band pattern as
the more complex cellular samples (Supplementary Figure 1E).
PBECs did not respond to gardiquimod stimulation (as measured
by CXCL8; Supplementary Figure 2A) and TN-C release did not
occur (measured by western blot; Supplementary Figure 2B).
Gardiquimod activity was confirmed by stimulation of
macrophages (Supplementary Figure 2A). Poly(I:C) and
RV-1B treatment of BEAS-2B cells also resulted in TN-C release
(Figure 2D), with no response to gardiquimod (data not shown).
Together these data demonstrate TN-C release is not RV serotype
specific and can be promoted by TLR3, but not TLR7 activation
in primary human epithelial cells and cell lines.

Upregulation of TN-C mRNA and cell-associated
TN-C protein was not observed in PBECs in response
to poly(I:C), RV-1B or RV-16 (data not shown), whilst
poly(I:C) stimulated TN-C mRNA expression in BEAS-2B
cells at 24 h (Supplementary Figure 2C), and cell-associated
TN-C protein expression at 24 and 48 h post-stimulation
(Supplementary Figure 2D), with levels of expression similar
to that induced by TNFα. Basal levels of TN-C mRNA
expression (Supplementary Figure 2E) and cell-associated
protein (Supplementary Figure 2F) were significantly greater in
PBECs compared to BEAS-2B cells. Together these data show a
cell-type specific effect of viral infection/poly(I:C) stimulation on
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FIGURE 3 | Induction of epithelial cell death is not sufficient to induce PBEC TN-C release. PBECs were grown to confluence and infected with RV-1B (MOI 0.6) or

stimulated with poly(I:C) (25µg/ml) or staurosporine (5µg/ml) for the indicated times. Metabolic activity was measured by MTT assay in response to RV and

staurosporine (A) and poly(I:C) and staurosporine (B). The presence of TN-C was analyzed by western blot (M for Media, R for RV-1B, P for poly(I:C), and S for

staurosporine; one representative blot shown; (C,D). Densitometry of the large >250 kDa variant in response to RV (E) and poly(I:C) (F) was performed in ImageJ

software. Values are expressed as mean ± SEM (N = 3–4) with each replicate representing an independent PBEC donor. Significant differences in cell viability (#

compared to media control which was assigned 100% and * compared to poly(I:C)/RV) and TN-C release are indicated by, *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001; ##p < 0.01; ####p < 0.0001, analyzed by two way ANOVA with Dunnett’s post-hoc test. Analysis for MTT assay was performed on raw values.

TN-C expression, and suggests that the required rate of TN-C
transcription needed to facilitate protein release depends on
existing intracellular expression.

TN-C Release Does Not Occur as a Result
of Cell Death
The next aim was to investigate the mechanism of TN-C release
following viral infection. RV infection of bronchial epithelial
cells can promote the induction of apoptosis (27), and it was
important to ascertain whether the observed TN-C release is
directly promoted by infection or an indirect by-product of
RV-induced cytotoxicity.

PBECs were infected with RV, stimulated with poly(I:C), or
treated with staurosporine (a promoter of apoptosis) for up
to 72 h, and the MTT cell metabolic activity assay performed.
Supernatants were collected and TN-C levels were compared by
western blot. RV infection resulted in a significant reduction in

cell metabolic activity (∼30%; Figure 3A) whilst staurosporine
treatment caused ∼70–80% reduction (Figures 3A,B) compared
to the media control. In contrast, poly(I:C) did not affect cell
metabolic activity. Importantly, RV infection (Figures 3C,E)
and poly(I:C) stimulation (Figures 3D,F) both induced TN-C
release from PBECs, whilst staurosporine treatment did not
(Figures 3C–F). This indicates that virally induced TN-C release
is not associated with significant changes in cell viability and
that induction of epithelial cell death is not sufficient to induce

TN-C release.

