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Recent work has explored using the stabilizer formalism to classically simulate quan-
tum circuits containing a few non-Clifford gates. The computational cost of such meth-
ods is directly related to the notion of stabilizer rank, which for a pure state ψ is de-
fined to be the smallest integer χ such that ψ is a superposition of χ stabilizer states.
Here we develop a comprehensive mathematical theory of the stabilizer rank and the
related approximate stabilizer rank. We also present a suite of classical simulation
algorithms with broader applicability and significantly improved performance over the
previous state-of-the-art. A new feature is the capability to simulate circuits composed
of Clifford gates and arbitrary diagonal gates, extending the reach of a previous al-
gorithm specialized to the Clifford+T gate set. We implemented the new simulation
methods and used them to simulate quantum algorithms with 40-50 qubits and over
60 non-Clifford gates, without resorting to high-performance computers. We report a
simulation of the Quantum Approximate Optimization Algorithm in which we process
superpositions of χ ∼ 106 stabilizer states and sample from the full n-bit output dis-
tribution, improving on previous simulations which used ∼ 103 stabilizer states and
sampled only from single-qubit marginals. We also simulated instances of the Hidden
Shift algorithm with circuits including up to 64 T gates or 16 CCZ gates; these simu-
lations showcase the performance gains available by optimizing the decomposition of a
circuit’s non-Clifford components.

Contents

1 Introduction 2

2 Main results 4

2.1 Tools for constructing low-rank stabilizer decompositions . . . . . . . . . . . . . . 4
2.2 Subroutines for manipulating low-rank stabilizer decompositions . . . . . . . . . . 7
2.3 Simulation algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Gadget-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Sum-over-Cliffords method . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Implementation and simulation results . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Quantum approximate optimization algorithm . . . . . . . . . . . . . . . . 12
2.4.2 The hidden shift algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Discussion 15

4 Subroutines 17

4.1 Phase-sensitive Clifford simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Accepted in Quantum 2019-06-19, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:1

80
8.

00
12

8v
2 

 [
qu

an
t-

ph
] 

 2
7 

A
ug

 2
01

9

https://quantum-journal.org/?s=Simulation%20of%20quantum%20circuits%20by%20low-rank%20stabilizer%20decompositions&reason=title-click
https://quantum-journal.org/?s=Simulation%20of%20quantum%20circuits%20by%20low-rank%20stabilizer%20decompositions&reason=title-click


4.2 Heuristic Metropolis simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Fast norm estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Stabilizer rank 27

5.1 Exact stabilizer rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Sparsification Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Approximate stabilizer rank of Clifford magic states . . . . . . . . . . . . . . . . . 32
5.4 Lower bound based on ultra-metric matrices . . . . . . . . . . . . . . . . . . . . . . 34

6 Stabilizer fidelity and Stabilizer extent 37

6.1 Convex duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Stabilizer alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3 Proving and disproving stabilizer alignment . . . . . . . . . . . . . . . . . . . . . . 41
6.4 Multiplicativity of stabilizer extent . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Acknowledgements 45

1 Introduction

It is widely believed that universal quantum computers cannot be efficiently simulated by classical
probabilistic algorithms. This belief is partly supported by the fact that state-of-the-art classical
simulators employing modern supercomputers are still limited to a few dozens of qubits [17, 30, 48,
52]. At the same time, certain quantum information processing tasks do not require computational
universality. For example, quantum error correction based on stabilizer codes and Pauli noise mod-
els [27] only requires quantum circuits composed of Clifford gates and Pauli measurements–which
can be easily simulated classically for thousands of qubits using the Gottesman-Knill theorem [2, 6].
Furthermore, it is known that Clifford circuits can be promoted to universal quantum computa-
tion when provided with a plentiful supply of some computational primitive outside the stabilizer
operations, such as a non-Clifford gate or magic state [12]. This raises the possibility of simu-
lating quantum circuits with a large number of qubits and few non-Clifford gates. Aaronson and
Gottesman [2] were the first to propose a classical simulation method covering this situation, with
a runtime that scales polynomially with the number of qubits and Clifford gate count but expo-
nentially with the number of non-Clifford gates. This early work is an intriguing proof of principle
but with a very large exponent, limiting potential applications.

Recent algorithmic improvements have helped tame this exponential scaling by significantly
decreasing the size of the exponent. A first step was made by Garcia, Markov and Cross [25, 26],
who proposed and studied the decomposition of states into a superposition of stabilizer states.
Bravyi, Smith and Smolin [14] formalized this into the notion of stabilizer rank. The stabilizer
rank χ(ψ) of a pure state ψ is defined as the smallest integer χ such that ψ can be expressed as
a superposition of χ stabilizer states. It can be thought of as a measure of computational non-
classicality analogous the Schmidt rank measure of entanglement. In particular, χ(ψ) quantifies
the simulation cost of stabilizer operations (Clifford gates and Pauli measurements) applied to the
initial state ψ.

It is known that stabilizer operations augmented with preparation of certain single-qubit “magic
states” become computationally universal [12]. In particular, any quantum circuit composed of
Clifford gates and m gates T = |0〉〈0| + eiπ/4|1〉〈1| can be implemented by stabilizer operations
acting on the initial state |ψ〉 = |T 〉⊗m, where |T 〉 ∝ |0〉 + eiπ/4|1〉. Thus the stabilizer rank
χ(T⊗m) provides an upper bound on the simulation cost of Clifford+T circuits with m T -gates.
The authors of Ref. [14] used a numerical search method to compute the stabilizer rank χ(T⊗m)
for m ≤ 6 finding that χ(T⊗6) = 7. The numerical search becomes impractical for m > 6 and one
instead works with suboptimal decompositions by breaking m magic states up into blocks of six or
fewer qubits. This yields a classical simulator of Clifford+T circuits running in time 20.48m with
certain polynomial prefactors [11]. More recently, Ref. [11] introduced an approximate version of
the stabilizer rank and a method of constructing approximate stabilizer decomposition of the magic
states |T 〉⊗m. This led to a simulation algorithm with runtime scaling as 20.23m that samples the
output distribution of the target circuit with a small statistical error. In practice, it can simulate
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single-qubit measurements on the output state of Clifford+T circuits with m ≤ 50 on a standard
laptop [11]. A similar class of simulation methods uses Monte Carlo sampling over quasiprobability
distributions, where the distribution can be over either a discrete phase space [20, 47, 56], over
the class of stabilizer states [32] or over stabilizer operations [7]. These quasiprobability methods
are a natural method for simulating noisy circuits but for pure circuits they appear to be slower
than simulation methods based on stabilizer rank.

Here we present a more general set of tools for finding exact and approximate stabilizer de-
compositions as well as improved simulation algorithms based on such decompositions. A central
theme throughout this paper is generalizing the results of Refs. [11, 14] beyond the Clifford+T
setting. While Clifford+T is a universal gate set, it requires several hundred T gates to synthesize
an arbitrary single qubit gate to a high precision (e.g. below 10−10 error). Therefore, it would
be impractical to simulate such gates using the Clifford+T framework. We achieve significant
improvements in the simulation runtime by branching out to more general gate sets including
arbitrary-angle Z-rotations and CCZ gates. Furthermore, we propose more efficient subroutines
for simulating the action of Clifford gates and Pauli measurements on superpositions of χ ≫ 1
stabilizer states. In practice, this enables us to perform simulations in the regime χ ∼ 106 with
about 50 qubits on a laptop computer improving upon χ ∼ 103 simulations reported in Ref. [11].
The table provided below summarizes new simulation methods, simulation tasks addressed by each
method, and the runtime scaling.

Method Gate set Simulation
Stabilizer 

decomposition
Runtime

Gadget based

Fixed sample Clifford+! Strong Exact 2".$%&

Random sample Clifford+! Weak Approx 2".'(&

Sum over 

Cliffords

Norm estimation Clifford+)(+) Weak Approx cos +/2 + tan
5

8
sin(+/2)

'&

Metropolis
Clifford+)(+)

Weak Approx Varies

Figure 1: Summary of new simulation methods. For simplicity, here we restrict the attention to quantum circuits
composed of Clifford gates and diagonal single-qubit gates R(θ) = diag(1, eiθ). The T -gate can be obtained
as a special case T = R(π/4). We consider strong and weak simulation tasks where the goal is to estimate
a single output probability (with a small multiplicative error) and sample the output probability distribution
(with a small statistical error) respectively. The runtime scales exponentially with the non-Clifford gate count
m and polynomially with the number of qubits and the Clifford gate count. For simplicity, here we ignore the
polynomial prefactors. For a detailed description of our simulation methods, see Section 2.3.

On the theory side, we establish some general properties of the approximate stabilizer rank. Our
main tool is a Sparsification Lemma that shows how to convert a dense stabilizer decomposition
of a given target state (that may contain all possible stabilizer states) to a sparse decomposition
that contains fewer stabilizer states. The lemma generalizes the method of random linear codes
introduced in Ref. [11] in the context of Clifford+T circuits. It allows us to obtain sparse stabilizer
decompositions for the output state of more general quantum circuits directly without using magic
state gadgets. Combining the Sparsification Lemma and convex duality arguments, we relate the
approximate stabilizer rank of a state ψ to a stabilizer fidelity F (ψ) defined as the maximum
overlap between ψ and stabilizer states. Central to these calculations is a new quantity called
Stabilizer Extent, which quantifies, in an operationally relevant way, how non-stabilizer a state
is. We give necessary and sufficient conditions under which the stabilizer fidelity is multiplicative
under the tensor product. Finally, we propose a new strategy for proving lower bounds on the
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stabilizer rank of the magic states which uses the machinery of ultra-metric matrices [41, 45].
As a main application of our simulation algorithms we envision verification of noisy intermediate-

size quantum circuits [49] in the regime when a brute-force classical simulation may be imprac-
tical [3, 35, 44]. For example, a quantum circuit composed of Clifford gates and single-qubit
Z-rotations with angles θ1, . . . , θm can be efficiently simulated using our methods in the regime
when only a few of the angles θa are non-zero or if all the angles θa are small in magnitude, see
Section 2.3.2. By fixing the Clifford part of the circuit and varying the rotation angles θa one
can therefore interpolate between the regimes where the circuit output can and cannot be verified
classically. From the experimental perspective, single-qubit Z-rotations are often the most reliable
elementary operations [43]. Thus one should expect that the circuit output fidelity should not
depend significantly on the choice of the angles θa.

The next section provides a more detailed overview of our results.

2 Main results

Recall that the Clifford group is a group of unitary n-qubit operators generated by single-qubit
and two-qubit gates from the set {H,S,CX}. Here H is the Hadamard gate, S = |0〉〈0|+ i|1〉〈1| is
the phase shift gate, and CX=CNOT is the controlled-X gate. Stabilizer states are n-qubit states
of the form |φ〉 = U |0n〉, where U is a Clifford operator. We also use Xj , Yj , Zj to denote Pauli
operators acting on the j-th qubit. Below we also make use of the stabilizer formalism, and refer
the unfamiliar reader to the existing literature [46].

2.1 Tools for constructing low-rank stabilizer decompositions

In this section we summarize our results pertaining to the stabilizer rank and describe methods
of decomposing a state into a superposition of stabilizer states. A reader interested only in the
application for simulation of quantum circuits may wish to proceed to Sections 2.2, 2.3.

Definition 1 (Exact stabilizer rank, χ [14]). Suppose ψ is a pure n-qubit state. The exact
stabilizer rank χ(ψ) is the smallest integer k such that ψ can be written as

|ψ〉 =

k
∑

α=1

cα|φα〉, (1)

for some n-qubit stabilizer states φα and some complex coefficients cα.

By definition, χ(ψ) ≥ 1 for all ψ and χ(ψ) = 1 iff ψ is a stabilizer state.

Definition 2 (Approximate stabilizer rank, χδ [11]). Suppose ψ is a pure n-qubit state such
that ‖ψ‖ = 1. Let δ > 0 be a precision parameter. The approximate stabilizer rank χδ(ψ) is the
smallest integer k such that ‖ψ − ψ′‖ ≤ δ for some state ψ′ with exact stabilizer rank k.

Note that this definition differs slightly from the one from Ref. [11] which is based on the fidelity.
Our first result provides an upper bound on the approximate stabilizer rank.

Theorem 1 (Upper bound on χδ). Let ψ be a normalized n-qubit state with a stabilizer decom-

position |ψ〉 =
∑k
α=1 cα|φα〉 where |φα〉 are normalized stabilizer states and cα ∈ C. Then

χδ(ψ) ≤ 1 + ‖c‖2
1/δ

2. (2)

Here ‖c‖1 ≡
∑k
α=1 |cα|.

We note that the stabilizer decomposition |ψ〉 =
∑k
α=1 cα|φα〉 in the statement of the theorem

does not have to be optimal. For example, it may include all stabilizer states. The proof of
the theorem is provided in Section 5.1. It is constructive in the sense that it provides a method
of calculating a state ψ′ which is a superposition of χ′ ≈ δ−2‖c‖2

1 stabilizer states such that
‖ψ′ − ψ‖ ≤ δ. Such a state ψ′ is obtained using a randomized sparsification method. It works
by sampling χ′ stabilizer states φα from the given stabilizer decomposition of ψ at random with
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probabilities proportional to |cα|. The state ψ′ is then defined as a superposition of the sampled
states φα with equal weights, see the Sparsification Lemma and related discussion in Section 5.2.
The theorem motivates the following definition.

Definition 3 (Stabilizer Extent, ξ). Suppose ψ is a normalized n-qubit state. Define the

stabilizer extent ξ(ψ) as the minimum of ‖c‖2
1 over all stabilizer decompositions |ψ〉 =

∑k
α=1 cα|φα〉

where φα are normalized stabilizer states.

The theorem immediately implies that

χδ(ψ) ≤ 1 + ξ(ψ)/δ2. (3)

While it is difficult to compute or prove tight bounds for the exact or approximate stabilizer rank,
we find that ξ(ψ) is a more amenable quantity that can be calculated for many states ψ relevant
in the context of quantum circuit simulation. In particular, we prove

Proposition 1 (Multiplicativity of Stabilizer Extent). Let {ψ1, ψ2, . . . , ψL} be any set of
states such that each state ψj describes a system of at most three qubits. Then

ξ(ψ1 ⊗ ψ2 ⊗ . . .⊗ ψL) =

L
∏

j=1

ξ(ψj). (4)

This shows that the upper bound of Theorem 1 is multiplicative under tensor product in the case
of few-qubit states. It remains open whether ξ is multiplicative on arbitrary collections of states.

The proof of Proposition 1 is provided in Section 6.4. It uses the fact that standard convex
duality provides a characterization of ξ in terms of the following quantity.

Definition 4 (Stabilizer Fidelity, F ). The stabilizer fidelity, F (ψ), of a state ψ is

F (ψ) = maxφ|〈φ|ψ〉|2, (5)

where the maximization is over all normalized stabilizer states φ.

Proposition 1 is obtained as a consequence of new results concerning multiplicativity of the
stabilizer fidelity. In particular, we apply the classification of entanglement in three-partite stabi-
lizer states [13] to derive conditions for the multiplicativity of F (ψ). More precisely, we define a
set of quantum states S which we call stabilizer aligned such that F (φ⊗ψ) = F (φ)F (ψ) whenever
φ, ψ ∈ S. A state ψ is called stabilizer aligned if the overlap between ψ and any stabilizer projector
of rank 2k is at most 2k/2F (ψ). Remarkably, the set of stabilizer aligned states is closed under
tensor product, that is φ⊗ψ ∈ S whenever φ, ψ ∈ S. Moreover, we show that the stabilizer fidelity
is not multiplicative for all states φ /∈ S. That is, for any φ /∈ S there exists a state ψ such that
F (φ⊗ψ) > F (φ)F (ψ). In that sense, our results provide necessary and sufficient conditions under
which the stabilizer fidelity is multiplicative.

Proposition 1 enables computation of ξ(ψ) if ψ is a tensor product of few-qubit states (that
involve at most three qubits). We now describe another large subclass of states ψ relevant for
quantum circuit simulation for which we are able to compute ξ. To describe these states, recall
that any diagonal t-qubit gate V can be performed using a state-injection gadget that contains
only stabilizer operations and consumes an ancillary state |V 〉 = V |+〉⊗t (see the discussion in
Section 2.3 and Figure 2). Here and below |+〉 ≡ (|0〉 + |1〉)/

√
2. The gadget also involves a

computational basis measurement over t qubits. Let x ∈ {0, 1}t be a string of measurement
outcomes. The desired gate V is performed whenever x = 0t. However, given some other outcome
x 6= 0t, the gadget implements a gate Vx = CxV where

Cx =
∏

j : xj=1

V XjV
†,

is the required correction, where Xj is the Pauli X operator acting on the jth qubit. A special class
of unitaries are those where the correction Cx is always a Clifford operator. In this case a unitary
gate V is equivalent to the preparation of the ancillary state |V 〉 modulo stabilizer operations.
This motivates the following definition.
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Definition 5 (Clifford magic states). Let V be a diagonal t-qubit unitary such that V XjV
†

is a Clifford operator for all j. Such unitary V is said to belong to the 3rd level of the Clifford
hierarchy (see e.g. Ref. [28]). The ancillary state |V 〉 ≡ V |+〉⊗t is called a Clifford magic state.

For example, |T 〉⊗m is a Clifford magic state for any integer m. Note that in general the set of
Clifford magic states is closed under tensor product.

Proposition 2. Let ψ be a Clifford magic state. Then ξ(ψ) = F (ψ)−1.

The proof of Proposition 2 is provided in Section 5.3 where it is extended to a slightly broader
class of ψ.

We note that |T⊗m〉 is a Clifford magic state and a product state and so either Proposition 1
or Proposition 2 could be used along with Eq. (3) to upper bound its approximate stabilizer rank.
In this way one can easily reproduce the upper bound obtained in Ref. [11], namely,

χδ(T
⊗m) ≤ O

(

δ−2 cos (π/8)
−2m

)

. (6)

This stands in sharp contrast with the best known lower bound χ(T⊗m) = Ω(m1/2) established in
Ref. [14]. It should be expected that the stabilizer rank (either exact or approximate) of the magic
states T⊗m grows exponentially with m in the limit m → ∞. Indeed, the polynomial scaling of
χδ(T

⊗m) with m for a suitably small constant δ, or χ(T⊗m), would entail complexity theoretic
heresies such as BQP=BPP, or P=NP 1. Remarkably, we have no techniques for proving uncon-
ditional super-polynomial lower bounds. Here we made partial progress by solving a simplified
problem where stabilizer decompositions of T⊗m are restricted to certain product states. For this
simplified setting we prove a tight lower bound on the approximate stabilizer rank of T⊗m match-
ing the upper bound of Ref. [11]. To state our result it is more convenient to work with the magic
state |H〉 = cos (π/8)|0〉 + sin (π/8)|1〉 which is equivalent to |T 〉 modulo Clifford gates. Ref. [11]

showed that |H⊗m〉 admits an approximate stabilizer decomposition |H⊗m〉 ≈∑k
α=1 cα|φα〉 where

k ∼ cos (π/8)
−2m

and φα are product stabilizer states of the form

|x̃〉 = |x̃1〉 ⊗ · · · ⊗ |x̃m〉 where |0̃〉 = |0〉 and |1̃〉 = |+〉. (7)

Here xi ∈ {0, 1}. These are the stabilizer states that achieve the maximum overlap with |H⊗m〉,
see Ref. [11]. Here we prove the following lower bound.

