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The fabrication of two-dimensional systems for electronic devices is not straightforward with 

top-down low-yield methods often employed leading to irregular nanostructures and lower 

quality devices. Here a simple and reproducible method to trigger self-assembly of arrays of 

high aspect-ratio chiral copper heterostructures templated by the structural anisotropy in black 

phosphorus nanosheets will be presented. Using quantitative atomic resolution aberration-

corrected scanning transmission electron microscopy imaging, in-situ heating transmission 

electron microscopy and electron energy-loss spectroscopy arrays of heterostructures forming 

at speeds exceeding 100 nm/s and displaying long-range order over microns were observed. 

The controlled instigation of the self-assembly of the Cu heterostructures embedded in BP 

was achieved using conventional electron beam lithography combined with site specific 

placement of Cu nanoparticles. Density functional theory calculations were used to 
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investigate the atomic structure and suggest a metallic nature of the Cu heterostructures grown 

in BP. The findings of this new hybrid material with unique dimensionality, chirality and 

metallic nature and its triggered self-assembly open new and exciting opportunities for next 

generation, self-assembling devices.  

1. Introduction 

Unlike graphene, semiconductor few-layer black phosphorus (BP) exhibits a direct bandgap1 

leading to diverse electronic and thermal properties2-12. BP was first successfully synthesised 

under pressure over a century ago13. However, only has the recent successful exfoliation of 

monolayer BP 2, 4, 14-15 led to its rediscovery for applications ranging from electronics, 

catalysis, sensors to biomedical drug delivery 16-34. The structural anisotropy of BP leads to 

anisotropy in the transport properties and therefore to additional unique opportunities for 

applications 6, 8, 12, 35-36. 

For many of these applications, there is a need for hybrid structures to combine the merits of 

low-dimensional materials for the design and fabrication of nanodevices by balancing 

requirements for electronic/electrical properties, improved stability and optical tenability. 

Multiple 2D materials, including BP, can be stacked vertically or stitched together to form in-

plane heterojunctions, which combine the characteristics of the constituent compounds, thus 

allowing the tuning of electrical as well as optical properties 16-34, 37. Another example of BP 

hybrid structures has been achieved by placing carbon nanotubes 38-39 on top of BP to 

combine their properties. However, in general, Van der Waals heterostructures grow with a 

variable interlayer distance and twist angles between the layers [11, 12] two features that are 

almost impossible to control. This makes their properties varying from sample to sample and 

the design of composite nanostructures becomes unpredictable and, in the worst case, 

unreliable. Furthermore, in order to preserve the properties of the individual materials in the 

heterojunctions, the fabrication of atomically sharp interfaces is crucial. This, however, can be 

extremely challenging. Even though attempts to synthesize lateral interfaces have been made, 
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roughness due to interfacial steps and traces of unwanted substitutional doping across the 

heterojunctions often result in a dilution or obliteration of the properties of the materials [13]–

[16].  

Here we propose a new hybrid nanostructure growth strategy. Our approach avoids the issues 

described above and uses a two-dimensional material to template the growth of novel hybrid 

structures.  

This strategy is demonstrated here for the first time with BP, which is used to guide the self-

assembly of highly directional Cu heterostructures templated by the underlying lattice 

structure. Our work uses atomic-resolution quantitative aberration-corrected scanning 

transmission electron microscopy (AC-STEM) imaging combined with simultaneous electron 

energy-loss spectroscopy (EELS) to demonstrate the in situ self-assembly of Cu 

heterostructures in a BP nanosheet matrix. Using density functional theory (DFT) calculations 

we studied the thermodynamic stability and growth of the Cu heterostructures and 

investigated their electronic structure.  

2. Results and Discussion 

2.1. Rapid in situ formation of Cu structures templated by BP lattice 

High-angle annular dark field (HAADF) STEM imaging in figure 1a shows the self-

assembled high-aspect-ratio Cu structures as they formed through the contact of Cu 

nanoparticles dropped onto the BP nanosheets. The same growth mechanism was observed for 

both liquid exfoliated as well as mechanically exfoliated BP nanosheets.  