Poly(I:C) Stimulation of BEAS-2B Cells
Induces sEV-Associated TN-C Release
sEVs are a type of extracellular vesicle (EV) that range from 50
to 200 nm in size and originate from the endosomal pathway or
the plasma membrane (28, 29). sEVs can encompass exosomes
and smaller microvesicles, and were investigated as a potential
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FIGURE 4 | Poly(I:C) stimulation of BEAS-2B cells induces the release of sEVs and sEV-associated TN-C expression. BEAS-2B cells were grown to confluence in

EV-depleted media and stimulated with poly(I:C) (25µg/ml) for the indicated times. sEVs were then isolated by the four spin ultracentrifugation method and

re-suspended in 100 µl PBS. (A) CD9, flotillin-1 and GRP-94 expression was measured by western blot (one representative blot shown). (B) sEV concentration and

size was quantified by Nanoparticle Tracking Analysis on ZetaView. (C) TN-C expression was measured by western blot (one representative blot shown) and (D) TN-C

expression was quantified by densitometry using ImageJ software. Values are expressed as mean ± SEM (N = 7) with each replicate a different cell passage.

Significant differences in sEV release and sEV-associated protein expression are indicated by *p < 0.05, analyzed by Mann-Whitney U test (B) or two way ANOVA

with Tukey’s post-hoc test (D).

mechanism of TN-C release as TN-C association with these
vesicles has previously been reported in cancerous colorectal cell
lines (29) and sEVs have been implicated in asthma pathogenesis
and airway inflammation (30). There is a need for large amounts
of sEVs to be isolated for accurate NTA analysis and sEVs also
have a short storage time before degradation, thus, BEAS-2B cells
were chosen as suitable cells, due to their quicker doubling time
and greater density in culture than PBECs.

BEAS-2B cells were cultured in EV-depleted media,
stimulated with poly(I:C) and supernatant collected for
sEV isolation, using a four-step ultracentrifugation method
(Supplementary Figure 3A). The sEVs were characterized
by western blotting, confirming the presence of sEV
enriched-proteins CD9 and flotillin-1, and the absence of
intracellular protein control GRP94 in the sEV samples
(Figure 4A). The average sEV size, as determined by NTA,
was 100 nm and the concentration of sEVs increased at
72 h post-stimulation (Figure 4B). sEV associated TN-C
expression was measured by western blot, and increased
at 72 h post-stimulation (Figures 4C,D). Analysis of the
amount of TN-C left in the supernatant after sEV isolation
demonstrated that ∼50% of released TN-C is associated with
sEVs (Supplementary Figure 3B). Together these data reveal
that TN-C release occurs in two formats; soluble TN-C protein
in the cell supernatant and TN-C protein associated with sEVs.

FBG-C and Poly(I:C)-Induced sEVs Induce
Cytokine Release in BEAS-2B Cells, but the
sEV-Pathway May Not be TN-C-Dependent
This work has demonstrated that RV infection induces the
release of soluble TN-C from bronchial epithelial cells, and that
TN-C is also associated with poly(I:C)-induced sEV release.

As the inflammatory function of TN-C on epithelial cells

has not been investigated, we measured the effect of soluble

FBG-C on BEAS-2B cells, using macrophages as a control
cell type. RV infection has also been hypothesized to induce

changes in the sEVmiRNA composition, potentially contributing
to enhanced airway inflammation and anti-viral activity (31),

whilst sEVs from nasal lavage fluid of people with chronic
airway inflammation contain altered protein cargo (32). The
inflammatory and anti-viral consequence of sEV addition to
BEAS-2B cells was therefore investigated, and the role of TN-C
in this pathway determined.

FBG-C was purified by Ni2+ purification as per
(14, 24) and characterized for activity and structure
(Supplementary Figures 4A–C). A concentration response
curve was generated in BEAS-2B cells, with 1–2µM FBG-
C determined to be sufficient to induce CXCL8 release
(Supplementary Figure 4D). MDMs were also stimulated with
1µM FBG-C, with previous work in our group demonstrating
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FIGURE 5 | FBG-C induces cytokine release in macrophages and BEAS-2B cells and sEVs isolated from virally-stimulated BEAS-2B cells induce BEAS-2B cell

cytokine release which may be independent from TN-C. (A) Monocyte derived macrophages were left unstimulated or stimulated with purified recombinant FBG-C