Proposition 3. Suppose S ⊆ {0, 1}m is an arbitrary subset and ψ is an arbitrary linear combina-
tion of states |x̃〉 as in (7) with x ∈ S such that ‖ψ‖ = 1. Then

|S| ≥ |〈H⊗m|ψ〉|2 · cos (π/8)
−2m

. (8)

The proof of this result which is given in Section 5.4 makes use of the machinery of ultra-metric
matrices [41, 45]. We hope that these techniques may lead to further progress on lower bounding
the stabilizer rank.

We conclude this section by summarizing our results pertaining to the exact stabilizer rank.
Prior work focused exclusively on finding the stabilizer rank of m-fold tensor products of magic
state |T 〉. A surprising and counter-intuitive result of Ref. [14] is that for small number of magic
states (m ≤ 6) the stabilizer rank χ(T⊗m) scales linearly with m. Meanwhile, χ(T⊗m) is expected
to scale exponentially with m in the limit m→∞. Using a numerical search we observed a sharp
jump from χ(T⊗6) = 7 to χ(T⊗7) = 12 indicating a transition from the linear to the exponential
scaling at m = 7. This poses the question of whether other magic states have a linearly scaling
stabilizer rank (until some critical m is reached) or if |T 〉 is an exceptional state due to its special
symmetries. Here we show that the linear scaling for small m is a generic feature.

Theorem 2 (Upper bound on χ). Let ψ be an n-qubit state and then for all m ≤ 5 we have

χ(ψ⊗m) ≤
(

2n +m− 1

m

)

(9)

where the round brackets denote the binomial coefficient.

1By simulating a postselective quantum circuit one could solve 3-SAT using a polynomial number of T-gates, see
e.g., Ref. [33].
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For example, this result shows that for any diagonal single-qubit unitary V the associated magic
state |V 〉 obeys χ(|V 〉⊗m) ≤ m + 1 for m ≤ 5. For larger m, an exponential scaling is expected.
The proof of Theorem 2 (given in Section 5.1) exploits well-known properties of the symmetric
subspace and a recently established fact that n-qubit stabilizer states form a 3-design [38, 57].

2.2 Subroutines for manipulating low-rank stabilizer decompositions

Suppose U is a quantum circuit acting on n qubits. We consider a classical simulation task where
the goal is to sample a bit string x ∈ {0, 1}n from the probability distribution PU (x) = |〈x|U |0n〉|2
with a small statistical error.

Suppose we are given an approximate stabilizer decomposition of a state U |0n〉:

‖U |0n〉 − |ψ〉‖ ≤ δ, |ψ〉 =
k
∑

α=1

bαUα|0n〉 (10)

for some coefficients bα and some Clifford circuits Uα. In Section 4 we give algorithms for the
following tasks. These algorithms are the main subroutines used in our quantum circuit simulators.

(a) Sample x ∈ {0, 1}n from the probability distribution

P (x) =
|〈x|ψ〉|2
‖ψ‖2

. (11)

(b) Estimate the norm ‖ψ‖2 with a small multiplicative error.

Note that if δ is small then P (x) approximates the true output distribution PU (x) = |〈x|U |0n〉|2
with a small error. Indeed, Eq. (10) gives ‖P − PU‖1 ≤ O(δ).

The tasks (a,b) are closely related. Using the chain rule for conditional probabilities one
can reduce the sampling task to estimation of marginal probabilities of P (x). Any marginal
probability can be expressed as ‖Πψ‖2/‖ψ‖2, where Π is a tensor product of projectors |0〉〈0|,
|1〉〈1|, and the identity operators. Note that such projectors map stabilizer states to stabilizer
states. Thus Π|ψ〉 admits a stabilizer decomposition with k terms that can be easily obtained from
Eq. (10). Accordingly, task (a) reduces to a sequence of norm estimations for low-rank stabilizer
superpositions, see Section 4.3 for details.

Section 4.1 describes a fast Clifford simulator that transforms a stabilizer state Uα|0n〉 into a
certain canonical form which we call a CH-form. It is analogous to the stabilizer tableaux [2] but
includes information about the global phase of a state. This allows us to simulate each circuit
Uα in the superposition Eq. (10) independently without destroying information about the relative
phases. Our C++ implementation of the simulator performs approximately 5× 106 Clifford gates
per second for n = 64 qubits on a laptop computer.

Section 4.2 describes a heuristic algorithm for the task (a). We construct a Metropolis-type
Markov chain such that P (x) is the unique steady distribution of the chain (under mild additional
assumptions). We show how to implement each Metropolis step in time O(kn). Unfortunately, the
mixing time of the chain is generally unknown.

Section 4.3 gives an algorithm for the task (b). It exploits the fact that the inner product 〈φ|φ′〉
between two n-qubit stabilizer states φ, φ′ can be computed exactly in time O(n3), see Ref. [11, 25].
We adapt this inner product algorithm to the CH-form of stabilizer states in Section 4.3. The
naive method of computing the norm relies on the identity ‖ψ‖2 =

∑k
α,β=1 b

∗
αbβ〈φα|φβ〉, where

|φα〉 = Uα|0n〉. Evaluating all cross terms using the inner product algorithm would take time
O(k2n3) which is impractical for large k. Instead, Ref. [11] proposed a method of estimating,
rather than evaluating, the norm. It works by computing inner products between ψ and random
stabilizer states drawn from the uniform distribution. This method has runtime O(kn3) offering
a significant speedup in the relevant regime of large rank decompositions. Here we propose an
improved version of this norm estimation method combining both conceptual and implementation
improvements. The new version of the norm estimation subroutine achieves approximately 50X
speedup compared with Ref. [11].
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Section 4.3 also describes a rigorous algorithm for the task (a) based on the norm estimation
and the chain rule for conditional probabilities. It has runtime O(kn6) which quickly becomes
impractical. However, if our goal is to sample only w bits from P (x), the runtime is only O(kn3w3).
Thus the sampling method based on the norm estimation may be practical for small values of w.

2.3 Simulation algorithms

Here we describe how to combine ingredients from previous sections to obtain classical simulation
algorithms for quantum circuits. We consider a circuit

U = DmVmDm−1Vm−1 . . . D1V1D0 (12)

acting on input state |0n〉, where {Dj} are Clifford circuits and {Vj} are non-Clifford gates. We
discuss three different methods: gadget-based simulation (using either a fixed-sample or random-
sample method as described below) and sum-over-Cliffords simulation.

Let us first summarize the simulation cost of different methods. The gadget-based methods
from Refs. [11, 14] can be used to simulate quantum circuits Eq. (12) where {Vj} are single-qubit
T gates. Using the (random-sample) gadget-based method, the asymptotic cost of sampling from
a distribution δ-close in total variation distance to the output distribution PU (x) = |〈x|U |0n〉|2 is

Õ
(

χδ
(

|T⊗m〉
))

≤ Õ
(

δ−2ξ
(

|T⊗m〉
))

= Õ
(

δ−2 (cos(π/8))
−2m

)

, (13)

where we used Theorem 1 and Proposition 1, and the Õ-notation suppresses a factor polynomial
in m, n, and log(δ−1), see Ref. [11] for details.

We will see how the gadget-based approach can be applied in a slightly more general setting
where the circuit contains diagonal gates from the third level of the Clifford hierarchy. Then we
introduce the sum-over-Cliffords simulation method which can be applied much more generally.
The cost of δ-approximately sampling from the output distribution PU for the circuit Eq. (12)
using the sum-over-Cliffords method can be upper bounded as

Õ

(

δ−2
m
∏

j=1

ξ(Vj)

)

(14)

where the definition of ξ is extended to unitary matrices in a natural way (see below for a formal
definition). For example, if each non-Clifford gate is a single-qubit diagonal rotation of the form
Vj = R(θj) = e−i(θj/2)Z with θj ∈ [0, π/2) then we will see that ξ(Vj) = ξ(Vj |+〉) and the
simulation cost is

Õ

(

δ−2
m
∏

j=1

ξ(Vj |+〉)
)

= Õ

(

δ−2
m
∏

j=1

(cos(θj/2) + tan(π/8) sin(θj/2))
2

)

.

In the case θj = π/4 where all non-Cliffords are T gates, we see that the sum-over-Cliffords method
achieves the same asymptotic cost Eq. (13) as the gadget-based method from Ref. [11]. However
the sum-over-Cliffords method is generally preferred because it is simpler to implement and may
be slightly faster, as it manipulates stabilizer states of fewer qubits.

2.3.1 Gadget-based methods

We begin by reviewing the gadget-based methods for simulating circuits expressed over the Clif-
ford+T gate set. A gadget-based simulation directly emulates the operation of a quantum computer
that can implement Clifford operations and has access to a supply of magic states.

It is well known that one can perform such a gate on a quantum computer using a state-injection
gadget with classical feedforward dependent on measurement outcomes. In particular, a t-qubit
gate V can be implemented by a gadget consuming a magic state |V 〉 = V |+t〉, see Fig. 2 for an
example. Let x ∈ {0, 1}t be the measurement outcome. The gadget implements the desired gate
V whenever x = 0t. Otherwise, if x 6= 0t, the gadget implements a gate Vx = C†

xV where Cx is the
required correction. If V is in the third level of the Clifford hierarchy, the correction Cx is always
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a Clifford operator and |V 〉 is a Clifford magic state (recall Definition 5). Formally, postselecting
on outcome x = 0t gives

V |ψ〉 = 2t/2(1l⊗ 〈0|⊗t)C ′|ψ〉|V 〉, (15)

where C ′ =
(

∏t
a=1 CNOTa,a+t

)

is a Clifford unitary.

Now let U from Eq. (12) be the full circuit to be simulated and suppose Vj is a diagonal tj-
qubit gate. Write τ = t1 + t2 . . .+ tm. If we replace each non-Clifford gate with the corresponding
state-injection gadget we obtain a “gadgetized” circuit with n + τ qubits acting on input state
|0n〉|V1〉|V2〉 . . . |Vm〉. The gadgetized circuit contains τ extra single-qubit measurements and Clif-
ford gates. If we postselect the measurement outcomes on 0τ we obtain an identity (cf. Eq. (15))

U |0n〉 = 2τ/2(1l⊗ 〈0|⊗τ )C|0n〉|Ψ〉 |Ψ〉 = |V1〉|V2〉 . . . |Vm〉 (16)

where C is an n+ τ -qubit Clifford unitary and we have collected together all of the required magic
states into the τ -qubit state Ψ. We see a renormalisation factor 2τ/2 is required to account for
post-selection.

Eq. (16) shows that the output state U |0n〉 of interest has exact stabilizer rank equal to that of
the magic state Ψ, i.e., χ(U |0n〉) = χ(Ψ). Indeed, starting from an exact stabilizer decomposition
of |Ψ〉, we can apply (1l⊗〈0|⊗τ )C to each stabilizer state in the decomposition and renormalize to
obtain an exact stabilizer decomposition of the output state U |0n〉. Once we have computed an
exact stabilizer decomposition of U |0n〉 we may use the subroutines from Section 2.2 to simulate the
quantum computation. For example we may sample from the output distribution PU or compute
a given output probability PU (x). This was the approach taken in Ref. [14] and here we call this
a fixed-sample gadget-based simulator since it postselects on a fixed single measurement outcome.

Note that in the fixed-sample method one must use an exact (rather than approximate) stabi-
lizer decomposition of the resource state Ψ. Indeed, in a fixed-sample simulation if |Ψδ〉 approxi-
mates |Ψ〉 up to an error δ then the simulation error could be amplified to 2τ/2δ when substituting
in Eq. (16).

The random-sample gadget-based simulation method is a different approach that allows us
to use approximate stabilizer decompositions within this framework. Here one selects the post-
selected measurement outcome x ∈ {0, 1}τ uniformly at random. However, now we have some
measurement outcomes other than x = 0τ and so have to account for corrections Cx. Clifford
corrections are straightforwardly simulated and this is ensured provided each non-Clifford gate
Vj in the circuit is diagonal in the computational basis and contained in the third level of the
Clifford hierarchy (e.g., the T gate and CCZ gate). This guarantees that the simulation consuming
an approximate magic state |Ψδ〉 achieves an average-case simulation error O(δ), see Ref. [11] for
details.

An important distinction between the two gadget-based methods is that the random-sample
method allows one to sample from a probability distribution which approximates PU but–unlike
the fixed-sample method– in general cannot be used to obtain an accurate estimate of an individual
output probability PU (x).

2.3.2 Sum-over-Cliffords method

Let U be the quantum circuit Eq. (12) to be simulated. We shall construct a sum-over-Cliffords
decomposition

U =
∑

j

cjKj (17)

where each Kj is a unitary Clifford operator and cj are some coefficients. This gives

U |0n〉 =
∑

j

cjKj |0n〉. (18)

Applying Theorem 1 one can approximate U |0n〉 within any desired error δ by a superposition of
stabilizer states ψ that contains

k ≈ δ−2‖c‖2
1 (19)
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Figure 2: State injection gadgets for single-qubit T gate and general multi-qubit phase gate V . A correction
unitary V XjV

† is required whenever measurement j registers a “1” outcome. If all corrections are Clifford then
gadgets can be deployed with no additional resource requirements.

terms. In this way we can compute an approximate stabilizer decomposition ψ satisfying

‖U |0n〉 − |ψ〉‖ ≤ δ, |ψ〉 =

k
∑

α=1

bαUα|0n〉, (20)

for some coefficients bα and some Clifford circuits Uα. Using the methods summarized in the
previous section we can then sample from the distribution P (x) = |〈x|ψ〉|2 which δ-approximates
the output distribution PU . In particular, one can use either the heuristic Metropolis sampling
technique or the rigorous algorithm using norm estimation, which has runtime upper bounded as
O(kn6).

The sum-over-Cliffords decomposition Eq. (17) of U can be obtained by combining decom-

positions of the constituent non-Clifford gates. If Vp =
∑

j c
(p)
j K

(p)
j for p = 1, 2, . . . ,m, then

substituting in Eq. (12) gives

U =
∑

j1,...,jm

(

m
∏

p=1

c
(p)
jp

)

DmK
(m)
jm

Dm−1 . . . D1K
(1)
j1
D0

which is of the form Eq. (17) with ‖c‖2
1 =

∏m
p=1 ‖c(p)‖2

1. This motivates the following generalization
of ξ to unitary operators.

Definition 6 (Stabilizer Extent for unitaries, cf. Eq. 14). Suppose W is a unitary operator.
Define ξ(W ) as the minimum of ‖c‖2

1 over all decompositions W =
∑

j cjKj where Kj are Clifford
unitaries.

This implies

ξ(U |0n〉) ≤ ξ(U) ≤
∏

j

ξ(Vj). (21)

Thus, given ξ-optimal decompositions of each non-Clifford gate in the circuit, the asymptotic
cost of δ-approximately sampling from PU (x) using the norm estimation algorithm and the sum-
over-Cliffords method is Õ(k), and substituting Eq. (21) in Eq. (19) we recover Eq. (14).

Note that for any gate Vj which acts on O(1) qubits we may compute a ξ-optimal sum-over-
Cliffords decomposition in constant time by an exhaustive search. Below we describe decomposi-
tions for commonly used non-Clifford gates. We use the following lemma which “lifts” a stabilizer
decomposition of the resource state |V 〉 = V |+t〉 to a sum-over-Cliffords decomposition of V .

Lemma 1 (Lifting lemma). Suppose V is a diagonal t-qubit unitary and

V |+t〉 = |V 〉 =
∑

j

cj |φj〉. (22)
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Suppose further that |φj〉 are equatorial stabilizer states so that |φj〉 = Kj |+t〉 where Kj is a
diagonal Clifford for all j. Then

V =
∑

j

cjKj , (23)

and therefore ξ(V ) ≤ ||c||21. Furthermore, if the equatorial stabilizer decomposition Eq. (22)
achieves the optimal value ‖c‖2

1 = ξ(|V 〉) then ξ(|V 〉) = ξ(V ).

Proof. Since U and {Kj} are diagonal in the computational basis we may write

V =
∑

x

eiθ(x)|x〉〈x| Kj =
∑

x

eiθj(x)|x〉〈x| (24)

where θ, θj are functions F
t
2 → R. For all x ∈ {0, 1}t we have

1

2t/2
eiθ(x) = 〈x|V |+t〉 = 〈x|

∑

j

cjKj |+t〉 =
1

2t/2

∑

j

cje
iθj(x) (25)

Combining Eqs. (24,25) and cancelling the factors of 2−t/2 gives Eq. (23) and the remaining
statements of the lemma are immediate corollaries.

For single-qubit diagonal rotations R(θ) = e−i(θ/2)Z , we have

R(θ)|+〉 = (cos(θ/2)− sin(θ/2)) |+〉+
√

2 sin(θ/2)e−iπ/4S|+〉, (26)

which is an optimal decomposition with respect to ξ and is similar to Eq. (163). Therefore, we can
use the lifting lemma to obtain an optimal decomposition

R(θ) = (cos(θ/2)− sin(θ/2)) 1l +
√

2e−iπ/4 sin(θ/2)S (27)

and conclude
ξ(R(θ)) = ξ(R(θ)|+〉) = (cos(θ/2) + tan(π/8) sin(θ/2))

2
. (28)

The doubly controlled Z gate (CCZ) is another useful example. In Section 5.3 we show that

|CCZ〉 =
2

9
(1l + CZ1,2X3)(1l + CZ1,3X2)(1l + CZ2,3X1)|+3〉, (29)

=
2

9

(

1l + CZ1,2 + CZ1,3 + CZ2,3 + CZ1,2CZ1,3Z1 + CZ1,2CZ2,3Z2

+ CZ1,3CZ2,3Z3 − CZ1,2CZ1,3CZ2,3Z1Z2Z3

)

|+3〉,

is an optimal decomposition with respect to ξ. Deploying the lifting lemma we have

CCZ =
2

9

(

1l + CZ1,2 + CZ1,3 + CZ2,3 + CZ1,2CZ1,3Z1 + CZ1,2CZ2,3Z2 (30)

+ CZ1,3CZ2,3Z3 − CZ1,2CZ1,3CZ2,3Z1Z2Z3

)

,

and conclude
ξ(CCZ) = ξ(|CCZ〉) = 16/9. (31)

Recall that since this is a Clifford magic state we have ξ(|CCZ〉) = 1/F (|CCZ〉) and notice that
the stabilizer fidelity is achieved by the equatorial stabilizer state |+3〉. We remark that the above
recipe for an optimal sum-over-Cliffords decomposition can be generalised to any Clifford magic
state for which the stabilizer fidelity is achieved by some equatorial stabilizer state.