The synthesis of the hybrid material did not involve any surface treatment of the BP40 or 

addition of surfactants15 or C60 molecules41 to improve the reduced stability of BP.  This is an 

advantage of the self-assembly technique described here since it reduces not only steps in the 

synthesis process but it also keeps the BP surface structure as close as possible to that of BP 

nanosheets alone. However, the downside of keeping the BP surface intact and free of added 

molecules is that the stability in air of the hybrid material is comparable to that of BP 



  

4 
 

nanosheets.15, 42-43  Therefore the material was therefore kept under vacuum conditions during 

the synthesis of BP and the self-assembly of the Cu structures. The Cu structure formation 

was studied using in situ heating transmission electron microscopy (TEM) and it was found 

that when heated to 300 ˚C, arrays of the structures as shown in figure 1b form rapidly. The 

growth speed was observed to exceed 100 nm/sec (structures grew across the whole field of 

view within the minimum microscope acquisition time). More details on the different stages 

of the heating experiment and the video showing the formation of the structures is shown in 

the supplementary information (SI), section SI1 and Movie S1 respectively. We expect the 

formation energy of these structures to strongly favour self-assembly as the BP was found to 

be an especially effective scavenger of any local Cu in the surroundings; this includes the self-

formation using the Cu from the TEM support grid itself when heated even in the absence of 

specific Cu nanoparticle addition (also shown in SI). In all cases, the growth of the structures 

solely occurred along the [010] direction, as shown in the images in figure 1a&b. No growth 

was ever observed in any other direction. This strongly suggests that the Cu growth is 

templated by the lattice of the BP. The schematic of a BP nanosheet as seen along the [001] 

crystallographic direction shown in figure 1c illustrates the direction of the Cu structure 

growth (see SI, section SI2 for more details on the BP lattice structure). In BP the P atoms 

join together to form a two-dimensional puckered sheet with natural channels along the [010] 

direction, forming adjacent hexagonal chairs in an orthorhombic arrangement [24]–[26]. A 

computational investigation showed the Cu atoms diffusing with a low energy barrier (∆E = 

0.14 eV) along the grooves of the BP lattice along the [010] direction (details in SI, section 

SI5 for details on computational simulations), which further supports that the Cu growth is 

templated by the BP lattice.  

2.2. Controlled initiation of self-assembly of Cu structures 

Here we describe two techniques to successfully achieve a controlled seeding of Cu in the BP. 

In the first approach, Cu NPs were individually transferred using a micro-mechanical 
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manipulator onto a mechanically exfoliated BP flake already deposited on a silicon wafer. Cu 

atom diffusion was then achieved by simply heating the system. The second and more 

controllable technique involved using electron beam lithography to directly evaporate Cu to 

specific sites on the exfoliated BP nanosheets, already deposited on a silicon substrate. 

Heating to 300 ˚C enabled Cu diffusion. With both techniques, we achieved control over the 

growth initiation sites as the growth was observed originating solely from the BP nanosheet 

areas where the Cu NPs had been deposited. More details on these methods can be found in 

the SI, section SI3.  

2.3. Polymorph, chiral Cu structures with unique dimensionality 

Imaging of the structures grown in the BP is displayed in figure 1b,d&e where various 

structures in a multi-layered BP nanosheet are shown in the simultaneous dark field (DF) and 

bright field (BF) images (figure 1d and figure 1e respectively). The high-resolution images 

figure 1d&e show that the pair of structures to the left-hand-side of the images appears to 

undulate in a regular manner but the individual structure on the right-hand side appears to be 

straighter in comparison. The undulations have been found to follow a regular pattern with 

~2nm periodicity (see SI, section SI4 for more details). 