(1µM) or LPS smooth (S) serotype 0111:B4 (10µg/ml) for 24 h. (B) BEAS-2B cells were left unstimulated or stimulated with LPS smooth serotype 0111:B4 (10µg/ml),

LPS rough (R) serotype EH100 (10µg/ml) or (C) FBG-C (1µM) for 24 h. (D–F) BEAS-2B cells were grown to confluence in EV-depleted media, and stimulated with

poly(I:C) (25µg/ml) for 72 h. sEVs were then isolated by the four spin purification method, re-suspended in 100 µl PBS and the concentration measured by NTA. sEVs

were added to fresh BEAS-2B cells at the designated concentrations and cell free supernatants were collected at 24 h. (D) CXCL8 (with a 0 h poly(I:C) control), (E)

IL-6 and (F) CCL5 were measured by ELISA. (G,H) BEAS-2B cells were pre-treated with 100 nM TN-C siRNA or 100 nM control siRNA for 24 h, and then stimulated

with poly(I:C) (25µg/ml) for 72 h. sEVs were isolated by the four-step ultracentrifugation method and TN-C expression was determined by western blot. BEAS-2B cells

were then stimulated with the siRNA treated sEVs for 24 h. Cell free supernatants were collected and analyzed for (G) CXCL8 and (H) CCL5 release by ELISA. Data

are expressed as mean ± SEM (N = 3–4) with each replicate a different cell passage and separate sEV population. Significant cytokine release is indicated by *p <

0.05, analyzed by Kruskal-Wallis with Dunn’s post-hoc test (A,B,G,H), Mann-Whitney U Test (C) or two way ANOVA with Tukey’s post-hoc test (D,E,F).

that concentrations between 0.05 and 1µM were sufficient to
induce an inflammatory response (14, 24). FBG-C was added
exogenously to macrophages (with an LPS TLR4 positive
control) or BEAS-2B cells, cell-free supernatants were collected,
and CXCL8 release analyzed by ELISA. FBG-C stimulation
resulted in substantial CXCL8 release in macrophages, with
the amount released similar to that elicited by LPS stimulation
(Figure 5A). Due to contradictory evidence about the ability of
bronchial epithelial cells to respond to LPS (and thus respond
to TLR4 agonists) (20), BEAS-2B cells were first stimulated with
rough LPS serotype EH100 and smooth LPS serotype 0111:B4
and CXCL8 production measured. Smooth LPS, but not rough
LPS induced significant cytokine release from BEAS-2B cells
(Figure 5B); whilst TN-C-FBG stimulation (1µM) also elicited
CXCL8 release in BEAS-2B cells (Figure 5C).

BEAS-2B cells were next stimulated with poly(I:C) for 72 h
and sEVs were isolated as per Supplementary Figure 3A. sEVs
were quantified by NTA and added to BEAS-2B cells at 10,000–
20,000 sEVs per µl for 24 h, before cell free supernatants were
collected for analysis. Addition of unstimulated media control
sEVs did not induce any cytokine release from BEAS-2B cells,
whilst addition of sEVs from poly(I:C) stimulated cells induced
CXCL8 (Figure 5D), IL-6 (Figure 5E), and CCL5 (Figure 5F)
release. A 0 h control was used in the CXCL8 experiment,
with sEVs isolated instantly after poly(I:C) stimulation. No
CXCL8 release was induced, demonstrating a lack of poly(I:C)
contamination. To determine what role TN-C played in this
response, the experiment was repeated with a 100 nM TN-
C siRNA or 100 nM control siRNA pre-treatment step prior
to poly(I:C) stimulation. Despite a knockdown efficiency of
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FIGURE 6 | The proposed mechanism of TN-C release following RV infection of bronchial epithelial cells. Upon viral infection, RV is internalized to the early endosome

and uncoats. The single stranded RNA exits the endosome (early or late endosome depending on the RV serotype) and forms a temporary double stranded RNA

intermediate (recognized by TLR3 in the cytoplasm). It is not yet clear how the endosomal TLR recognizes the cytoplasmic RNA. Poly(I:C) enters the endosome upon

addition to cells and stimulates the TLR3 pathway. The amount of RV/Poly(I:C)-dependent cell associated TN-C upregulation may depend on existing basal levels of

expression in the cell, with PBECs expressing higher TN-C levels at baseline compared to BEAS-2B cells. Furthermore, RV-induced TN-C release occurs in response

to major and minor serotypes of RV, and is not an indirect consequence of cell cytotoxicity, as poly(I:C) induces TN-C release despite no significant cell death.