These optimal sum-over-Cliffords decompositions will be used in the numerics of the following
Section.
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2.4 Implementation and simulation results

In this section we report numerical results obtained by simulating two quantum algorithms.
First, we use the sum-over-Cliffords method to simulate the Quantum Approximate Optimization
(QAOA) algorithm due to Farhi et al [22]. This algorithm allows us to explore the performance
of our simulator for circuits containing Cliffords and diagonal rotations. This simulation involves
n = 50 qubits, about 60 non-Clifford gates, and a few hundred Clifford gates. We note that QAOA
circuits have been previously used to benchmark classical simulators in Ref. [24]. Secondly, we
simulate the Hidden Shift algorithm for bent functions due to Roetteler [51]. This algorithm was
also used to benchmark the Clifford+T simulator of Ref. [11] which, in the terminology of the
previous section, is a gadget-based simulator where sparsification is achieved via suitable choice
of a random linear code. We extend this methodology to a Clifford+CCZ simulator of the same
circuits. We also simulate the Hidden Shift circuits using the new Sum-over-Cliffords method
wherein sparsification is achieved by appealing to the ξ quantity.

2.4.1 Quantum approximate optimization algorithm
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Figure 3: The expected value of the cost function E(β, γ) computed using the Monte Carlo method by
Van den Nest [55]. We consider a randomly generated instance of the Max E3LIN2 problem with n = 50
qubits and degree D = 4.

Here we consider the Quantum Approximate Optimization Algorithm applied to the Max
E3LIN2 problem [22]. The problem is to maximize an objective function

C =
1

2

∑

1≤u<v<w≤n

duvwzuzvzw

that depends on n binary variables z1, . . . , zn ∈ {−1, 1}. Here duvw ∈ {0,±1} are some coefficients.
Let

m =
∑

u<v<w

|duvw|

be the number of non-zero terms in C. Let us say that an instance of the E3LIN2 problem has
degree D if each variable zu appears in exactly D terms ±zuzvzw (depending on the values of n
and D there could be one variable that appears in less than D terms).

Following Ref. [22] we consider a family of variational states

|ψβ,γ〉 = U |0n〉 U = e−iβBe−iγĈH⊗n
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where β, γ ∈ R are variational parameters, B = X1 + . . .+Xn is the transverse field operator, and
Ĉ is a diagonal operator obtained from C by replacing the variables zu with the Pauli operators Zu.
The QAOA algorithm attempts to choose β and γ maximizing the expected value of the objective
function,

E(β, γ) = 〈ψβ,γ |Ĉ|ψβ,γ〉.
Once a good choice of β, γ is made, the QAOA algorithm samples z ∈ {−1, 1}n from a probability
distribution P (z) = |〈z|ψβ,γ〉|2 by preparing the state |ψβ,γ〉 on a quantum computer and measuring
each qubit of |ψβ,γ〉. (In this section we assume that output bits take values ±1 rather than 0, 1.)
By definition, the expected value of C(z) coincides with E(β, γ). By generating sufficiently many
samples one can produce a string z such that C(z) ≥ E(β, γ), see Ref. [22] for details.

Our numerical results described below were obtained for a single randomly generated instance
of the problem with n = 50 qubits and degree D = 4. We empirically observed that the expected
value E(β, γ) does not depend significantly on the choice of the problem instance for fixed n and D.
Since the cost function has a symmetry C(−z) = −C(z), finding the maximum and the minimum
values of C are equivalent problems.

A special feature of the QAOA circuits making them suitable for benchmarking classical sim-
ulators is the ability to verify that the simulator is working properly. This is achieved by com-
puting the expected value E(β, γ) using two independent methods and cross checking the final
answers. Our first method of computing E(β, γ) is a classical Monte Carlo algorithm due to
Van den Nest [55]. It allows one to compute expected values 〈ω|F |ω〉, where F is an arbitrary sparse
Hamiltonian and |ω〉 is a so-called computationally tractable state. Let us choose F = eiβBĈe−iβB

and |ω〉 = e−iγĈ |+⊗n〉 so that 〈ω|F |ω〉 = E(β, γ). The algorithm of Ref. [55] allows one to estimate
〈ω|F |ω〉 with an additive error ǫ in time O(m4ǫ−2). The plot of E(β, γ) is shown on Fig. 3.

Our second method of computing E(β, γ) is the sum-over-Cliffords/Metropolis simulator de-
scribed in Section 2.3.2. We used this method to simulate the QAOA circuit U defined above. For

our choice n = 50 and D = 4 the unitary e−iγĈ can be implemented by a circuit that contains
m = 66 Z-rotations ei(γ/2)Z and a few hundred Clifford gates. To keep the number of non-Clifford
gates sufficiently small we restricted the simulations to the line β = π/4. As can be seen from
Fig. 3, this line contains a local maximum and a local minimum of E(β, γ) (we note that β = π/4
is also the choice made by Farhi et al. [22]). With this choice the cost function is a function of a
single parameter γ and we may write

E(γ) = 〈0n|U†ĈU |0n〉 =
∑

z∈{0,1}n

PU (z)C(z).

between the “exact” value E(γ) computed by the Monte Carlo method and its estimate Esim(γ)
obtained using the sum-over-Cliffords/Metropolis simulator (while the Monte Carlo method is not
perfect, we expect the errors to be negligible for our purposes). While the plot only shows γ ≥ 0,
note that due to the symmetry of the cost function C(z) = −C(−z) we have E(γ) = −E(−γ).
The estimate Esim(γ) is defined as

Esim(γ) =
1

s

s
∑

j=1

C(zj), s = 4 · 104

where z1, . . . , zs are samples from the distribution P (z) describing the output of the simulator, see
Eq. (11). Generating all of the data used to produce Fig. 4a took less than 3 days on a laptop
computer, with the most costly data points taking several hours. The number of stabilizer states
k used to approximate U |0n〉 is shown in Fig. 4b; it was chosen as in Eq. (19) with δ ≤ 0.15
for all values of γ. This toy example demonstrates that our algorithm is capable of processing
superpositions of k ∼ 106 stabilizer states for n = 50 qubits.

2.4.2 The hidden shift algorithm

In this section, we describe the results of simulations applied to a family of quantum circuits
that solve the Hidden Shift Problem [53] for non-linear Boolean functions [51]. These circuits are
identical to those simulated in [11] and further details of this quantum algorithm and its circuit
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Figure 4: Classical simulation of the QAOA algorithm: (a) Comparison between E(γ) and its estimate Esim(γ)
obtained using the sum-over-Cliffords/Metropolis simulator. We consider a randomly generated instance of the
problem with n = 50 qubits and degree D = 4. For each data point 104 Metropolis steps were performed
to approach the steady distribution P (z). The estimate Esim(γ) was obtained by averaging the cost function
C(z) over a subsequent s = 4 ·104 samples x from the output distribution of the simulator. Error bars represent
the statistical error estimated using the MATLAB code due to Wolff [58] (for estimating errors in Markov chain
Monte Carlo data) (b) The number of stabilizer states k used by the sum-over-Cliffords simulator was chosen
as in Eq. (19) with δ = 0.05 for pink data points and δ = 0.15 for blue data points.

instantiation can be found in Section F of the Supplemental Material of [11]. Briefly, the goal is
to learn a hidden shift string s ∈ F

n
2 by measuring the output state |s〉 of the circuit U applied to

computational basis input |0⊗n〉. The number of non-Clifford gates in U can easily be controlled
(we may choose any even number of Toffoli gates) and so the exponentially growing overhead in
simulation time can be observed.

We will use both the gadget-based method of Section 2.3.1 and the Sum-over-Cliffords method
of 2.3.2. Due to the high number of non-Clifford gates the exact stabilizer rank, χ, is prohibitively
high and so some sort of sparsification/approximation must be used, leading to χδ instead. In
principle we could apply the sparsification Lemma 6 in the gadget-based setting, but we prefer
to use the random code method of [11] to enable a comparison with that work. The simulation
timings in Fig. 5 consist of four trend lines which can be broken down as

• TGB : The gadget-based random code method of [11], wherein each Toffoli gate in U is
decomposed in terms of a stabilizer circuit using 4 T gadgets. When a gadgetized version of
U uses a total of t |T 〉-type magic states, then |T⊗t〉 is approximated by a state |L〉 where
L ⊆ F

t
2 is a linear subspace i.e., random code (Compare with Eq. (105)). We then have that

χδ(|T⊗t〉) is the number of vectors in L.

• CCZGB : The gadget-based random code method of [11], wherein each Toffoli gate in U is
implemented via a CCZ gadget (as discussed e.g., in [32]). When gadgetized U uses a total
of u |CCZ〉-type magic states, then |CCZ⊗u〉 is approximated by a state |L〉 (see Eq. (105))
where L ⊆ F

3u
2 is a linear subspace/random code and χδ(|CCZ⊗u〉) = |L|.

• TSoC : The Sum-over-Cliffords method outlined in Sec. 4, wherein each Toffoli gate in U is
decomposed in terms of a stabilizer circuit using 4 T gates. Each T gate is subsequently
decomposed into Clifford gates, T = c0I + c1S, with weightings as in Eq. (27).

• CCZSoC : The Sum-over-Cliffords method outlined in Sec. 4, wherein each Toffoli gate in U
written as CCZ which is subsequently decomposed (optimally in terms of ξ) into Cliffords
as in Eq. (30).

The quantity that eventually determines the simulation overhead for both the T -based and
CCZ-based schemes is F , the overlap with the closest stabilizer state. Recall ξ(T ) = ξ(|T 〉) =
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1/F (|T 〉) and likewise for CCZ. We have

F (T ) = |〈+|T 〉|2 = cos(π/8)2 =
1

2
+

1

2
√

2
≈ 0.853, (32)

F (CCZ) = |〈+⊗3|CCZ〉|2 =

(

3

4

)2

=
9

16
. (33)

Note that we are using the variable u to denote the number of Toffoli (equivalently CCZ) gates
in our Hidden Shift circuit. Using the Random Code method, for a target infidelity ∆ we chose a
corresponding stabilizer rank 2k where [11] stipulates

log2 kT = ⌊log2

(

4 cos(π/8)−8u/∆
)

⌋, (34)

log2 kCCZ = ⌊log2

(

4
(

3
4

)−2u
/∆
)

⌋. (35)

Using the Sum-over-Cliffords method, for a target error δ we chose k as in Lemma 6 so that

kT =

⌊

(

cos(π/8)
−4u

/δ
)2
⌋

, (36)

kCCZ = ⌊
(

(3/4)−u/δ
)2⌋. (37)

In either case, we see that there are significant savings to be had by using CCZ gates/states directly
versus breaking them down into 4 T gates/states each. For a fixed precision the scaling with u
(number of CCZ gates) goes as

T :

(

1

cosπ/8

)8u

≈ 20.914u, (38)

vs. CCZ :

(

16

9

)u

≈ 20.83u. (39)

This is apparent from the different slopes of the T - and CCZ- based versions of the simulations in
Fig. 5.

Absolute comparisons between the gadget-based and Sum-over-Cliffords method are compli-
cated by various implementation details and the amount of optimization applied to each (i.e.,
more in the latter case). Broadly speaking, however, we observe that the Sum-over-Cliffords
method is as fast, if not faster, than the gadget-based method. This is true despite the fact that
Sum-over-Cliffords is completely general in its applicability whereas the gadget-based technique
is only applicable for non-Clifford gates from the third level of the Clifford hierarchy (i.e. those
with state-injection gadgets having Clifford corrections). Not only can Sum-over-Cliffords handle
gates outside the third level, its performance often improves in such situations. For example, a
circuit with many small-angle rotation gates requires a number, k, of samples that is smaller as
the rotation angle moves away from π/4 i.e., the T case (recall Eq. (27)).

3 Discussion

To put our results in a broader context, let us briefly discuss alternative methods for classical
simulation of quantum circuits. Vector-based simulators [19, 30, 52] represent n-qubit quantum
states by complex vectors of size 2n stored in a classical memory. The state vector is updated
upon application of each gate by performing sparse matrix-vector multiplication. The memory
footprint limits the method to small number of qubits. For example, Häner and Steiger [30]
reported a simulation of quantum circuits with n = 45 qubits and a few hundred gates using a
supercomputer with 0.5 petabytes of memory. In certain special cases the memory footprint can
be reduced by recasting the simulation problem as a tensor network contraction [1, 8, 40]. Several
tensor-based simulators have been developed [17, 39, 48] for geometrically local shallow quantum
circuits that include only nearest-neighbor gates on a 2D grid of qubits [9]. These methods enabled
simulations of systems with more than 100 qubits [17]. However, it is expected [33] that for general
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outlier data points (filled rectangles) whose coordinates
are at (14, 0.304) and (16, 0.512), are omitted from this
plot for clarity

0 1 1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 0 1 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Hidden Shift String

O
u
tp
u
t
P
ro
b
ab
ili
ti
es

(d) Simulated output, ŝ, versus the true shift
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Figure 5: Timings and errors for simulations of 40-qubit Hidden Shift circuits with varying numbers of non-
Clifford gates. Every Toffoli gate is either recast as a CCZ gate (via Hadamards on the target) or as a circuit
comprising 4 T gates and additional Stabilizer operations ([11]). We fixed precision parameters δ = 0.3 and
∆ = 0.3 for the sum-over-Clifford simulations and gadget-based simulations respectively. Simulations were run
on Dual Intel Xeon 1.90GHz processors using Matlab.

(geometrically non-local) circuits of size poly(n) the runtime of tensor-based simulators scales as
2n−o(n).

In contrast, Clifford simulators described in the present paper are applicable to large-scale
circuits without any locality properties as long as the circuit is dominated by Clifford gates. This
regime may be important for verification of first fault-tolerant quantum circuits where logical non-
Clifford gates are expected to be scarce due to their high implementation cost [23, 34]. Another
advantage of Clifford simulators is their ability to sample the output distribution of the circuit (as
opposed to computing individual output amplitudes). This is more close to what one would expect
from the actual quantum computer. For example, a single run of the heuristic sum-over-Cliffords
simulator described in Section 4.2 produces thousands of samples from the (approximate) output
distribution. In contrast, a single run of a tensor-based simulator typically computes a single
amplitude of the output state. Thus we believe that our techniques extend the reach of classical
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simulation algorithms complementing the existing vector- or tensor-based simulators.
A version of the sum-over-Cliffords simulator using the Metropolis sampling method is also

publicly available as part of Qiskit-Aer, the classical simulation framework of IBM’s quantum
programming suite Qiskit [4]. This enables classical simulation and verification of quantum cir-
cuits built in Qiskit on system sizes above 30 qubits, which quickly become inaccessible with the
default vector-based method. This version also supports parallel processing over the stabilizer
state decomposition, which improves the performance of the Metropolis step.

Let us briefly comment on how simulators based on the stabilizer rank compare with quasi-
probability methods [20, 37, 47]. The latter use a discrete Wigner function representation of
quantum states and Monte Carlo sampling to approximate a given output probability of the target
circuit with a small additive error. Negativity of the Wigner function is an important parameter
that quantifies severity of the “sign problem” associated with the Monte Carlo sampling. The
negativity also controls the runtime of quasi-probability methods. For example, the simulator
proposed in [47] has runtime ǫ−2M2, where M is the negativity and ǫ is the desired approximation
error. In contrast to stabilizer rank simulators, quasi-probability methods do not directly apply
to stabilizer operations on qubits since the latter are not known to have a non-negative Wigner
function representation [20, 36]. Furthermore, such methods are not well-suited for sampling the
output distribution since this task requires a small multiplicative error in approximating individual
output probabilities.

Our work leaves several open questions. Since the efficiency of Clifford simulators hinges on the
ability to find low-rank stabilizer decompositions of multi-qubit magic states, improved techniques
for finding such decompositions are of great interest. For example, consider a magic state |ψ〉 =
U |+〉⊗n, where U is a diagonal circuit composed of Z,CZ, and CCZ gates. We anticipate that a
low-rank exact stabilizer decomposition of ψ can be found by computing the transversal number [5]
of a suitable hypergraph describing the placement of CCZ gates. Such low-rank decompositions
may lead to more efficient simulation algorithms for Clifford+CCZ circuits. We leave as an open
question whether the stabilizer extent ξ(ψ) is multiplicative under tensor products for general
states ψ. Finally, it is of great interest to derive lower bounds on the stabilizer rank of n-qubit
magic states scaling exponentially with n.

4 Subroutines

Throughout this section we use the following notations. Suppose x ∈ {0, 1}n is a bit string. We
shall consider x as a row vector and write xT for the transposed column vector. The Hamming
weight of x denoted |x| is the number of ones in x. The support of x is the subset of indices j ∈ [n]
such that xj = 1. Given a single-qubit operator P let P (x) be an n-qubit product operator that
applies P to each qubit in the support of x, that is, P (x) = P x1 ⊗ · · · ⊗ P xn . We shall use the
notation ⊕ for the addition of binary vectors modulo two. Let x · y ≡∑n

j=1 xjyj .

4.1 Phase-sensitive Clifford simulator

In this section we describe a Clifford simulator based on stabilizer tableau [2] that keeps track of
the global phase of stabilizer states. We shall consider Clifford circuits expressed using a gate set

S, CZ, CX, H. (40)

Here CZ and CX are controlled-Z and -X gates, H is the Hadamard gate, and S = |0〉〈0|+ i|1〉〈1|.
First let us define a data format to describe stabilizer states. Suppose U is a unitary Clifford

operator. We say that U is a control-type or C-type operator if

U |0n〉 = |0n〉. (41)

For example, the gates S,CZ,CX and any product of such gates are C-type operators. We say
that U is a Hadamard-type or H-type operator if U is a tensor product of the Hadamard and the
identity gates. Previously known results on canonical decompositions of Clifford circuits [25, 42, 54]
imply that any n-qubit stabilizer state φ can be expressed as

|φ〉 = ωUCUH |s〉, (42)
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where UC and UH are C-type and H-type Clifford operators, s ∈ {0, 1}n is a basis vector, and ω
is a complex number. We shall refer to the decomposition Eq. (42) as a CH-form of φ. Note that
this form may be non-unique.