Atomic resolution imaging of BP in both the [001] and R17/-R17 (tilted by 17° from [001], 

with R17 and -R17 being of opposite tilt direction and equivalent by symmetry in BP as 

described in the SI, section SI2) revealed that the Cu structures are only 3-atoms-wide (as 

shown in figure 2a-e and figure 2f-h respectively). The interaction of Cu with phosphorus 

was found to be highly localized (figure 2a and section SI 5). Core-loss electron energy-loss 

spectroscopy (EELS) (figure 2b-d) confirmed both that the structures are composed of Cu and 

that the separation between the Cu structures and the BP nanosheets is atomically sharp.  

The structures also appear to be regularly spaced along [100] direction (in the direction 

perpendicular to the growth direction) as shown in figure 2g. This spacing was found to be 

multiples of 0.45nm, which matches the theoretically calculated distance between the grooves 
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in the [010] direction of the BP lattice (more details on the undulations as well as the spacing 

between structures can be found the SI, section SI4), again confirming that the growth is 

templated by the anisotropic geometry of the BP lattice.  

DFT calculations showed that the diffusion of a Cu atom on a BP surface occurs interstitially, 

through a zigzag pathway joining the centres of the adjacent BP hexagonal chairs. 

Furthermore we found that the process leading to the formation of a Cu surface structure 

becomes more energetically favourable with increasing nanostructure length, which provides 

further computational support for the great speed of the structure formation we observed 

experimentally (for more details on the energetics and kinetics of Cu interaction with BP see 

SI, section SI5). Hence, the BP sheets provide the template for the Cu growth as shown by the 

combined evidence described above.  

The undulations of the structure were clearly visible in atomic resolution images as shown in 

the STEM images in figure 2. In the thinner BP sheets, the Cu structures even exhibited 

undulations in the R17/-R17 orientation (figure 2f). The undulating pattern of the structures 

was found to vary in directionality across the structures. Structures 1&2 shown in figure 2h as 

well as structure 4 (which exhibits only very slight undulations) are of different chirality 

compared to structure 3. The structures also appear to introduce different steps into the 

different projections of the BP structure of the same thickness: structures 1-3 introduce a step, 

but structure 4 does not appear to do so (marked with a red dotted line in figure 2h). The same 

step difference was observed in the R17/-R17 orientation as shown in figure 2e. In both 

regions, the BP sheet adjacent to the Cu structures exhibits the same STEM intensity which 

indicates that the thickness is approximately constant (a quantitative STEM analysis will be 

presented below). This suggests that the observed difference in stepping behaviour is not a 

result of differing BP thicknesses. The observed differences in undulating patterns and step 

introduction could however result from different horizontal stacking of structures of different 

chirality and/or vertical offset between structures as well as from different Cu thicknesses or a 
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combination of all. Occasionally, Cu structures that terminate in the BP sheet were observed 

(shown in SI). This further supports the suggestion that the Cu structures are indeed 

heterostructures of a certain thickness which appear to vary in thickness between different 

structures. 

However, in order to confirm the thickness of the Cu structures as well as to study their 

physical properties and formation process, a structure model of the arrangement of Cu and P 

atoms within one period of undulation is needed. First, we developed an empirical structure 

model to provide information on the projected Cu structures by comparing image simulations 

quantitatively with calibrated experimental STEM images. In a second step, we employed 

comprehensive DFT simulations to discuss the physical properties for a catalogue of closest-

match Cu structures. 

2.4. Wire versus heterostructure: thickness determination using quantitative imaging 

HAADF STEM image-contrast quantification performed over a Cu//BP flake in its R17/-R17 

direction was employed to study the precise thicknesses (the height of the structures in the 