Activation of the TLR3 dependent pathway (and other pathways upon viral infection) induce the release of TNFα and TGFβ, known transcriptional regulators of TN-C

through the MAPK/ERK and NF-κB/p65 pathways. It is postulated that this triggers the signaling cascade required for the expression and release of TN-C in PBECs.

Black lines denote events determined by experiments with both poly(I:C) and RV, the dashed line indicates events that occur in RV infection and the dotted line

indicates events determined by experiments with poly(I:C) only.

∼75% (Supplementary Figures 4E,F), there was no difference
in poly(I:C) induced CXCL8 (Figure 5G) or CCL5 (Figure 5H)
release between the two siRNA groups.

DISCUSSION

This study identifies two novel pathways that can mediate
inflammation in bronchial epithelial cells and macrophages: the
release of the ECM protein TN-C in response to RV infection
(which is elevated in PBECs from people from asthma), and the
generation and release of sEVs in response to TLR3 stimulation
by poly(I:C).

The proposed mechanisms of RV-dependent TN-C release
and poly(I:C)-dependent sEV release are summarized in
Figure 6. Work in this study determined that TN-C release in
bronchial epithelial cells is triggered by TLR3, but not TLR7
signaling, with the lack of response to gardiquimod correlating
with previous work from our lab (21). TN-C release occurred
in response to both minor and major RV serotypes. In contrast,
intracellular TN-C was not upregulated in response to RV in
PBECs, results which are in keeping with another study, which

demonstrated RV infection of primary airway smooth muscle
cells did not promote expression of TN-C (33). The amount
of RV-dependent TN-C upregulation may depend on basal
levels of expression. We theorize that the lack of significant
intracellular upregulation of TN-C in PBECs following infection
was due to the high basal levels that are present in the cells,
and therefore promotion of TN-C expression was not required
in order for the protein to be released. This also explains why
upregulation was observed in BEAS-2B cells upon stimulation
and infection, as these cells express low basal levels of TN-C.
As TNFα and TGFβ are known transcriptional regulators of
TN-C (34, 35), and are produced in response to RV infection
(36), we postulate these cytokines trigger the signaling cascades
that promote the release of TN-C from bronchial epithelial
cells. This pathway was also confirmed in vivo, with nasal
administration of poly(I:C) inducing TN-C release in BALF
from mice at 48 h post-stimulation. Poly(I:C) was chosen as a
relevant stimulus as this model has previously been shown to
elicit lung inflammation and impair lung function in mice in
a TLR3 dependent manner (37). We confirmed that poly(I:C)
produced a robust immune response 48 h post-stimulation (data
not shown).
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Once released into surrounding environment, soluble TN-
C has the ability to induce TLR4 inflammation through the
FBG-C domain. BEAS-2B cells in culture have the ability
to respond to smooth LPS but not rough LPS [which can
be overcome by co-culture with monocytes, which provide
the required co-receptors (20)], and our work now reveals
that FBG-C can also induce inflammatory cytokine release
from bronchial epithelial cells. This draws a parallel with,
and builds on, our previous work demonstrating the ability
of TN-C to induce inflammatory cytokine release via FBG-C-
TLR4 interactions in macrophages and fibroblasts (14). Work
in the future will aim to detail exactly how much TN-C is
released in the airway following infection, both from AA and
NANA samples.