We shall describe the unitary UC by its stabilizer tableaux, that is, a list of Pauli operators
U−1
C ZpUC and U−1

C XpUC . The global phase of UC is fixed by Eq. (41). Using Eq. (41) one
can check that U−1

C ZpUC is a tensor product of Pauli Z and the identity operators I. Thus the
stabilizer tableaux of UC can be described by binary matrices F,G,M of size n × n and a phase
vector γ ∈ Z

n
4 such that

U−1
C ZpUC =

n
∏

j=1

Z
Gp,j

j and U−1
C XpUC = iγp

n
∏

j=1

X
Fp,j

j Z
Mp,j

j (43)

for all p = 1, . . . , n. Here X0 ≡ Z0 ≡ I. We shall describe the unitary UH by a string v ∈ {0, 1}n
such that

UH = H(v) ≡ Hv1

1 ⊗Hv2

2 ⊗ · · · ⊗Hvn
n . (44)

To summarize, the CH-form is fully specified by the data (F,G,M, γ, v, s, ω). Let us agree that
ω = 1 whenever it is omitted.

Below we describe an algorithm that takes as input a sequence of Clifford gates U1, . . . , Um
from the gate set Eq. (40) and outputs the CH-form of a stabilizer state

|φ〉 = Um · · ·U2U1|0n〉. (45)

The runtime is O(n) per each gate S,CZ,CX and O(n2) per each Hadamard gate. We also show
how to compute an amplitude 〈x|φ〉 and sample x from the distribution |〈x|φ〉|2 assuming that φ
is specified by its CH-form. These tasks take time O(n2). Finally, we consider projective gates
(I + P )/2, where P is a Pauli operator. We show how to simulate projective gates in time O(n2).

Simulation of unitary gates. The initial state |0n〉 has a trivial CH-form with s = 0n and
UC = UH = I. Thus we initialize the CH data as G = F = I, M is the zero matrix, and γ, v, s are
zero vectors. Suppose φ is a stabilizer state with the CH form

|φ〉 = UCUH |s〉

described by the data (F,G,M, γ, v, s). Consider a gate Γ ∈ {S,CZ,CX,H} applied to some
subset of qubits. The state Γ|φ〉 has a CH-form

Γ|φ〉 = ΓUCUH |s〉 = ω′U ′
CU

′
H |s′〉 (46)

with the corresponding data (F ′, G′,M ′, γ′, v′, s′, ω′). Let us show how to compute this data.
The case Γ ∈ {S,CZ,CX} is trivial: one can absorb Γ into the C-layer obtaining U ′

C = ΓUC .
The stabilizer tableaux of UC is updated using the standard Aaronson-Gottesman algorithm [2]
(explicit update rules are provided at the end of this section). This update takes time O(n).

Let Γ = Hp be the Hadamard gate applied to a qubit p ∈ [n]. Commuting Hp through the C-
and H-layer using the identity Hp = 2−1/2(Xp + Zp) and Eq. (43) one gets

Hp|φ〉 = 2−1/2UCUH [(−1)α|t〉+ iγp(−1)β |u〉), (47)

where t, u ∈ {0, 1}n are defined by

tj = sj ⊕Gp,jvj and uj = sj ⊕ Fp,j v̄j ⊕Mp,jvj (48)

for j = 1, . . . , n. Here and below v̄j ≡ 1− vj . Furthermore,

α =

n
∑

j=1

Gp,j v̄jsj and β =

n
∑

j=1

Mp,j v̄jsj + Fp,jvj(Mp,j + sj). (49)

The case t = u is trivial: Eq. (47) gives the desired CH-form of Hp|φ〉 with s′ = t = u and
ω′ = 2−1/2[(−1)α + iγp(−1)β ]. From now on assume that t 6= u.
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Proposition 4. Suppose t, u ∈ {0, 1}n are distinct strings and δ ∈ Z4. Then the state UH(|t〉 +
iδ|u〉) has a CH-form

UH(|t〉+ iδ|u〉) = ωWCWH |s′〉, (50)

where the C-layer WC consists of O(n) gates from the set {S,CZ,CX}. The decomposition Eq. (50)
can be computed in time O(n).

Choosing δ = γp + 2(α+ β) (mod 4) and substituting Eq. (50) into Eq. (47) one gets

Hp|φ〉 = 2−1/2(−1)αω · UCWC ·WH |s′〉. (51)

This gives the desired CH-form of Hp|φ〉 with

ω′ = 2−1/2(−1)αω, U ′
C = UCWC , U ′

H = WH . (52)

Finally, one needs to compute the stabilizer tableaux of U ′
C . Since WC consists of O(n) gates

S,CZ,CX it suffices to give update rules for the stabilizer tableaux of UC under the right multi-
plications UC ← UCΓ with Γ ∈ {S,CZ,CX}. Explicit update rules are provided at the end of this
section (this is a straightforward application of the stabilizer formalism). Each update rule takes
time O(n). Since WC contains O(n) gates, the full simulation cost of the Hadamard gate is O(n2).

Proof of Prosposition 4. We shall construct a C-type circuit VC and bit strings y, z ∈ {0, 1}n such
that

• y and z differ on a single bit q ∈ [n],

• UH |t〉 = VCUH |y〉,

• UH |u〉 = VCUH |z〉.

Then
UH(|t〉+ iδ|u〉) = VCUH(|y〉+ iδ|z〉). (53)

Since yi = zi for i 6= q and yq 6= zq, the state UH(|y〉 + iδ|z〉) is a tensor product of single-qubit
states Hvi |yi〉 on qubits i 6= q and a stabilizer state Hvq (|yq〉+ iδ|zq〉) on qubit q. Let us write

Hvq (|yq〉+ iδ|zq〉) = ωSaHb|c〉

for some a, b, c ∈ {0, 1} and some complex number ω. We arrive at

UH(|t〉+ iδ|u〉) = ω(VCS
a
q )(UHH

b⊕vq
q )|s′〉,

where s′
q = c and s′

i = yi = zi for i 6= q. This is the desired form Eq. (50) with WC = VCS
a
q and

WH = UHH
b⊕vq
q .

It remains to construct VC , y, z as above. We shall choose VC such that

UHVCUH =
∏

i∈[n]\q : ti 6=ui

CXq,i (54)

for some qubit q ∈ [n] such that tq 6= uq. The circuit in the righthand side of Eq. (54) maps t, u to
strings y, z that differ only on the q-th bit. Accordingly, VCUH |t〉 = UH |y〉 and VCUH |u〉 = UH |z〉,
as desired.

For each b ∈ {0, 1} define a subset

Vb = {i ∈ [n] : vi = b and ti 6= ui}.

Here v ∈ {0, 1}n defines the H-layer UH , see Eq. (44). By assumption, at least one of the subsets
Vb is non-empty.

Suppose first that V0 6= ∅. Let q be the first qubit of V0. Define

VC =
∏

i∈V0\q

CXq,i ·
∏

i∈V1

CZq,i.
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Here CXq,i has control q and target i. If V0 = {q} then gates CXq,i are skipped. Likewise, if
V1 = ∅ then the gates CZq,i are skipped. Simple algebra shows that VC obeys Eq. (54).

Suppose now that V0 = ∅. Then V1 6= ∅ since t 6= u. Let q be the first qubit of V1. Define

VC =
∏

i∈V1\q

CXi,q.

Let us agree that VC = I if V1 = {q}. Simple algebra shows that VC obeys Eq. (54).
In both cases the strings y, z have the form

if tq = 1 then y = u⊕ eq and z = u,

if tq = 0 then y = t and z = t⊕ eq.
Here eq ∈ {0, 1}n is a string with a single non-zero at the q-th bit.

In the rest of this section we provide rules for updating the stabilizer tableaux of UC under
the left and the right multiplications UC ← ΓUC and UC ← UCΓ, where Γ is one of the gates
S,CZ,CX. We shall write L[Γ] and R[Γ] for the left and the right multiplication by Γ. Below
p = 1, . . . , n. All phase vector updates are performed modulo four.

R[Sq] :

{

Mp,q ← Mp,q ⊕ Fp,q
γp ← γp − Fp,q L[Sq] :

{

Mq,p ← Mq,p ⊕Gq,p
γq ← γq − 1

R[CZq,r] :







Mp,q ← Mp,q ⊕ Fp,r
Mp,r ← Mp,r ⊕ Fp,q
γp ← γp + 2Fp,qFp,r

L[CZq,r] :

{

Mq,p ← Mq,p ⊕Gr,p
Mr,p ← Mr,p ⊕Gq,p

R[CXq,r] :







Gp,q ← Gp,q ⊕Gp,r
Fp,r ← Fp,r ⊕ Fp,q
Mp,q ← Mp,q ⊕Mp,r

L[CXq,r] :















Gr,p ← Gr,p ⊕Gq,p
Fq,p ← Fq,p ⊕ Fr,p
Mq,p ← Mq,p ⊕Mr,p

γq ← γq + γr + 2(MFT )q,r

Simulating measurements. Let x ∈ {0, 1}n be a basis vector. Using Eqs. (41,43) one gets

〈x|UCUH |s〉 = 〈0n|
(

n
∏

p=1

U−1
C Xxp

p UC

)

UH |s〉 ≡ 〈0n|QUH |s〉. (55)

Note that Q is a product of |x| Pauli operators that appear in Eq. (43). It can be computed
inductively in time O(n2) by setting Q = I and performing updates Q← Q ·U−1

C X
xp
p UC for each p

with xp = 1. Write Q = iµZ(t)X(u) for some µ ∈ Z4 and t, u ∈ {0, 1}n. Note that u = xF (mod 2).
Then

〈x|UCUH |s〉 = 〈0n|QUH |s〉 = 2−|v|/2iµ
∏

j : vj=1

(−1)ujsj

∏

j : vj=0

〈uj |sj〉. (56)

Thus computing the amplitude 〈x|UCUH |s〉 takes time O(n2).
Consider a probability distribution P (x) = |〈x|UCUH |s〉|2. From Eq. (56) one infers that

P (x) = 2−|v| if uj = sj for all bits j with vj = 0 and P (x) = 0 otherwise. Since UC preserves the
Pauli commutation rules, one has FGT = I (mod 2). Thus x = wGT (mod 2), where w ∈ {0, 1}n is
a row vector satisfying wj = sj if vj = 0. The remaining bits of w are picked uniformly at random.
Thus one can sample x from P (x) as follows:

• Set w = s.

• For each j such that vj = 1 flip the j-th bit of w with probability 1/2.

• Output x = wGT (mod 2).

This takes time O(n2). Finally, consider a projective gate Γ = (I +P )/2, where P = P † is a Pauli
operator. We have

Γ|φ〉 = ΓUCUH |s〉 = (1/2)UCUH(I +Q)|s〉,
where Q is a Pauli operator that can be computed in time O(n2) using the stabilizer tableaux of
UC . Write (I + Q)|s〉 = |s〉 + iδ|t〉 for some t ∈ {0, 1}n and δ ∈ Z4. We can now compute the
CH-form of Γ|φ〉 using Proposition 4 in the same fashion as was done above for the Hadamard
gate.
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4.2 Heuristic Metropolis simulator

Consider a state |ψ〉 =
∑k
α=1 bα|φα〉, where φ1, . . . , φk are n-qubit stabilizer states. We assume

that all states φα are specified by their CH-form. This form can be efficiently computed using the
Clifford simulator of Section 4.1. Our goal is to sample x ∈ {0, 1}n from the probability distribution

P (x) =
|〈x|ψ〉|2
‖ψ‖2

.

To this end define a Metropolis-type Markov chain M with a state space Ω = {x ∈ {0, 1}n :
P (x) > 0}. Suppose the current state of the chain x ∈ Ω. Then the next state x′ is generated as
follows.

• Pick an integer j ∈ [n] uniformly at random and let y = x⊕ ej .
• If P (y) ≥ P (x) then set x′ = y.

• Otherwise generate a random bit b ∈ {0, 1} such that Pr(b = 1) = P (y)/P (x).

• If b = 1 then set x′ = y. Otherwise set x′ = x.

We shall refer to the mapping x→ x′ as a Metropolis step. Let us make a simplifying assumption
that the chain M is irreducible, that is, for any pair of strings x, y ∈ Ω there exist a path x0 =
x, x1, . . . , xL = y ∈ Ω such that xi and xi+1 differ on a single bit for all i. Then P (x) is the unique
steady distribution of M. One can (approximately) sample x from P (x) by implementing T ≫ 1
Metropolis steps starting from some (random) initial state xin ∈ Ω and using the final state as the
output string.

We claim that one can implement T Metropolis steps in time

O(knT ) +O(kn2).

Here the term O(kn2) is the cost of computing the initial probability P (xin) using the algorithm
of Section 4.1. Indeed, suppose we have already implemented several steps reaching some state
x ∈ Ω. Let y = x⊕ ej be a proposed next state. Consider some fixed stabilizer state φ ≡ φα that
contributes to ψ and let |φ〉 = UCUH |s〉 be its CH-form. Then

〈y|φ〉 = 〈x⊕ ej |UCUH |s〉 = 〈0n|U−1
C XjUC ·QxUH |s〉, (57)

where

Qx ≡
n
∏

p=1

U−1
C Xxp

p UC .

Note that computing Qx for the initial state x = xin and α = 1, . . . , k takes time O(kn2). Suppose
Qx has been already computed. Since U−1

C XjUC is determined by the stabilizer tableaux of UC ,
see Eq. (43), one can compute the product Qy = U−1

C XjUC ·Qx in time O(n). Then the amplitude
〈y|φ〉 = 〈0n|QyUH |s〉 can be computed in time O(n). This shows that the ratio

P (y)

P (x)
=

∣

∣

∣

∣

∣

∑k
α=1 bα〈y|φα〉

∑k
α=1 bα〈x|φα〉

∣

∣

∣

∣

∣

2

.

can be computed in time O(kn) provided that one saves the Pauli Qx for each stabilizer term φα
after each Metropolis step. This achieves the runtime scaling quoted above.

In general there is no reason to expect that the Metropolis chain defined above is irreducible.
Furthermore, its mixing time is generally unknown. Thus the proposed algorithm should be con-
sidered as a heuristic. However, the numeric results shown in Fig. ?? were obtained using the
Metropolis method to sample from the output distribution of the QAOA circuit.

We expect that the Metropolis chain may be rapidly mixing in the case when ψ approximates
the output state of some small-depth quantum circuit. In particular, if P (x) is the exact output
distribution of a constant-depth circuit and each Metropolis step flips O(1) bits, one can use
isoperimetric inequalities derived in Refs. [18, 21] to show that P (x) is the uniqiue steady state of
M and its mixing time is at most poly(n).
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4.3 Fast norm estimation

As before, consider a state |ψ〉 =
∑k
α=1 bα|φα〉, where φ1, . . . , φk are n-qubit stabilizer states

specified by their CH-form. Recall that our goal is to estimate the norm ‖ψ‖2 and to sample the
probability distribution P (x) ∼ |〈x|ψ〉|2. In this section we describe an algorithm that takes as
input the target state ψ, error tolerance parameters ǫ, δ > 0, and outputs a random number η such
that

(1− ǫ)‖ψ‖2 ≤ η ≤ (1 + ǫ)‖ψ‖2 (58)

with probability at least 1− δ. The algorithm has runtime

O(kn3ǫ−2 log δ−1). (59)

The key idea proposed in Ref. [11] is to estimate ‖ψ‖2 by computing inner products between ψ
and randomly chosen stabilizer states φ. It can be shown [11] that the quantity η ≡ 2n|〈φ|ψ〉|2 is
an unbiased estimator of ‖ψ‖2 with the standard deviation ≈ ‖ψ‖2, provided that φ is drawn from
the uniform distribution on the set of stabilizer states. Thus the empirical mean of η provides an
estimate of ‖ψ‖2 with a small multiplicative error. The quantity η can be computed in time O(kn3)

since 〈φ|ψ〉 =
∑k
α=1 bα〈φ|φα〉 and the inner product between stabilizer states can be computed in

time O(n3).
Here we improve upon the algorithm of Ref. [11] in two respects. First, we show that the

random stabilizer state φ used in the norm estimation method can be drawn from a certain subset
of stabilizer states that we call equatorial states. By definition, a stabilizer state φ is called
equatorial iff it has equal amplitude on each basis vector. Sampling an equatorial state from the
uniform distribution is particularly simple: all it takes is tossing an unbiased coin O(n2) times.
Secondly, we greatly simplify computation of the inner products 〈φ|φα〉. This is achieved by
using the CH-form to describe stabilizer states and by introducing a more efficient (and simpler)
algorithm for computing certain exponential sums (see Lemma 4 below).

We shall now formally describe the norm estimation algorithm. LetMn be the set of symmetric
n × n matrices M with off-diagonal entries ∈ {0, 1} and diagonal entries ∈ {0, 1, 2, 3}. For any
matrix A ∈Mn define a stabilizer state

|φA〉 = 2−n/2
∑

x∈{0,1}n

ixAx
T |x〉. (60)

We shall refer to φA as an equatorial state (note that φA lies on the equator of the Bloch sphere
for n = 1).

Lemma 2 (Norm Estimation). Let ψ be an arbitrary n-qubit state. Define a random variable

ηA = 2n|〈φA|ψ〉|2, (61)

where A ∈ Mn is chosen uniformly at random. Then ηA has mean ‖ψ‖2 and its variance is at
most ‖ψ‖4.

Lemma 3 (Inner Product). Suppose |φ〉 = UCUH |s〉 is a stabilizer state in the CH-form,
where UH = H(v) and UC has a stabilizer tableaux (F,G,M, γ). Suppose φA is an equatorial
state specified by a matrix A ∈ Mn. Define a matrix J ∈ Mn such that diag(J) = γ and
Ja,b = (MFT )a,b (mod 2) for a 6= b. Define a matrix

K = GT (A+ J)G.

Then
〈φ|φA〉 = 2−(n+|v|)/2 · isKsT · (−1)s·v

∑

x≤v

ixKx
T +2x(s+sK)T

. (62)

Here the sum is over n-bit strings x satisfying xj ≤ vj for all j.

Since the Pauli operators U−1
C XpUC pairwise commute, MFT (mod 2) is a symmetric matrix,

see Eq. (43). Therefore K is a symmetric matrix and thus ixKx
T

depends only on off-diagonal
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elements of K modulo two and diagonal elements of K modulo four. Thus the sum that appears
in Eq. (62) can be expressed as

Z(B) =
∑

x∈{0,1}|v|

ixBx
T

for a suitable matrix B ∈ M|v|, namely, a restriction of the matrix K + 2diag(s + sK) onto the
subset of rows and columns j with vj = 1. We shall refer to Z(B) as an exponential sum associated
with B.