EM projections) by quantitatively comparing experiment with simulations. 44-45  

Since the structure of the BP is well known, the comparison of thickness-dependent STEM 

intensity simulations with calibrated experimental images allows for the accurate 

measurement of the sheet thickness in regions of pure BP. The average BP sheet thickness in 

the region shown in figure 3a was measured to be 5.5 nm in the R17/-R17 orientation, the 

equivalent of 9 BP unit cells. This knowledge of the exact BP thickness was then employed to 

develop an empirical structure model for the Cu structure to consistently account for the 

relative contrast in the Cu sites compared to the BP sites. On first assessment, the significant 

additional contrast in the Cu sites compared to the BP sites in a nanosheet of 5.5nm thickness 

cannot be explained by the addition of an individual Cu nanowire. Hence experimental and 

computational evidence strongly suggests that the Cu structures forming in the BP are in fact 

2D heterostructures. In order to confirm this hypothesis, the knowledge of the exact BP 
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thickness and the periodicity of the Cu structure assessed by template matching (image shown 

in figure 3c) were used to develop the empirical model structure for the Cu heterostructure 

shown in figure 3b. The validity of this empirical model structure was assessed using 

dynamical multi-slice simulations with the MULTEM software 46 to obtain the simulated 

image shown in figure 3d which shows a close match to experiment in the R17/-R17 

projection. The close match between the relative contrast in the electron microscopy 

projections and the image simulated from the empirical model structure suggests that the Cu 

structure is indeed a 2D heterostructure and not an individual nanowire of Cu. Experimentally, 

the Cu heterostructures were observed in BP for thicknesses from ~5 or more unit cells only. 

These 2D heterostructures are most likely composed of stacks of structures that interact with 

each other to form regular but chiral polymorph 2D heterostructures of Cu in the BP 

nanosheets composed of several layers of BP.  

Armed with this knowledge we proceeded using density functional theory (DFT) calculations 

to study the nanoscopic, atomic and electronic structure of the Cu heterostructures. 

2.5. Theoretical investigation of chiral polymorphism and metallic nature 

The chiral polymorphism of the observed experimental structure was confirmed by our DFT 

calculations which showed different metastable chiral polymorphs of width ranging from 

0.365 nm to 0.375 nm, depending on the structure. We then simulated images using the 

calculated DFT structures to directly compare them to experimental electron micrographs 

(using the fast image simulation tool Prismatic STEM 46 see methods section for details of the 

simulation parameters).   

The Cu heterostructure that most closely matched the experiment was also one of the 

computationally most stable, with a formation energy of 0.60 eV/Cu atom (T-S-3 structure in 

SI, section SI5). As observed in the experimental in situ measurements, the DFT 2D 

heterostructure also forms along the natural BP growth channel in the [010] direction and 

extends transversally along the [001] direction. The DFT heterostructure results from the 
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vertical alignment of three-atoms-wide Cu wires with a triangular cross section, growing 

interstitially within BP layers as shown in Figure 4.a. Wires belonging to adjacent BP layers 

grow with an offset of one BP lattice parameter along the [010] direction, such that the 

heterostructure, appears continuous along the growth path, when observed along the [001] 

direction, while gaps are exposed when the structure is rotated by 17˚ (or by -17 ˚depending 

on the chirality of the heterostructure).  

As described earlier, R17 and –R17 orientations of clean BP are equivalent by symmetry, but 

the chiral nature of the Cu heterostructures investigated causes this symmetry to be broken. 

Without knowledge of the exact 3D structure there is no way to distinguish between both 

orientations experimentally. However, it is possible to observe the DFT structures from 

different orientations and compare the simulated EM projections of the DFT structure in the 

R17 and -R17 orientations.  When doing so, it becomes evident that the simulated images of 

the same chiral structure in the R17 and -R17 orientations are indeed distinct (as shown in 

Figure 4.a-b, additional image simulations of all orientations can be found in the SI, Figure 

S14 and Figure S15).    

The simulated images of the T-S-3 structure are shown in Figure 4.b, in i) [001] and iii) -R17 

orientations respectively. The corresponding experimental electron micrographs are shown in 

ii) and iv) respectively. Several different polymorphs of the T-S-3 structure were 

computationally observed, mainly differing for the chirality of the structure and the 

disposition and/or density of the atoms along the central axis of Cu heterostructure. The 

formation energies of such polymorphs are very similar, and range from 0.6 to 0.7 eV/Cu 

atom (see SI, section SI6:  T structures in SI Table S1). 