RV infection lasts on average 9–11 days, meaning multiple
rounds of infection, viral egress, and reinfection occur (38).
Evidence is contradictory about whether asthma suffers are
more susceptible to RV infection, however it is clear that RV
infection persists longer in people with asthma and they have
more severe symptoms (38). The isoforms of TN-C released in
response to RV are large (>250 kDa), which are more resistant to
matrix metalloproteinase 9 (MMP9) degradation (39) and have
a greater capacity to induce inflammation than smaller isoforms
(14, 40). In people with asthma, the exaggerated response to RV
infection, leading to greater TN-C release, could lead to TN-
C persisting in the airway after the clearance of viral infection,
incorporating into the ECM and exerting its inflammatory effect
locally (15). Furthermore, the release of TN-C could form a
positive feedback loop (previously demonstrated in RA), further
increasing expression and release of the protein (41). Also, viral
infection itself may result in a greater susceptibility to virally
induced-TN-C release and the consequential TLR4 dependent
inflammation, with respiratory syncytial virus (RSV) having
been previously shown to induce the upregulation of TLR4 in
bronchial epithelial cells (42).

The work described here also established that poly(I:C)
stimulation of BEAS-2B cells induced sEV release and provided
novel information that TN-C is associated with these vesicles.
Results from this study demonstrate that ∼50% of the released
TN-C was associated with sEVs, whilst the other 50% was
present in the supernatant. This study establishes sEVs as
an inflammatory pathway of importance in the airway, with
initial results indicating that sEVs exert an inflammatory
effect in a TN-C-independent manner. However, as 100%
of TN-C knockdown was not achieved, further investigation
is required in order to discount TN-C from having a role
in TLR3-induced sEV-dependent inflammation. The results
in this manuscript are consistent with a recent study that
demonstrated that RSV-induced sEVs promote inflammatory
cytokine release in an alveolar epithelial cell line through IP-
10, CCL2, and CXCL10 release (43). Our work also highlights
for the first time that virally-stimulated sEVs promote an anti-
viral CCL5 response in surrounding bronchial epithelial cells
after infection. sEVs can also “travel” quite large distances
of at least several cell diameters (44), and thus will induce
a more widespread immune response to RV infection than
soluble TN-C.

The revelation that RV infection and poly(I:C) stimulation can
induce inflammatory TN-C and/or sEV release is of importance
in the context of virally-induced asthma exacerbations. TN-C
release was increased in the PBECs of AA subjects in response
to RV, potentially providing evidence of a mechanism for the
increased expression of the protein in the basement membrane
of people with asthma (13, 15). As detailed above, RV infections
persist longer in people with asthma (38) and this, alongside
increased basal cell-associated expression of TN-C in people with
asthma (15), may result in the greater release of the protein
upon infection, promoting a chronic inflammatory response and
contributing toward the development of AHR. Furthermore,
sEVs isolated from the BALF of people with asthma have an
increased inflammatory miRNA profile which can contribute
toward pathogenesis (45), and thus RV infection may shift the
imbalance of sEV miRNA profile even further.

Now the novel mechanisms of RV-induced TN-C release
and poly(I:C) induced sEV release have been established, it
will be paramount in the future to further characterize these
pathways. We aim to investigate whether RV induces sEVs with a
similar inflammatory phenotype to poly(I:C), and whether this is
potentiated further in people with asthma. TN-C is a protein that
can be targeted therapeutically with monoclonal antibodies that
target the TLR4 binding epitope on the FBG-C domain, reducing
cytokine release in RA synovial cells (19). Thus, TN-C may be
a potential therapeutic target in the future in order to reduce a
local inflammatory response to TN-C following RV-dependent
release. Furthermore, sEVs are currently used as biomarkers in
cancers such as colorectal cancer (46), and as more work unveils
the role of sEVs in asthma, these vesicles, and the levels of
associated TN-C, should be considered as a potential biomarker
for disease severity.

The data presented in this study reveals novel consequences
of RV infection and poly(I:C) stimulation of bronchial epithelial
cells: the induction of pro-inflammatory TN-C release that can
activate local cytokine synthesis in the airway, and the release of
sEVs (that contain TN-C) which have the ability to induce an
immune response over longer distances. The pathway of TN-C
release is also more active in the airway of people with asthma
and thus identifies TN-C and sEVs as relevant to the biology of
virally induced exacerbations of asthma.
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