Lemma 4 (Exponential Sum). There is a deterministic algorithm with a runtime O(n3) that
takes as input a matrix B ∈ Mn and outputs integers p, q ≥ 0 and α, β ∈ {0, 1} such that
Z(B) = α2p + iβ2q.

The desired estimate of ‖ψ‖2 can now be obtained by sampling i.i.d. random matricesA1, . . . , AL ∈
Mn and computing the empirical mean η = L−1(ηA1

+ . . . + ηAL
). Indeed, Lemma 2 and the

Chebyshev inequality imply that η achieves the desired approximation Eq. (58) with probability
at least 3/4 if L = 4ǫ−2. The error probability can be reduced to any desired level δ by generating
K = O(log δ−1) independent estimates η1, . . . , ηK as above such that each estimate ηa satisfies
Eq. (58) with probability at least 3/4. Let ηmed be the median of η1, . . . , ηK . Then standard argu-
ments show that ηmed satisfies Eq. (58) with probability at least 1−δ. Computing each sample ηAi

using Lemmas 3,4 takes time O(kn3). Since the total number of samples is KL = O(ǫ−2 log δ−1),
we arrive at Eq. (59).

Finally, let us sketch how to use the norm estimation for sampling x ∈ {0, 1}n from a distribution

P (x) =
|〈x|ψ〉|2
‖ψ‖2

.

Let Pw(x1, . . . , xw) be the marginal distribution describing the first w bits. We have Pw(x) =
‖Πψ‖2/‖ψ‖2, where Π projects the j-th qubit onto the state xj for 1 ≤ j ≤ w. It can be written
as

Π = 2−w
w
∏

j=1

(I + (−1)xjZj)

One can compute a rank-k stabilizer decomposition of the state Π|ψ〉 in time O(kwn2) using the
Clifford simulator of Section 4.1. By estimating the norms ‖ψ‖2 and ‖Πψ‖2 one can approximate
any marginal probability Pw(x) with a small multiplicative error. In the same fashion one can
approximate conditional probabilities

Pw(xw|x1, . . . , xw−1) =
Pw(x1, . . . , xw)

Pw−1(x1, . . . , xw−1)
.

Now one can sample the bits of x one by one using the chain rule

P (x) = P1(x1)P2(x2|x1) · · ·Pn(xn|x1, . . . , xn−1).

Clearly, the same method can be used to sample any marginal distribution of P (x).
To avoid accumulation of errors, each of O(n) steps in the chain rule requires an estimate of

the marginal probabilities Pw(x) with a multiplicative error O(n−1). (This guarantees that the full
probability P (x) is estimated using the chain rule within a small multiplicative error.) This would
require setting the precision ǫ in the norm estimation method as ǫ = O(n−1). Thus the cost of
each norm estimation would be O(kn3ǫ−2) = O(kn5). Since the total number of norm estimations
is Ω(n), the overall runtime for generating a single sample from P (x) with a small error would
scale as O(kn6). This quickly becomes impractical. However, if our goal is to sample only w
bits from P (x), a similar analysis shows that the overall runtime scales as O(kn3w3). Thus the
sampling method based on the norm estimation is practical only for small values of w. In contrast,
Metropolis simulator allows one to sample all n output bits and has runtime O(knT ), where T is
the mixing time (which is generally unknown).

In the rest of this section we prove Lemmas 2,3,4.

Accepted in Quantum 2019-06-19, click title to verify. Published under CC-BY 4.0. 23



Proof of Lemma 2. Let

Q1 = EA|φA〉〈φA| and Q2 = EA|φA〉〈φA|⊗2.

Since the distribution of A is invariant under shifts Aj,j ← Aj,j+2, one concludes thatQ1 commutes
with single-qubit Pauli-Z operators. Thus Q1 is diagonal in the Z-basis. Furthermore, all diagonal
matrix elements of |φA〉〈φA| are equal to 2−n. This proves Q1 = 2−nI and thus ηA has expected
value 2n〈ψ|Q1|ψ〉 = ‖ψ‖2.

By definition,

Q2 = 4−n
∑

w,x,y,z

E(w, x, y, z) · |w, x〉〈y, z| where E(w, x, y, z) = EA i
wAwT +xAxT −yAyT −zAzT

.

Here the sum runs over all n-bit strings. We shall use the following fact.

Proposition 5 (Ref. [15]). E(w, x, y, z) = 0 unless w + x = y + z (mod 4) and at least two of
the strings w, x, y coincide.

Proof. By definition, diagonal entries Ap,p ∈ Z4 and off-diagonal entries Ap,q = Aq,p ∈ Z2 are i.i.d.
uniform random variables. The entry Ap,p contributes a factor iAp,p(wp+xp−yp−zp) to E(w, x, y, z).
Thus E(w, x, y, z) = 0 unless

wp + xp = yp + zp (mod 4) (63)

for all p. This proves the first claim. The entry Ap,q = Aq,p contributes a factor

(−1)Ap,q(wpwq+xpxq−ypyq−zpzq)

to E(w, x, y, z). Thus E(w, x, y, z) = 0 unless

wpwq + xpxq − ypyq − zpzq = 0 (mod 2). (64)

From Eq. (63) one gets zp = wp+xp+yp (mod 2). Substituting this expression for zp into Eq. (64)
one concludes that E(w, x, y, z) = 0 unless

(wpxq + wqxp) + (xpyq + xqyp) + (ypwq + yqwp) = 0 (mod 2) (65)

for all p < q. If w = x = y then there remains nothing to prove. Otherwise, there exists an index
p ∈ [n] such that exactly two of the variables wp, xp, yp coincide. Since Eq. (65) is symmetric under
permutations of w, x, y, assume wlog that xp = yp 6= wp. Consider two cases.
Case 1: xp = yp = 0 and wp = 1. Substituting this into Eq. (65) one gets yq = xq for all q 6= p.
Thus x = y.
Case 2: xp = yp = 1 and wp = 0. Substituting this into Eq. (65) one gets yq + xq + wq + wq =
0 (mod 2) for all q 6= p, that is, x = y.
We conclude that at least two of the strings w, x, y coincide.

Let us consider the cases when E(w, x, y, z) 6= 0. Case 1: w = x. Then y + z = 2x (mod 4)
which is possible only if y = z and thus w = x = y = z. Case 2: w = y. Then x = z and
E(y, x, y, x) = 1. Case 3: w = z. Then x = y and E(z, x, x, z) = 1. The above shows that
non-zero contributions to Q2 come only from the terms E(w, x,w, x) = E(w, x, x, w) = 1. Thus

Q2 = 4−n(I + SWAP)− 4n
∑

x

|x, x〉〈x, x|,

Here the last term is introduced to avoid overcounting since the terms with w = x = y = z appear
in all three cases. We arrive at

EA(η2
A) = 4n〈ψ⊗2|Q2|ψ⊗2〉 ≤ 〈ψ⊗2|I + SWAP|ψ⊗2〉 = 2‖ψ‖4.

It follows that ηA has variance at most ‖ψ‖4.
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Proof of Lemma 3. Let a ∈ {0, 1}n be an arbitrary string. From Eq. (43) one easily gets

U−1
C X(a)UC =

n
∏

p=1

U−1
C Xap

p UC = iaJa
T ·X(aF (mod 2))Z(aM (mod 2)).

Here J ∈Mn is defined in the statement of the lemma. It follows that

U−1
C |a〉 = U−1

C X(a)UC |0n〉 = iaJa
T |aF (mod 2)〉.

Therefore
U−1
C |φA〉 = 2−n/2

∑

x∈{0,1}n

ix(A+J)xT |xF (mod 2)〉.

Recall that FGT (mod 2) = I. Perform a change of variable x = yGT (mod 2). Then x = yGT +2u
for some integer vector u. Using the fact that A and J are symmetric matrices one gets

x(A+ J)xT = yGT (A+ J)GyT + 4u(A+ J)GyT + 4u(A+ J)uT .

Denoting K = GT (A+ J)G one gets

U−1
C |φA〉 = 2−n/2

∑

y∈{0,1}n

iyKy
T |y〉. (66)

We have
UH |s〉 = 2−|v|/2

∑

x≤v

(−1)s·v+s·x|s⊕ x〉, (67)

Taking the inner product of the states Eqs. (66,67) gives

〈φ|φA〉 = 〈s|UHU−1
C |φA〉 = 2−(n+|v|)/2(−1)s·v

∑

x≤v

(−1)s·x · i(s⊕x)K(s⊕x)T

. (68)

Writing s⊕ x = s+ x+ 2u for some integer vector u and using the fact that K is symmetric one
gets

(s⊕ x)K(s⊕ x)T = (s+ x)K(s+ x)T + 4uK(s+ x)T + 4uKuT .

It follows that
i(s⊕x)K(s⊕x)T

= isKs
T +xKxT +2xKsT

.

Combining this and Eq. (68) proves Eq. (62).

Proof of Lemma 4. Define a binary upper-triangular matrix M of size n×n such that Mα,β = Bα,β
for α < β. Define binary vectors L,K ∈ {0, 1}n such that Bα,α = 2Lα + Kα for all α. Then

ixBx
T

= iq(x), where q : {0, 1}n → Z4 is a binary quadratic form defined as

q(x) = 2
∑

1≤α<β≤n

Mα,βxαxβ +
∑

1≤α≤n

(2Lα +Kα)xα (mod 4). (69)

Our goal is to compute the exponential sum

Z ≡
∑

x∈{0,1}n

iq(x). (70)

The first observation is that exponential sums associated with Z2-valued quadratic forms can be
computed recursively. Indeed, assume that Kα = 0 for all α. Then

Z =
∑

x∈{0,1}n

(−1)Q(x) where Q(x) = xMxT + LxT (mod 2). (71)

It will be convenient to consider more general quadratic forms Q(x) as in Eq. (71) where M is an
arbitrary binary matrix. We allow M to be non-symmetric and have non-zero diagonal.
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Consider first the trivial case when M is a symmetric matrix. In this case all quadratic terms in
Q(x) cancel each other, that is, Q(x) is linear. Thus Z = 2n if L = diag(M) and Z = 0 otherwise.

Suppose now that M is non-symmetric. We can assume wlog that M1,2 6= M2,1 (otherwise
permute the variables). Then M1,2 +M2,1 = 1 (mod 2). Write x = (x1, x2, y) with y ∈ {0, 1}n−2.
Define a partial sum

Z(y) =
∑

x1,x2∈{0,1}

(−1)Q(x1,x2,y) =
∑

x1,x2∈{0,1}

(−1)x1x2+µ1(y)x1+µ2(y)x2+Qelse(y), (72)

where Qelse(y) includes all terms in Q(x) that do not depend on x1, x2,

µ1(y) = L1 +M1,1 +
∑

3≤α≤n

(M1,α +Mα,1)yα ≡ L1 +M1,1 +m1y
T ,

µ2(y) = L2 +M2,2 +
∑

3≤α≤n

(M2,α +Mα,2)yα ≡ L2 +M2,2 +m2y
T .

Here m1,m2 are row vectors of length n− 2. A simple algebra shows that

∑

x1,x2∈{0,1}

(−1)x1x2+µ1x1+µ2x2 = 2(−1)µ1µ2 for all µ1, µ2 ∈ {0, 1}. (73)

Substituting this identity into Eq. (72) gives

Z =
∑

y∈{0,1}n−2

Z(y) = 2(−1)(L1+M1,1)(L2+M2,2)
∑

y∈{0,1}n−2

(−1)Q
′(y), (74)

where Q′(y) is a quadratic form that depends on n− 2 variables:

Q′(y) = y(Melse +mT
1 m2)yT + (Lelse + [L1 +M1,1]m2 + [L2 +M2,2]m1)yT (75)

The matrix Melse and the vector Lelse are determined by Qelse(y) = yMelsey
T +Lelsey

T . We have
reduced the exponential sum problem with n variables to the one with n−2 variables. Clearly, the
coefficients of Q′(y) can be computed in time O(n2). The overall runtime is

∑n
k=1 O(k2) = O(n3).

This gives an algorithm for computing the exponential sum for a Z2-valued quadratic form.
Remark: The most time-consuming step is getting the matrix Melse +mT

1 m2. Since the arith-
metics is mod-2, this amounts to flipping all bits of Melse in a submatrix formed by rows i ∈ m1

and by columns j ∈ m2.
Consider now a Z4-valued form q(x) defined in Eq. (69). Define a Z2-valued form

Q(x) =
∑

1≤α<β≤n

(Mα,β +KαKβ)xαxβ +
∑

1≤α≤n

Kαxαxn+1 +
∑

1≤α≤n

Lαxα (mod 2). (76)

Proposition 6. Let Z be the exponential sum defined by Eqs. (69,70). Then

Re(Z) =
1

2

∑

x∈{0,1}n+1

(−1)Q(x) and Im(Z) =
1

2

∑

x∈{0,1}n+1

(−1)Q(x)+xn+1 . (77)

Proof. Write q(x) = 2r(x) + KxT (mod 4), where r(x) is a Z2-valued quadratic form. Consider
some x ∈ {0, 1}n and let ω ≡ KxT (mod 2). One can easily check that

iKx
T

= (−1)

∑

1≤α<β≤n
KαKβxαxβ · iω.

By definition ω ∈ {0, 1} so that

Re(iω) =
1

2
(1 + (−1)ω) and Im(iω) =

1

2
(1− (−1)ω).
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Define a Z2-valued form Q′(x) = r(x) +
∑

1≤α<β≤n KαKβxαxβ . Then

Re(iq(x)) =
1

2

[

(−1)Q
′(x) + (−1)Q

′(x)+KxT
]

and Im(iq(x)) =
1

2

[

(−1)Q
′(x) − (−1)Q

′(x)+KxT
]

.

Finally, add an extra variable xn+1 such that the two terms in the square brackets correspond
to xn+1 = 0 and xn+1 = 1 respectively. We arrive at Eq. (77) with Q(x, xn+1) = Q′(x) +
xn+1(KxT ).

Remark: Computing exponential sums associated with the real and imaginary parts of Z takes
about the same time as computing a single exponential sum Eq. (71) because the forms Q(x) and
Q(x) + xn+1 in Lemma 2 have the same quadratic parts.

Numerics shows that the new algorithm for computing exponential sums achieves a significant
speedup as is shown in Table 1. Altogether, the use of the phase-sensitive Clifford simulator,
sampling with equatorial states, and the improved Exponential Sum routine lead to a significant
performance increase in simulations. In Table 2, we compare the performance of the simulator in
Ref. [11] and this paper, when estimating the output probabilities of the Hidden Shift problem on
40-qubits with the Sum-over-Cliffords method (see also Sections 2.3 and 2.4).

Number of variables n 10 20 30 40 50 60
New runtime 0.016 0.017 0.021 0.023 0.030 0.036

BG16 runtime 0.42 0.50 0.77 1.10 1.40 1.72

Table 1: Average runtime in milliseconds of the new algorithm for computing exponential sums and comparison
with the algorithm of Ref. [11]. Both simulations were performed on a Linux PC with a 3.2GHz Intel i5-6500
CPU.

Number of CCZ Gates 2 4 6
Number of states χ∆ 39 149 497

New Runtime (s) 0.30 1.02 3.82
BG16 Runtime (s) 5.22 27.94 100.11

Table 2: Average runtime of the Norm Estimation step in seconds, for the new implementation compared with
that of Ref. [11]. Norm Estimation is used to compute single qubit marginals on a 40-qubit state, with precision
∆ = 0.3. Both simulations were single-threaded, and run on a Linux PC with a 3.2GHz Intel i5-6500 CPU.

5 Stabilizer rank

In this Section, we describe bounds on the exact and approximate stabilizer rank. In subsection
5.1, we give the proof of Theorem 2, which proceeds by establishing an upper bound on the exact
stabilizer rank of states symmetric under permutations of certain subsystems. As a consequence
we will see that χ(ψ⊗t) ≪ χ(ψ)t for modest t. In subsection 5.2 we prove Theorem 1 using a
Sparsification lemma that allows us to convert exact stabilizer decompositions into approximate
stabilizer decompositions (with possibly fewer terms). In subsection 5.3, we study the approximate
stabilizer rank of Clifford magic states and establish Proposition 2. Finally, in subsection 5.4 we
turn our attention to lower bounds and prove Proposition 3.

5.1 Exact stabilizer rank

Let us denote Symn,t as the subspace that is symmetric with respect to swaps between t partitions
with each partition holding n qubits. For instance, any n-qubit state ψ satisfies ψ⊗t ∈ Symn,t for
any t. Although the symmetric subspace also contains states entangled across these partitions.
Throughout this section we use dim(. . .) to denote the dimension of a vector space and span(. . .)
to denote the vector space spanned by a set of vectors. Let us agree that when we write dim(S)
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where S is a set of vectors (rather than a vector space) this means the dimension of the vector
space spanned by S.

This section provides a proof of Thm. 2, though we shall actually prove a more general result
regarding the stabilizer rank of a subspace defined as follows

Definition 7. We define stabilizer rank χ(P ) of a subspace P to be the minimum χ such that there
exists a set of χ stabilizer states S = {φ1, φ2, . . . , φχ} satisfying P ⊂ span[S].

Notice that given a set of stabilizer states S such that Symn,t ⊆ span(S), it follows that every
element of the space Symn,t can be decomposed in terms of |S| stabilizer states. Therefore, if
Ψ ∈ Symn,t then χ(Ψ) ≤ χ(Symn,t). As a special case, if Ψ = ψ⊗t then χ(ψ⊗t) ≤ χ(Symn,t).
Therefore, Thm. 2 follows as a corollary of the following result

Lemma 5. Consider Symn,t for some nonzero n and t. It follows that for all t ≤ 5 we have

χ(Symn,t) = dim[Symn,t] =

(

2n + t− 1

t

)

, (78)

where the round brackets denotes the binomial coefficient.

This has the direct and elegant consequence that for all single qubit states ψ we have χ(ψ⊗t) ≤
t+ 1 whenever t ≤ 5.

Proof of Lemma 5. First we show that Eq. (78) holds for some n and t whenever there exists a set
of stabilizer states S with the following properties:

1. every Φ ∈ S satisfies Φ ∈ Symn,t; and

2. dim(Symn,t) = dim(S).

For any set of vectors S, there exists a subset S
′ ⊆ S that is a minimal spanning set, with

span(S′) = span(S) and |S′| = dim(S). Therefore, given a set that spans the symmetric space we
can conclude that χ(Symn,t) ≤ dim(S). Furthermore, if S has the swap invariance property then
span(S) ⊆ Symn,t and dim(S) ≤ dim(Symn,t). Combining these inequalities gives χ(Symn,t) ≤
dim(Symn,t). It is obvious that dim(Symn,t) ≤ χ(Symn,t) and so χ(Symn,t) = dim(Symn,t).
Lastly, the dimension of the symmetric space is well-known and can for example be found in
Ref. [59].

Next, it remains to find a set S with the aforementioned properties for certain values of n and
t. We consider sets of stabilizer states of the form Sn,t = {|φj〉⊗t}j where {|φj〉}j =: STABn is
the set of all n-qubit stabilizer states. This ensures property 1. It remains to show when Sn,t has
sufficiently large dimension (property 2). We observe that the operator

σn,t :=
1

|STABn|
∑

ψj∈STABn

|ψj〉〈ψj |⊗t (79)

satisfies
rank(σn,t) = dim(Sn,t). (80)

and so property 2 also holds whenever rank(σn,t) = dim(Symn,t).
Let us consider when t ≤ 3 with no constraints on n. We will use that the stabilizer states form

a projective 3-design [38, 57, 59]. The relevant property of such designs is that for t ≤ 3 we know

σn,t ∝ Πn,t, (81)

where Πn,t is the projector onto Symn,t. Therefore, rank(σn,t) = rank(Πn,t) = dim(Symn,t) and
the lemma is proven for the case of t ≤ 3.

For t = 4, it is known that the stabilizer states are not a projective 4-design and so σn,4 is not
proportional to the symmetric projector [59]. However, the stabilizer states “fail gracefully” to be
a projective 4-design [59], such that the deviation of σn,4 from Πn,4 is sufficiently small that we
still have rank(σn,4) = rank(Πn,4). Ref. [29] extends this result such that we can also deduce the
following
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Figure 6: The exact stabilizer rank (numerically found) for n copies of a single qubit state: for the T state and
for generic single qubit states.

t = 1 t = 2 t = 3 t = 4 t = 5

n = 1 2 1.73205 1.5874 1.49535 1.43097
n = 2 4 3.16228 2.71442 2.4323 2.23685
n = 3 8 6 4.93242 4.26215 3.79966

Table 3: Upper bounds on χ(ψ⊗t)1/t where ψ is an n qubit state. Asymptotically we have χ(ψ⊗N ) ≤
(χ(ψ⊗t)1/t)N . Since lower values lead to lower simulation overhead we see a significant advantage in using
blocks of size up to 5.

Claim 1. For all n and t ≤ 5 we have rank(σn,t) = rank(Πn,t).

This suffices to prove Lem. 5. In contrast, this proof technique can not extend to t > 5 due to
the stabilizer testing algorithm of Ref [29]. This algorithm shows that there exists a projector W
such that Tr[Wσn,6] = 0 but Tr[WΠn,6] 6= 0, which entails rank(σn,6) < rank(Πn,6).

Although Claim 1 can be deduced from Ref. [29], it is not explicitly shown, so we provide the
details here. Examples 4.27 and 4.28 of Ref. [29], show that

σn,4 ∝ Πn,4 + anΠn,4P
⊗n
[4] Πn,4, (82)

σn,5 ∝ Πn,5 + bnΠn,5P
⊗n
[5] Πn,5.

where an and bn are positive constants and P[4] and P[5] are projectors onto a stabilizer code

P[4] =
1

4
(1l⊗4 +X⊗4 + Y ⊗4 + Z⊗4) (83)

P[5] = P[4] ⊗ 1l

Since P[4] and P[5] are positive operators, so too are anΠn,4P
⊗n
[4] Πn,4 and bnΠn,5P

⊗n
[5] Πn,5. In

general, if M and N are positive operators we have rank(M + N) ≥ rank(M). Therefore, for
t = 4, 5 we have rank(σn,t) ≥ rank(Πn,t), which implies the desired rank equivalence and completes
the proof.

We reflect that we have proved Lem. 5, from which Thm. 2 follows immediately. For single
qubit states (n = 1) this entails that

χ(ψ⊗t) ≤ t+ 1,∀t ≤ 5. (84)

The rest of this subsection discusses numerical experiments into whether this inequality is tight.
Clearly the bound is loose for stabilizer states since then we have χ(ψ⊗t) = 1 < t+1. However,

Clifford magic states are also exceptional for many t values. Bravyi, Smith and Smolin [14] discuss
the stabilizer rank of single qubit states that are an eigenstate of some Clifford unitary. For instance,
the |T 〉 Clifford magic states are exceptional in that for 2 ≤ t ≤ 4 we have that χ(T⊗t) = t < t+ 1,
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which we illustrate in Fig. 6. We remark that |T 〉 has the Clifford symmetry CT |T 〉 = |T 〉 for
CT = TXT †. In total there are 12 single qubit states in the Clifford orbit of |T 〉. An additional
class of Clifford symmetric states is the Clifford orbit of the face state |f〉

|f〉〈f | = 1

2

(

1l +
X + Y + Z√

3

)

, (85)

which comprises 8 different states. The face state is an eigenstate of the Clifford CF = e−iπ/12SH
that cyclically permutes Pauli X,Y and Z. Bravyi, Smith and Smolin reported (see conjecture 1
of Ref. [14]) that χ(f⊗t) appears to equal χ(T⊗t), providing another class of states where Eq. (84)
is not tight.

Next, we ask if there are any other single qubit states for which Eq. (84) is not tight. We
proceed by a heuristic, numerical search, extending the search method of Ref. [14]. To find a
decomposition of a state |ψ〉, we use an objective function FΨ ({|φj〉}) = ||Π|Ψ〉|| where Π is a
projector onto span ({|φj〉}). We start by choosing a set of k random stabilizer states {|φj〉}, with
k = 2 on the first run. Random stabilizer states were obtained by generating a random binary
matrix, using the algorithm of Garcia et al. to convert it to a canonical stabilizer tableau, and
computing the corresponding state vector [25]. Let the value of the objective function at a given
timestep be F . We update one stabilizer state in the set by applying a random Pauli projector,
and evaluate the objective function on the new set FΨ ({|φj〉}′) = F ′. If F ′ > F then we accept
the move, otherwise the new decomposition is accepted with a probability p = exp [−β (F − F ′)],
where β is an inverse temperature parameter that decreases as the walk proceeds [14]. If F equals
1 at any point in the walk, we halt and conclude χ(Ψ) ≤ k. If F does not converge to unity within
a constant number of steps, we increment k and start again.

Random typical states were generated as |ψ〉 = U |0〉, where U are Haar random unitaries. We
sampled 1000 Harr random states and numerically estimated the stabilizer rank of Ψ = ψ⊗t using
the above method. In every instance, the best decomposition we found saturated the inequalities
of Eq. (84). We also examined conjecture 1 of [14], by searching for decompositions of single-qubit
Clifford magic states. All decompositions found were below the bound of Eq. (84).

Although these numerical searches were not exhaustive, the results support the hypothesis that
Eq. (84) is an equality for typical single qubit states. This supports the conjecture that Eq. (84)
is tight, if and only if the state has no Clifford symmetries.

As a closing remark, we comment on consequences of these results for simulation overheads.
If a circuit contains many copies of the same multi-qubit phase gate, simulation overheads are
reduced by working with blocks of magic states as shown in Table. 3.

5.2 Sparsification Lemma

Our new bounds on the approximate stabilizer rank in Theorem 1 are obtained using the following
lemma. It shows how to convert a stabilizer decomposition of some target state ψ with a small l1
norm to a sparse stabilizer decomposition of ψ.

Lemma 6 (Sparsification). Let ψ be a normalized n-qubit state with a decomposition |ψ〉 =
∑

j cj |φj〉 where all φj are normalized stabilizer states and cj ∈ C. For any integer k there exists

a distribution of random quantum states |Ω〉 of the form |Ω〉 = ‖c‖1

k

∑k
α=1 |ωα〉 where each |ωα〉 is

(up to a global phase) one of the states {|φj〉} and

E
(

‖ψ − Ω‖2
)

=
‖c‖2

1

k
, (86)

where ‖c‖1 :=
∑

j |cj | and ‖ψ‖ =
√

〈ψ|ψ〉.
Theorem 1 is a simple corollary of Lemma 6. Indeed, assume that all φj are stabilizer states.

Choosing k = (‖c‖1/δ)
2 we find that the right-hand side is upper-bounded by δ2. Therefore there

exists at least one |Ω〉 (which is manifestly a sum of k stabilizer states) that δ-approximates |ψ〉.
This proves Theorem 1.

Note that we can use Markov’s inequality and Eq. (86) to lower bound the probability that a
randomly chosen Ω is a good approximation to ψ, e.g.,
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Pr
[

‖ψ − Ω‖2 ≥ 2δ2
]

≤ 1/2 for k ≥ ‖c‖
2
1

δ2
.

Suppose that we randomly choose some |Ω〉 as prescribed above. Can we estimate how well it
approximates ψ? The following Lemma can be used for this purpose.

Lemma 7 (Sparsification tail bound). Let ψ,Ω, k be as in Lemma 6. If we choose k ≥ ‖c‖2
1

δ2

then
E [〈Ω|Ω〉 − 1] ≤ δ2, (87)

and

Pr
[

‖ψ − Ω‖2 ≤ 〈Ω|Ω〉 − 1 + δ2
]

≥ 1− 2 exp

(

− δ2

8F (ψ)

)

. (88)

Note that we are interested in cases where the stabilizer fidelity F (ψ) is exponentially small as
a function of the number of qubits n. In such cases the Lemma states that

‖ψ − Ω‖2 ≤ 〈Ω|Ω〉 − 1 + δ2,

with all but vanishingly small probability if n is sufficiently large. Moreover, the quantity 〈Ω|Ω〉
appearing in the above can be approximated to a given relative error using the norm estimation
algorithm from Section 4.3 which has runtime scaling linearly with k.

Proof of Lemma 6. Define a probability distribution pj := |cj |/||c||1 and write

|ψ〉 = ‖c‖1

∑

j

pj |Wj〉 (89)

where |Wj〉 := (cj/|cj |)|φj〉 are normalized stabilizer states. Now define a random variable |ω〉
which is equal to |Wj〉 with probability pj . Then

|ψ〉 = ‖c‖1E [|ω〉] . (90)

Let k be a positive integer and consider a random state

|Ω〉 =
‖c‖1

k

k
∑

α=1

|ωα〉, (91)

where ω1, ω2, . . . , ωk are i.i.d random copies of |ω〉. By construction, on average we have

E[〈ψ|Ω〉] = E[〈Ω|ψ〉] = 1 (92)

even though for any particular random sample 〈Ω|ψ〉 6= 1. In general, not only will Ω not be
proportional to ψ, but Ω will not be correctly normalized. However, the normalization can be
bounded in expectation as follows

E [〈Ω|Ω〉] =
‖c‖2

1

k2
E

[

k
∑

α=1

〈ωα|ωα〉
]

+
‖c‖2

1

k2
E





∑

α6=β

〈ωα|ωβ〉



 (93)

= ‖c‖2
1

E [〈ω|ω〉]
k

+
1

k2
k(k − 1) (94)

≤ 1 +
‖c‖2

1

k
(95)

where in the second line we used the fact that ‖c‖2
1E [〈ωα|ωβ〉] = 〈ψ|ψ〉 for α 6= β.

We are interested in the expected error

E
[

‖ψ〉 − |Ω〉‖2
]

= E [〈Ω|Ω〉]− E [〈Ω|ψ〉]− E [〈ψ|Ω〉] + E [〈ψ|ψ〉] (96)

Using 〈ψ|ψ〉 = 1, Eq. (95) and Eq. (92) we find

E
[

‖ψ〉 − |Ω〉‖2
]

=
‖c‖2

1

k
. (97)

This completes the proof of Lemma 6.
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Proof of Lemma 7. Equation (87) follows directly from Eq. (95) and the choice of k. Define random
variables

Xα = ‖c‖1Re(〈ψ|ωα〉) 1 ≤ α ≤ k
and let

X̄ =
1

k

k
∑

α=1

Xα = Re(〈ψ|Ω〉).

Then
|Re(〈ψ|Ω〉)− 1| =

∣

∣X̄ − E[X̄]
∣

∣ . (98)

Now X̄ is a sample mean of k independent and identically distributed random variables Xα, each
of which is bounded as

|Xα| ≤ ‖c‖1|〈ψ|ωα〉| ≤ ‖c‖1

√

F (ψ) (99)

where in the last inequality we used the definition of stabilizer fidelity. Applying Hoeffding’s
inequality [31] and using Eqs. (98, 99) gives

Pr

[

|Re(〈ψ|Ω〉)− 1| ≥ δ2

2

]

≤ 2 exp






− 2kδ4

4
(

2‖c‖1

√

F (ψ)
)2






≤ 2 exp

(

− δ2

8F (ψ)

)

(100)

where we used k ≥ ‖c‖2
1/δ

2. Finally, applying the triangle inequality to Eq. (96) gives

‖ψ − Ω‖2 ≤ 〈Ω|Ω〉 − 1 + 2 |1− Re(〈ψ|Ω〉)| (101)

Combining Eqs. (101, 100) completes the proof.

5.3 Approximate stabilizer rank of Clifford magic states

Proposition 2 asserts that ξ(ψ) = F (ψ)−1 when ψ is a Clifford magic state (Def 5). In fact, this
relation holds for a wider class of ψ and we comment on this at the end of the following proof.
Recall that a Clifford magic state ψ is stabilized by a group of Clifford unitaries with generators
Qj := V XjV

†. We denote this group as Q := 〈Qj〉 = 〈V XjV
†〉. Here we describe upper bounds

on the approximate stabilizer rank of Clifford magic states. We begin with the proof of Proposition
2

Proof of Proposition 2. From the definition of Clifford magic states, we have

Pψ = |ψ〉〈ψ| = V
1

2n

∏

j

(1l +Xj)V
† (102)

=
1

2n

∏

j

(1l +Qj)

=
1

|Q|
∑

q∈Q

q

Let φ0 be a stabilizer state such that |〈ψ|φ0〉|2 > 0. Then

|ψ〉 =
|ψ〉〈ψ|φ0〉
〈ψ|φ0〉

(103)

=





1

|Q|
∑

q∈Q

q





|φ0〉
〈ψ|φ0〉

=
1

|Q|〈ψ|φ0〉
∑

q∈Q

q|φ0〉.
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Using Eq. (103) and the fact that q|φ0〉 is a stabilizer state for all q ∈ Q we immediately obtain

||c||21 =
1

|〈ψ|φ0〉|2
,

for this decomposition. To minimise ||c||21 it is natural to use the stabilizer state with the larger
possible overlap, F (ψ) = maxφ0

|〈ψ|φ0〉|2, which we call the stabilizer fidelity. Therefore, once we
have found a φ0 attaining the maximum, we have a decomposition achieving ||c||21 = F (ψ)−1. This
discussion suffices to prove that

ξ(ψ) ≤ F (ψ)−1.

To establish the converse consider any stabilizer decomposition

|ψ〉 =

χ
∑

j=1

cj |φj〉.

Taking the inner product with ψ we get

1 =

∣

∣

∣

∣

∣

∣

χ
∑

j=1

cj〈ψ|φj〉

∣

∣

∣

∣

∣

∣

≤ ‖c‖1

√

F (ψ),

where we used the fact that |〈ψ|φj〉|2 ≤ F (ψ). Squaring the above completes the proof.
More generally, let Q be any subgroup of the Clifford group satisfying |ψ〉〈ψ| = |Q|−1

∑

q∈Q q
and with exactly one group element (the identity) stabilizing |φ0〉. The above proof goes through
unmodified, but admits a wider class of states for which ξ(ψ) = F (ψ)−1 including the face state,
|f〉, satisfying

|f〉〈f | = 1

2

(

1l +
(X + Y + Z)√

3

)

=
1

|Q|
∑

q∈Q

q (104)

where Q = {1l, CF , C2
F } and CF = e−iπ/12SH is the Clifford that cyclically permutes Pauli X,Y

and Z.

The |T 〉⊗n state is the most well known example of a Clifford magic state. It has been shown
(see Lemma 2 of Ref. [16] or Lemma 2 of Ref. [11]) that F (T⊗n)−1 = |〈+|T 〉|2n and so |+〉⊗n can
be used to generate the decomposition with optimal ξ(ψ). Combining this with Lemma 6 gives
the same upper bound on χδ(T

⊗n) as was previously shown in Ref. [11]. However, the techniques
are slightly different. Our Lemma 6 randomly selects a subset of terms from the decomposition,
whereas Ref. [11] randomly select a subset of terms that form a random linear code. We remark
that the random linear code construction also generalises to all Clifford magic states. For any
linear code L ⊆ F

n
2 we can associate a subgroup QL ⊆ Q. That is, given a decomposition as in

Eq. (103) with group Q, we can choose a random subgroup QL ⊆ Q and define the normalised
approximate state

|L〉 ∝
∑

q∈QL

q|φ0〉. (105)

Following analogous steps to those in Ref. [11], one can show that this approach gives the same
asymptotic scaling of χδ as in Lemma 6. While the behaviour of χδ is identical, it may be easier
to implement a simulator working with random subgroups than random subsets.

As a further example, let us consider the Clifford magic state corresponding to a CCZ (control-
control-Z) gate,

|CCZ〉 = CCZ|+〉|+〉|+〉 =
1√
8

∑

a,b,c∈{0,1}

(−1)abc|a〉|b〉|c〉 (106)
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This magic state is the “+1” eigenstate for a group Q with three generators of the form CCZ ·
Xj · CCZ†. More explicitly these generators are

Q1 = CCZ ·X1 · CCZ† = X1CZ2,3 (107)

Q2 = CCZ ·X2 · CCZ† = X2CZ1,3

Q3 = CCZ ·X3 · CCZ† = X3CZ1,2

where CZi,j denotes a control-Z between qubits i and j. One can straightforwardly confirm that
F (CCZ) = |〈+ + +|CCZ〉|2 = 9/16, and that

|CCZ〉 =
1

6

∑

Q∈Q

Q|+ ++〉, (108)

has ||c||21 = 16/9. Using this decomposition for many CCZ states shows χδ(CCZ
⊗t) ≤ δ−2(9/16)t ∼

δ−21.778t. Note that this is slower exponential scaling than obtained by synthesizing each CCZ
with 4 T -gates and using χδ(T

⊗4t) ≤ δ−21.884t. It is conceivable that a better decomposition
exists since ξ only provides an upper bound on the approximate stabilizer rank.

One could obtain better decompositions if the stabilizer fidelity is not multiplicative, but we
show later (see Corollary 3) that F (T⊗t) = F (T )t and F (CCZ⊗t) = F (CCZ)t. However, one
of the significant open questions remaining from this work is whether stabilizer fidelity is always
multiplicative for all Clifford magic states. Lastly, we remark that one can lift the above stabi-
lizer decomposition to obtain a Clifford unitary decomposition of CCZ that can be used for an
approximate sum-over-Cliffords simulator.

5.4 Lower bound based on ultra-metric matrices

Previous sections give explicit stabilizer decompositions of states and therefore upper bounds on
the stabilizer rank. Yet we have no techniques that provide lower bounds on the stabilizer rank
that scale exponentially with the number of copies. Here we present results in this direction. Let
|H〉 = cos (π/8)|0〉+ sin (π/8)|1〉 be the magic state which is Clifford equivalent to |T 〉. We would
like to approximate n copies of |H〉 by a low-rank linear combination of stabilizer states

|x̃〉 = |x̃1〉 ⊗ · · · ⊗ |x̃n〉 where |0̃〉 = |0〉 and |1̃〉 = |+〉.

Here we derive a lower bound on the rank of such approximations stated earlier as Prop. 3. We
first restate this result as follows

Theorem 3. Suppose S ⊆ {0, 1}n is an arbitrary subset and φ is an arbitrary linear combination
of states |x̃〉 with x ∈ S such that ‖φ‖ = 1. Then

|S| ≥ |〈H⊗n|φ〉|2 · cos (π/8)
−2n

. (109)

Proof. Let χ = |S| and S = {x1, x2, . . . , xχ} for some bit strings xi. The orthogonal projector onto
a linear subspace spanned by the states |x̃1〉, . . . , |x̃χ〉 has the form

Π =

χ
∑

i,j=1

(G−1)i,j |x̃i〉〈x̃j |, (110)

where G is the Gram matrix defined by Gi,j = 〈x̃i|x̃j〉 = t|x
i⊕xj |, with t = 2−1/2. Here and below

⊕ denotes addition of bit strings modulo two. Noting that 〈x̃|H⊗n〉 = cos (π/8)
n

for all x one gets

|〈H⊗n|φ〉|2 ≤ 〈H⊗n|Π|H⊗n〉 = cos (π/8)
2n

χ
∑

i,j=1

(G−1)i,j ≤ χ cos (π/8)
2n
. (111)

The last inequality follows from
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Lemma 8. Suppose x1, . . . , xχ ∈ {0, 1}n are distinct bit strings and 0 < t < 1 is a real number.
Let G be a matrix of size χ with entries

Gi,j = t|x
i⊕xj |. (112)

Then G is invertible and
χ
∑

i,j=1

(G−1)i,j ≤ χ. (113)

Proof. Let |1〉, |2〉, . . . , |χ〉 be the basis vectors of R
χ such that Gi,j = 〈i|G|j〉. We claim that

Eq. (113) holds whenever one can find a family of matrices Gσ and probabilities pσ ≥ 0 such that

(a) G =
∑

σ pσGσ and
∑

σ pσ = 1

(b) Gσ is positive definite

(c) 0 ≤ 〈i|Gσ|j〉 ≤ 1 and 〈i|Gσ|i〉 = 1

(d) 〈i|G−1
σ |j〉 ≤ 0 for i 6= j

Indeed, let |e〉 be the all-ones vector, |e〉 =
∑χ
i=1 |i〉. We have to prove that 〈e|G−1|e〉 ≤ χ.

Conditions (a,b) imply that G is positive definite (and thus invertible). Noting that the function
f(x) = x−1 is operator convex on the interval (0,∞) one gets

〈e|G−1|e〉 ≤
∑

σ

pσ〈e|G−1
σ |e〉. (114)

From conditions (c,d) one gets

〈i|G−1
σ |j〉 ≤ 〈i|G−1

σ |j〉〈j|Gσ|i〉

for i 6= j with the equality for i = j. Therefore

〈e|G−1
σ |e〉 =

χ
∑

i,j=1

〈i|G−1
σ |j〉 ≤

χ
∑

i,j=1

〈i|G−1
σ |j〉〈j|Gσ|i〉 = Tr(G−1

σ Gσ) = Tr(I) = χ. (115)

Substituting this into Eq. (114) gives 〈e|G−1|e〉 ≤ χ∑σ pσ = χ, as desired.
It remains to construct the requisite matrices Gσ. Our construction is based on the so-called

ultrametric matrices, see Refs. [41, 45].

Definition 8. A symmetric real matrix A is called ultrametric iff 0 ≤ Ai,j < 1 for i 6= j, Ai,i = 1,
and

Ai,j ≥ min (Ai,k, Aj,k) for all i, j, k. (116)

The last condition demands that for any triple of elements Ai,j , Ai,k, Aj,k the two smallest
elements coincide. The following fact was established in Refs. [41, 45].

Fact 1. Suppose A is an ultrametric matrix. Then A is invertible and positive definite. Further-
more, 〈i|A−1|j〉 ≤ 0 for all i 6= j.

Thus it suffices to show that G is a probabilistic mixture of ultrametric matrices. Indeed,
if condition (a) holds for some ultrametric matrices Gσ then condition (c) follows directly from
Definition 8 while conditions (b,d) follow from Fact 1.

The first step is to equip the Boolean cube {0, 1}n with a distance function that obeys an
analogue of the ultrametricity condition Eq. (116). Given a pair of bit strings x, y ∈ {0, 1}n, define
d(x, y) as the smallest integer j ≥ 0 such that the last n−j bits of x and y coincide (that is, xi = yi
for all i > j). We set d(x, y) = n if xn 6= yn. Note that d(x, y) is different from the Hamming
distance. For example, d(101, 111) = 2 and d(101, 100) = 3. By definition d(x, y) ∈ [0, n] and
d(x, y) = 0 iff x = y. Furthermore, d(x, y) depends only on x⊕ y. We claim that

d(x, y) ≤ max {d(x, z), d(z, y)} (117)
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for any triple of strings x, y, z. Indeed, let j = max {d(x, z), d(z, y)}. Then xi = zi = yi for all
i > j, that is, d(x, y) ≤ j.

Suppose qw is a normalized probability distribution on the set of integers w = 0, 1, . . . , n such
that qw > 0 for all w. Define a χ× χ matrix A such that

Ai,j =
∑

w≥d(xi,xj)

qw. (118)

Here xi and xj are the bit strings from the statement of the lemma. We claim that A is ultrametric
(according to Definition 8). Indeed, consider any triple i, j, k as in Eq. (116) and assume wlog that
Ai,k ≤ Aj,k. Since the matrix element Ai,j is a monotone decreasing function of the distance
d(xi, xj), we get d(xi, xk) ≥ d(xj , xk). Then Eq. (117) gives d(xi, xj) ≤ d(xi, xk). Using the
monotonicity again one gets Ai,j ≥ Ai,k = min {Ai,k, Aj,k}, confirming Eq. (116). The remaining
conditions 0 ≤ Ai,j < 1 for i 6= j and Ai,i = 1 follow from the assumption that all bit strings xi

are distinct and that qw is a normalized probability distribution. Thus the matrix A defined by
Eq. (118) is indeed ultrametric.

We are now ready to define a family of ultrametric matrices Gσ such that G =
∑

σ pσGσ. Let us
choose the label σ as a permutation of n integers, σ ∈ Sn. The distribution pσ will be the uniform
distribution on the symmetric group, that is, pσ = 1/n! for all σ ∈ Sn. Given a permutation σ and
a bit string x ∈ {0, 1}n let σ(x) ∈ {0, 1}n be the result of permuting bits of x according to σ. We
set

〈i|Gσ|j〉 =
∑

w≥d(σ(xi),σ(xj))

qw. (119)

The same argument as above confirms that Gσ is ultrametric for any permutation σ. Define

G′ =
1

n!

∑

σ∈Sn

Gσ. (120)

We claim that 〈i|G′|j〉 = 〈i|G|j〉 = t|x
i⊕xj | for a suitable choice of probabilities qw. Indeed, the

identity d(x, y) = d(0n, x ⊕ y) implies that a matrix element 〈i|Gσ|j〉 depends only on xi ⊕ xj .
By the symmetry, matrix elements 〈i|G′|j〉 depend only on the Hamming weight h = |xi ⊕ xj |.
Therefore it suffices to compute 〈i|G′|j〉 for the special case when xi = 0n is the all-zero string and
xj is any fixed bit string with the Hamming weight h, for example, xj = 1h0n−h. Then

〈i|G′|j〉 =
1

n!

∑

σ∈Sn

∑

w≥d(0n,σ(1h0n−h))

qw. (121)

By definition of the distance d(x, y) one gets d(0n, σ(1h0n−h)) ≤ w iff h ≤ w and σ1, . . . , σh ≤ w.
The number of such permutations σ is

(

w
h

)

h!(n − h)!. Exchanging the sums over σ and w in
Eq. (121) one gets

〈i|G′|j〉 =
1

n!

n
∑

w=h

(

w

h

)

h!(n− h)! qw. (122)

We shall choose qw as a binomial distribution,

qw =

(

n

w

)

tw(1− t)n−w. (123)

Substituting Eq. (123) into Eq. (122) and introducing a variable p = w − h one gets

〈i|G′|j〉 =
n−h
∑

p=0

(

n− h
p

)

tp+h(1− t)n−h−p = th. (124)

By definition, h = |xi ⊕ xj |, so that G′ = G as claimed. Thus G is indeed a probabilisitic mixture
of ultrametric matrices and the lemma is proved.

Accepted in Quantum 2019-06-19, click title to verify. Published under CC-BY 4.0. 36



6 Stabilizer fidelity and Stabilizer extent

In the previous Section we established upper bounds on the approximate stabilizer rank of a state
ψ which depend on the the squared 1-norm ‖c‖2

1, where

|ψ〉 =
∑

j

cj |φj〉,

is a given stabilizer decomposition. Recall that the stabilizer extent ξ(ψ) denotes the minimum
value of ||c||21 over all stabilizer decompositions of ψ. We find that ξ is easier to work with than
the approximate stabilizer rank. For any fixed n-qubit state ψ, ξ(ψ) can be computed using a
simple convex optimization program, although the size of this computation scales poorly with n.
In this section we develop tools that allow us to efficiently compute ξ(ψ) whenever ψ is a tensor
product of 1, 2 and 3 qubit states. In particular, we prove Proposition 1 which establishes that ξ
is multiplicative for tensor products of 1, 2, and 3-qubit states.

In subsection 6.1 we use standard convex duality to give a characterization of ξ in terms of the
stabilizer fidelity, defined as the maximum overlap with respect to the set of stabilizer states

F (ψ) := maxφ∈STABn
|〈ψ|φ〉|2. (125)

As a consequence, multiplicativity of ξ is directly related to multiplicativity of the stabilizer
fidelity. In subsection 6.2 we give sufficient and necessary conditions for multiplicativity of the
stabilizer fidelity. In particular, we define the class of stabilizer-aligned states for which multiplica-
tivity holds. In subsection 6.3 we investigate the class of stabilizer-aligned states and prove that
all tensor products of 1, 2 and 3 qubit states are stabilizer-aligned. Finally, in section 6.4 we use
these results to prove Proposition 1.

6.1 Convex duality

Here we show that the optimization of ξ(ψ) can be recast as a dual convex problem and we prove
the following:

Theorem 4. For any n-qubit state ψ we have

ξ(ψ) = max
ω

|〈ψ|ω〉|2
F (ω)

, (126)

where the maximum is over all n-qubit states ω.

Thus any n-qubit state ω can act as a witness to provide a lower bound on ξ and, furthermore,
there exists at least one optimal witness state ω⋆ which achieves the maximum in Eq. (126). For
example, choosing ω = ψ, we get the lower bound

ξ(ψ) ≥ 1

F (ψ)
. (127)

For Clifford magic states this lower bound is tight as stated in Proposition 2. We remark that
Thm. 4 is a special case of results found in the literature on general resource theories [50].

Proof. We shall map the problem into the language of convex optimization and use standard
results in that field [10]. Using the computation basis {|x〉} we can decompose any stabilizer state
|ψj〉 =

∑

xMx,j |x〉. Given a state |ψ〉 =
∑

x ax|x〉, the primal optimization problem can be written
as

√

ξ(ψ) = mincf(c) = ||c||1 (128)

such that Mc− a = 0 (129)
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This is clearly a convex optimization problem with affine constraints. Because the coefficient in c
are complex, rather than real, this is a second order cone problem [10]. For any convex optimization
problem there exists a dual function

g(ν) = infc
(

||c||1 + νT (Mc− a)
)

(130)

=

{

−νTa when ||MT ν||∞ ≤ 1

−∞ otherwise
(131)

where for any value of the dual variables ν we have g(ν) ≤
√

ξ(ψ). The dual optimization problem

is the maximisation of g(ν) over ν to obtain the best lower bound on
√

ξ(ψ). We can discount the
need for two cases by adding ||MT ν||∞ ≤ 1 as a constraint, to obtain the problem

d⋆(ψ) = maxν − ν · a (132)

such that ||MT ν||∞ ≤ 1,

or more simply

d⋆(ψ) = maxν
−ν · a
||MT ν||∞

. (133)

Because the primal problem has affine constraints, we have strong duality and there must exist a
ν⋆ such that g(ν⋆) = −νT⋆ a =

√

ξ(ψ). Next, we restate this dual problem in terms of quantum
states. For every ν we can associate a normalised quantum state

|ων〉 :=
1

||ν||2
∑

x

(−ν∗
x)|x〉, (134)

so that

〈ων |ψ〉 =
−ν · a
||ν||2

. (135)

Next we note that

||MT ν||∞ =
Max|φ〉∈STAB|〈ων |φ〉|

||ν||2
=

√

F (ων)

||ν||2
(136)

Therefore, the dual problem can also be stated as

d⋆(ψ) = max|ων 〉
〈ων |ψ〉
√

F (ων)
, (137)

where the factors ||ν||2 have cancelled out. The optimal ν⋆ gives the optimal |ω⋆〉, which completes
the proof.

6.2 Stabilizer alignment

Combining Theorems 2 and 1 we get an upper bound χδ(ψ) ≤ δ−2F (ψ)−1 on the approximate
stabilizer rank of any Clifford magic state ψ. We shall be interested in the case when ψ is a
tensor product of a large number of few-qubit magic states such as T -type or CCZ-type states.
For example, the case ψ = CCZ⊗m is relevant to gadget-based simulation of quantum circuits
composed of Clifford gates and m CCZ gates. This motivates the question of whether the stabilizer
fidelity F (ψ) is multiplicative under tensor product, i.e.

F (ψ ⊗ φ)
?
= F (ψ)F (φ). (138)

Note that F (ψ ⊗ φ) ≥ F (ψ)F (φ) since the set of stabilizer states is closed under tensor product.
Below we define a set of quantum states S such that F (φ⊗ψ) = F (φ)F (ψ) whenever φ, ψ ∈ S.

Remarkably, this set is also closed under tensor product, that is φ ⊗ ψ ∈ S whenever φ, ψ ∈ S.
Moreover, we show that the stabilizer fidelity is not multiplicative for all states φ /∈ S. More
precisely, for any φ /∈ S there exists a state ψ such that F (φ⊗ ψ) > F (φ)F (ψ). In that sense, our
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results provide necessary and sufficient conditions under which the stabilizer fidelity is multiplica-
tive under tensor product.

To state our results let us generalize the definition of stabilizer fidelity as follows. For each
n ≥ 1 and 0 ≤ m ≤ n define a set Sn,m which consists of all stabilizer projectors Π on n qubits
satisfying Tr[Π] = 2m.

Definition 9. For any n-qubit state |φ〉 define

Fm(φ) = 2−m/2 max
Π∈Sn,m

〈φ|Π|φ〉. m = 0, . . . , n.

Let us say that φ is stabilizer-aligned if Fm(φ) ≤ F0(φ) for all m.

Note that in the above F0 = F is the stabilizer fidelity. Here we investigate the consequences of
stabilizer-alignment. Whether or not a given state is stabilizer-aligned is discussed in the following
subsection.

Theorem 5. Suppose φ and ψ are stabilizer-aligned. Then φ⊗ ψ is stabilizer-aligned and

F (φ⊗ ψ) = F (φ)F (ψ).

Conversely, suppose φ is not stabilizer-aligned. Let φ⋆ be the complex conjugate of φ. Then

F (φ⊗ φ⋆) > F (φ)F (φ⋆).

The theorem implies that the stabilizer fidelity is multiplicative for any stabilizer-aligned states:

Corollary 1. Suppose ψ1, . . . , ψL are stabilizer-aligned quantum states. Then

F (ψ1 ⊗ ψ2 ⊗ . . .⊗ ψL) =

L
∏

j=1

F (ψj).

We prove Theorem 5 using characterization of entanglement in tripartite stabilizer states from
Ref. [13]:

Lemma 9 ([13]). Any pure tripartite stabilizer state can be transformed by local unitary Clifford
operators to a tensor product of states from the set {|0〉, |Ψ+〉, |Ψ+

3 〉} where

|Ψ+〉 =
1√
2

(|00〉+ |11〉) |Ψ+
3 〉 =

1√
2

(|000〉+ |111〉) .

Corollary 2 ([13]). Suppose Π be a stabilizer projector describing a bipartite system AB. Then
there exists a unitary Clifford operator U = UA ⊗ UB and integers a, b, c, d ≥ 0 such that

UΠU−1 =

2a

∑

α=1

2b

∑

β=1

2c

∑

γ=1

|ωαβγ〉〈ωαβγ |, (139)

where

|ωαβγ〉 = 2−d/2
2d

∑

δ=1

|α, γ, δ〉 ⊗ |β, γ, δ〉. (140)

Here |α, γ, δ〉 and |β, γ, δ〉 are the computational basis vectors of A and B.
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Proof. Let us apply Lemma 9 to a tripartite stabilizer state

|Ψ〉 = (Π⊗ I)2−n/2
∑

z∈{0,1}n

|z〉AB ⊗ |z〉C ,

where n = |A|+ |B| and C is a system of n qubits. The lemma implies that Π is equivalent modulo
local Clifford operators to a tensor product of local stabilizer projectors |0〉〈0| and I = |0〉〈0|+|1〉〈1|
as well as bipartite projectors |00〉〈00| + |11〉〈11| and |Ψ+〉〈Ψ+| shared between A and B. Let a
and b be the number of times Π contains the identity factor on A and B respectively. Let c be the
number of times Π contains the projector |00〉〈00| + |11〉〈11| shared between A and B. Let d be
the number of times Π contains the EPR projector |Ψ+〉〈Ψ+|. The desired family of states ωαβγ
is then obtained by writing each projector I and |00〉〈00|+ |11〉〈11| as a sum of rank-1 projectors
onto the computational basis vectors.

Proof of Theorem 5. To prove the first two claims of the theorem it suffices to show that

Fm(φ⊗ ψ) ≤ F0(φ)F0(ψ). (141)

for all m. Indeed, combining Eq. (141) and the obvious bound F0(φ)F0(ψ) ≤ F0(φ ⊗ ψ) shows
that Fm(φ⊗ ψ) ≤ F0(φ⊗ ψ), that is, φ⊗ ψ is stabilizer-aligned. Using Eq. (141) for m = 0 gives
multiplicativity of the stabilizer fidelity F0(φ⊗ ψ) = F0(φ)F0(ψ).

Define a bipartite system AB such that φ and ψ are states of A and B. Let Π be a stabilizer
projector of rank 2m such that

Fm(φ⊗ ψ) = 2−m/2〈φ⊗ ψ|Π|φ⊗ ψ〉.
We shall write Π as a sum of rank-1 stabilizer projectors as stated in Corollary 2. Since local
Clifford unitary operators do not change the stabilizer fidelity, we shall absorb the unitaries UA
and UB into the states φ and ψ respectively. Accordingly, below we set U = I. Consider a single
term ωαβγ in the decomposition of Π. Applying the Cauchy-Schwarz inequality one gets

|〈φ⊗ ψ|ωαβγ〉|2 = 2−d

∣

∣

∣

∣

∣

∣

2d

∑

δ=1

〈φ|α, γ, δ〉 · 〈ψ|β, γ, δ〉

∣

∣

∣

∣

∣

∣

2

≤ 2−d〈φ|ΠA
αγ |φ〉 · 〈ψ|ΠB

βγ |ψ〉, (142)

where we defined stabilizer projectors

ΠA
α,γ =

2d

∑

δ=1

|α, γ, δ〉〈α, γ, δ| and ΠB
β,γ =

2d

∑

δ=1

|β, γ, δ〉〈β, γ, δ|. (143)

By assumption, ψ is stabilizer-aligned. Thus

max
γ
〈ψ|

2b

∑

β=1

ΠB
βγ |ψ〉 ≤ 2(b+d)/2F0(ψ). (144)

Here we noted that
∑2b

β=1 ΠB
βγ is a projector of rank 2b+d for all γ. Combining Eq. (142,144) gives

〈φ⊗ ψ|Π|φ⊗ ψ〉 =

2a

∑

α=1

2b

∑

β=1

2c

∑

γ=1

|〈φ⊗ ψ|ωαβγ〉|2 ≤ 2(b−d)/2F0(ψ) · 〈φ|
2a

∑

α=1

2c

∑

γ=1

ΠA
α,γ |φ〉 (145)

The assumption that φ is stabilizer-aligned gives

〈φ|
2a

∑

α=1

2c

∑

γ=1

ΠA
α,γ |φ〉 ≤ 2(a+c+d)/2F0(φ). (146)

Here we noted that
∑2a

α=1

∑2c

γ=1 ΠA
α,γ is a projector of rank 2a+c+d. Combining Eqs. (145,146)

gives
〈φ⊗ ψ|Π|φ⊗ ψ〉 ≤ 2(a+b+c)/2F0(ψ)F0(φ).

It remains to notice that Π has rank 2m, where m = a+ b+ c. This establishes Eq. (141).
We now prove the converse statement from Theorem 5.
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Lemma 10. Let φ be an n-qubit state which is not stabilizer-aligned. Then

F0(φ⊗ φ⋆) > F0(φ)F0(φ⋆).

Proof. If φ is not stabilizer-aligned then we have Fm(φ) > F0(φ) for some m ∈ {1, . . . , n}. Let Π
be a stabilizer projector with

Fm(φ) =
1√
2
m 〈φ|Π|φ〉.

Let C be an n-qubit Clifford such that

Π = C (|0〉〈0|n−m ⊗ Im)C†.

Next consider a system of 2n qubits and partition them as [2n] = ABA′B′ where |A| = |A′| = n−m
and |B| = |B′| = m. Define a 2n-qubit stabilizer state

|θ〉 = C ⊗ α|0〉A|Φ〉BB′ |0〉A′ ,

where

|Φ〉BB′ =
1√
2
m

∑

z∈{0,1}m

|z〉B |z〉B′ .

Also define a normalized m-qubit state

|ω〉 =
1

2m/4
√

Fm(φ)
(〈0|n−m ⊗ Im)C|φ〉.

F0(φ⊗ φ⋆) ≥ 〈φ⊗ φ⋆|θ〉〈θ|φ⊗ φ⋆〉 (147)

= 〈ω ⊗ ω⋆|Φ〉〈Φ|ω ⊗ ω⋆〉2m(Fm(φ))2 (148)

= (Fm(φ))2 (149)

> F0(φ)F0(φ⋆). (150)

where in the last line we used the fact that Fm(φ) > F0(φ) = F0(φ⋆).

6.3 Proving and disproving stabilizer alignment

In this section we prove that all states of n ≤ 3 qubits are stabilizer-aligned. We also show that
typical n-qubit states are not stabilizer-aligned for sufficiently large n. An important lemma is the
following

Lemma 11. For any quantum state ψ we have Fm(ψ) ≤ F0(ψ) for m = 1, 2, 3.

It follows immediately that

Corollary 3. All states of n ≤ 3 qubits are stabilizer-aligned.

Indeed, if we consider n-qubit states, it suffices to check that Fm(ψ) ≤ F0(ψ) for m ≤ n.

Corollary 4. If F0(ψ) ≥ 1/4 then ψ is stabilizer-aligned.

Indeed, if m ≥ 4 then Fm(ψ) ≤ 2−m/2 ≤ 1/4 ≤ F0(ψ).
Finally, we show that Haar-random n-qubit states are not stabilizer-aligned for sufficiently large

n.

Claim 2. Let ψ be a Haar-random n-qubit state. Then

Pr[F0(ψ ⊗ ψ⋆) 6= F0(ψ)F0(ψ⋆)] ≥ 1− o(1).

and so for large enough n a typical state ψ is not stabilizer-aligned.
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Highly structured states on a large number of qubits may be stabilizer-aligned, and for instance
it is an open question whether or not all Clifford magic states are stabilizer-aligned.

Proof of Lemma 11. First, we claim that

Fm−1(ψ) ≥ 2−1/2

(

1 +

[

2m − 1

4m − 1

]1/2
)

· Fm(ψ) (151)

for all m ≥ 1. Indeed, consider a fixed m and a rank-2m stabilizer projector Π ∈ Sn,m such that
Fm(ψ) = 2−m/2〈ψ|Π|ψ〉. Using the standard stabilizer formalism one can show that

UΠU−1 = I⊗m ⊗ |0〉〈0|⊗(n−m) ≡ Π′

for some n-qubit unitary Clifford operator U . Define a state |ψ′〉 = U |ψ〉. We have

Π′|ψ′〉 = Γ1/2|ω〉 ⊗ |0n−m〉

for some m-qubit normalized state |ω〉 and Γ = 〈ψ′|Π′|ψ′〉 = 〈ψ|Π|ψ〉. Since ω is normalized,

∑

P 6=I

〈ω|P |ω〉2 = 2m − 1,

where the sum runs over all 4m − 1 non-trivial Pauli operators on m qubits. Thus there exists an
m-qubit Pauli operator P 6= I such that

〈ω|P |ω〉 ≥
(

2m − 1

4m − 1

)1/2

. (152)

Define a stabilizer projector

Π′′ =
1

2
(I + P )⊗ |0〉〈0|⊗(n−m) ∈ Sn,m−1.

Recalling that Γ = 〈ψ|Π|ψ〉 = 2m/2Fm(ψ) we arrive at

Fm−1(ψ) = Fm−1(ψ′) ≥ 2−(m−1)/2〈ψ′|Π′′|ψ′〉 (153)

= 2−(m−1)/2 Γ

2
(1 + 〈ω|P |ω〉)

= 2−1/2(1 + 〈ω|P |ω〉) · Fm(ψ).

Combining this identity and Eq. (152) proves Eq. (151). Applying Eq. (151) inductively gives

F0(ψ) ≥ 2−1/2(1 +
√

1/3) · F1(ψ) ≈ 1.115 · F1(ψ), (154)

F0(ψ) ≥ 2−1/2(1 +
√

1/3) · 2−1/2(1 +
√

3/15) · F2(ψ) ≈ 1.141 · F2(ψ), (155)

F0(ψ) ≥ 2−1/2(1 +
√

1/3) · 2−1/2(1 +
√

3/15) · 2−1/2(1 +
√

7/63) · F3(ψ) ≈ 1.076 · F3(ψ). (156)

Thus F0(ψ) ≥ Fm(ψ) for m = 1, 2, 3 proving the lemma.

Next, we prove claim 2.

Proof. Let w be any n-qubit state. For Haar-random ψ the probability density function p(y) of
y = |〈w|ψ〉|2 does not depend on w and is equal to (equation (9) of Ref. [60]),

p(y) = (2n − 1)(1− y)2n−2.

Integrating this we obtain the cumulative distribution function

Pr
[

|〈w|ψ〉|2 ≥ x
]

= (1− x)2n−1 ≤ exp(−x(2n − 1)).
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Figure 7: The color indicates the value of ξ for single-qubit states in the first octant of the Bloch sphere. This
function controls the upper bound on the approximate stabilizer rank as in Eq. (162).

Since an n-qubit stabilizer state is specified by O(n2) bits the cardinality of the set STABn of

n-qubit stabilizer states is |STABn| ≤ 2O(n2). Choosing x = n3/2n and applying a union bound
we get

Pr

[(

max
w∈STABn

|〈ψ|w〉|2
)

≥ n3/2n
]

≤ e−Ω(n3).

This says that with probability very close to 1 a random ψ has F0(ψ) = F0(ψ⋆) ≤ n3/2n. Next
suppose ψ has this property. Then

F0(ψ ⊗ ψ⋆) ≥

∣

∣

∣

∣

∣

∣

1√
2
n

∑

z∈{0,1}n

〈z|ψ〉〈z|ψ⋆〉

∣

∣

∣

∣

∣

∣

2

=
1

2n
,

which is strictly greater than F0(ψ)F0(ψ⋆) ≤ 2−2n(n3)2.

6.4 Multiplicativity of stabilizer extent

This subsection considers tensor products of few-qubit states that involve at most three qubits each
and shows that ξ behaves multiplicatively for such products, proving Proposition 1. The proof will
draw heavily on Theorem 4 and Corollary 3.

Proof of Proposition 1. By Theorem 4 there exist witness states {ω⋆,1, ω⋆,2, . . . , ω⋆,L} such that

|〈ψj |ω⋆,j〉|2
F (ω⋆,j)

= ξ(ψj). (157)

We consider the product witness |Ω〉 =
⊗

j |ω⋆,j〉 for which

|〈Ψ|Ω〉|2 =
∏

j

|〈ψj |ω⋆,j〉|2. (158)

Furthermore, using Corollary 3 and Theorem 5 we get

F (Ω) =
∏

j

F (ω⋆,j). (159)
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Figure 8: The approximate stabilizer rank of |θ⊗n〉 is upper bounded as χδ(θ⊗n) ≤ δ−2ξ(θ)n, where ξ(θ) =
(cos(θ/2) + tan(π/8) sin(θ/2))2 is attained by the stabilizer decomposition from Eq. (163). The red line shows

the function ξ(θ) for θ ∈ [0, π/4] and the blue line shows the function g(θ) = 2h2(cos2(θ/2)) where h2 is the
binary entropy. Our upper bound on the approximate stabilizer rank of θ⊗n performs better that obtained by a
naive expansion in the 0, 1 basis whenever the red line lies below the blue line.

Putting this together yields

|〈Ψ|Ω〉|2
F (Ω)

=
∏

j

|〈ψj |ω⋆,j〉|2
F (ω⋆,j)

=

L
∏

j=1

ξ(ψj). (160)

Thus, using Ω as a witness, we get
L
∏

j=1

ξ(ψj) ≤ ξ(Ψ). (161)

Furthermore, ξ is inherently sub-multiplicative and so we must have equality.

Now let us see how this can be used to bound the approximate stabilizer rank of a product
state α⊗n where α is a single-qubit state. Combining Theorem 1 with Lemma 6 we get

χδ(α
⊗n) ≤ δ−1ξ(α⊗n) = δ−2(ξ(α))n. (162)

Note that since α is a single-qubit state we can easily compute ξ(α) by solving a small convex
optimization program. In Figure 7 we plot ξ(α) as a function of the single-qubit state α on the
first octant of the Bloch sphere.

The maximum value plotted in Figure 7 is ξ(f) = 2/(1 + 1/
√

3) ≈ 1.2679, which is achieved by
the so-called face state |f〉 which lies in the center of the surface and is defined by

|f〉〈f | = 1

2

(

I +
1√
3

(X + Y + Z)

)

.

The single-qubit states in Figure 7 which lie in the x-z plane are of the form

|θ〉 = cos(θ/2)|0〉+ sin(θ/2)|1〉 = (cos(θ/2)− sin(θ/2)) |0〉+
√

2 sin(θ/2)|+〉 (163)

for θ ∈ [0, π/2]. In this case, the stabilizer decomposition on the right hand side achieves the
optimal value of ξ. We can use this example to show that in the general case the upper bound on
approximate stabilizer rank given in Theorem 1 is not tight (for δ = O(1), say). When θ is close
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to 0 it becomes advantageous to expand θ⊗n in the standard 0, 1 basis and truncate amplitudes
which are very small. Using this approach one obtains an approximate stabilizer rank scaling as
2h2(cos2(θ/2)) where h2 is the binary entropy. In Figure 8 we compare the performance of these
upper bounds as a function of θ.
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mond Harry Putra Rudy, Mingi Ryu, Ninad Sathaye, Chris Schnabel, Eddie Schoute, Kanav
Setia, Yunong Shi, Adenilton Silva, Yukio Siraichi, Seyon Sivarajah, John A. Smolin, Mathias
Soeken, Hitomi Takahashi, Ivano Tavernelli, Charles Taylor, Pete Taylour, Kenso Trabing,
Matthew Treinish, Wes Turner, Desiree Vogt-Lee, Christophe Vuillot, Jonathan A. Wild-
strom, Jessica Wilson, Erick Winston, Christopher Wood, Stephen Wood, Stefan Wörner,
Ismail Yunus Akhalwaya, and Christa Zoufal. Qiskit: An open-source framework for quantum
computing, 2019.

[5] Noga Alon. Transversal numbers of uniform hypergraphs. Graphs and Combinatorics, 6(1):
1–4, 1990. DOI: 10.1007/BF01787474.

[6] Simon Anders and Hans J Briegel. Fast simulation of stabilizer circuits using a graph-state
representation. Physical Review A, 73(2):022334, 2006. DOI: 10.1103/PhysRevA.73.022334.

[7] Ryan S. Bennink, Erik M. Ferragut, Travis S. Humble, Jason A. Laska, James J. Nutaro,
Mark G. Pleszkoch, and Raphael C. Pooser. Unbiased simulation of near-Clifford quantum
circuits. Physical Review A, 95:062337, Jun 2017. DOI: 10.1103/PhysRevA.95.062337.

[8] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and Hartmut Neven. Simulation
of low-depth quantum circuits as complex undirected graphical models. arXiv preprint
arXiv:1712.05384, 2017.

[9] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang
Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum
supremacy in near-term devices. Nature Physics, 14(6):595, 2018. DOI: 10.1038/s41567-018-
0124-x.

Accepted in Quantum 2019-06-19, click title to verify. Published under CC-BY 4.0. 45

https://doi.org/10.4230/LIPIcs.CCC.2017.22
https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1007/BF01787474
https://doi.org/10.1103/PhysRevA.73.022334
https://doi.org/10.1103/PhysRevA.95.062337
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41567-018-0124-x


[10] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[11] Sergey Bravyi and David Gosset. Improved classical simulation of quantum circuits domi-
nated by Clifford gates. Physical Review Letters, 116(25):250501, 2016. DOI: 10.1103/Phys-
RevLett.116.250501.

[12] Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal Clifford gates
and noisy ancillas. Physical Review A, 71(2):022316, 2005. DOI: 0.1103/PhysRevA.71.022316.

[13] Sergey Bravyi, David Fattal, and Daniel Gottesman. Ghz extraction yield for multipartite sta-
bilizer states. Journal of Mathematical Physics, 47(6):062106, 2006. DOI: 10.1063/1.2203431.

[14] Sergey Bravyi, Graeme Smith, and John A. Smolin. Trading classical and quantum computa-
tional resources. Physical Review X, 6:021043, Jun 2016. DOI: 10.1103/PhysRevX.6.021043.

[15] Michael J Bremner, Ashley Montanaro, and Dan J Shepherd. Average-case complexity versus
approximate simulation of commuting quantum computations. Physical Review Letters, 117
(8):080501, 2016. DOI: 0.1103/PhysRevLett.117.080501.

[16] Earl T. Campbell. Catalysis and activation of magic states in fault-tolerant architectures.
Physical Review A, 83:032317, Mar 2011. DOI: 10.1103/PhysRevA.83.032317.

[17] Jianxin Chen, Fang Zhang, Mingcheng Chen, Cupjin Huang, Michael Newman, and
Yaoyun Shi. Classical simulation of intermediate-size quantum circuits. arXiv preprint
arXiv:1805.01450, 2018.

[18] Elizabeth Crosson and John Bowen. Quantum ground state isoperimetric inequalities for the
energy spectrum of local hamiltonians. arXiv preprint arXiv:1703.10133, 2017.

[19] Koen De Raedt, Kristel Michielsen, Hans De Raedt, Binh Trieu, Guido Arnold, Marcus
Richter, Th Lippert, H Watanabe, and N Ito. Massively parallel quantum computer simulator.
Computer Physics Communications, 176(2):121–136, 2007. DOI: 10.1016/j.cpc.2006.08.007.

[20] Nicolas Delfosse, Philippe Allard Guerin, Jacob Bian, and Robert Raussendorf. Wigner func-
tion negativity and contextuality in quantum computation on rebits. Physical Review X, 5:
021003, Apr 2015. DOI: 10.1103/PhysRevX.5.021003.

[21] Lior Eldar and Aram W Harrow. Local Hamiltonians whose ground states are hard to approx-
imate. In Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium on,
pages 427–438. IEEE, 2017. DOI: 10.1109/FOCS.2017.46.

[22] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate opti-
mization algorithm applied to a bounded occurrence constraint problem. arXiv preprint
arXiv:1412.6062, 2014.

[23] Austin G Fowler, Simon J Devitt, and Cody Jones. Surface code implementation of block
code state distillation. Scientific reports, 3:1939, 2013. DOI: 10.1038/srep01939.

[24] E Schuyler Fried, Nicolas PD Sawaya, Yudong Cao, Ian D Kivlichan, Jhonathan Romero,
and Alán Aspuru-Guzik. qtorch: The quantum tensor contraction handler. PloS one, 13(12):
e0208510, 2018. DOI: 10.1371/journal.pone.0208510.

[25] Hector J Garcia, Igor L Markov, and Andrew W Cross. Efficient inner-product algorithm for
stabilizer states. arXiv preprint arXiv:1210.6646, 2012.
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