 

To computationally confirm that the Cu structure is indeed a 2D heterostructure and not an 

individual Cu nanowire, we separately simulated the isolated nanowire intercalated within the 

BP, and found out that, although thermodynamically viable, its formation within BP 
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(formation energy of ~0.27 eV/Cu atom) is less favorable than the formation of the 2D 

nanostructure.  

In addition, both the same undulations in the simulated images as observed experimentally, 

and the continuity of the Cu heterostructure as observed from [001] direction are fully 

recovered only when relaxing the replicated nanowire unit to form the heterostructure (SI, 

Figure S14 and Figure S15).  

Furthermore, we found that the image simulations of the EM projections of the DFT structure 

reproduce the step in the BP lattice in the –R17 but not in the R17 orientation as observed 

experimentally. These findings prove that the chiral nature of the Cu heterostructure is at the 

origin of the conformational variations observed experimentally.  

Besides the most stable structure and its chiral polymorphs, our computational results show 

that a number of other metastable heterostructures can also be formed (with formation 

energies ranging from 0.5 to 0.2 eV/Cu atom), either composed by intercalated nanotubes 

with hexagonal cross-sections, or by nanowires with pentagonal or irregular cross-sections. 

The Cu atoms in these structures partially occupy substitutional positions, after a dissociative 

processes leading to the release of P atoms. (A full catalogue of 2D heterostructures and the 

corresponding image simulations can be found in the SI Table S1.) 

The analysis of the density of states of the T-S-3 structure (see figure 4c) suggests that the 

heterostructure is metallic. This is proven by a densification of the density of states around the 

Fermi level of the decorated system, with Bloch states and charge density localized around the 

wire (see SI section SI5 for more details). This metallic character is present in all the 

metastable nanostructures observed computationally. An overlap of Cu and P centered states 

localized around the wire is also observed at all energies. As stated, because several other 

structures of similar formation energy could also form, there may be other electronic and 

structural variations of these wires.  

3. Conclusion 
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Initiating the self-assembly of the metallic Cu heterostructures in situ in the BP nanosheets 

and thereby producing a hybrid material represents a novel way to fabricate nanodevices. 

Issues occurring during conventional fabrication of hybrid structures, including uncontrollable 

effects of stacking and relative orientation of materials, unwanted substitutional doping across 

heterostructures and interface roughness may thereby be elegantly avoided. Moreover, 

controlled seeding of Cu in BP was achieved with e-beam lithography, a standard technique 

used in the semiconducting industry which is readily scalable. Importantly, this can enable the 

use of existing technology and hardware to fabricate and design future BP-based electronic 

devices. The synthesis of the hybrid material did not involved any surface treatment of the 

BP40 or addition of surfactants15 or C60 molecules41 to improve the reduced stability of BP.  

This is an advantage of the self-assembly technique described here since it reduces not only 

steps in the synthesis process but it also keeps the BP surface structure as close as possible to 

that of BP nanosheets alone. However, the downside of keeping the BP surface intact and free 

of added molecules is that the stability in air of the hybrid material is comparable to that of 

BP nanosheets.15, 42-43 Therefore adding the metallic nature, unique dimensionality (few-

atoms-wide and microns long) and chirality of the Cu heterostructures to the inherently 

promising properties of BP make this novel hybrid material of great interest for a whole range 

of potential applications in plasmonics, nanocatalysis, nanosensors, ICT and related areas. 

The very high aspect ratio of the Cu heterostructures in the BP nanosheets further increases 

the structural anisotropy already existing in BP nanosheets. This structural anisotropy in BP is 

at the root of very desirable, highly-directional optical, thermal and electrical properties in BP 

2, 6, 8, 35-36 and these properties are expected to be further enhanced by the addition of the 

embedded metallic heterostructures and further studies of this are planned. Most importantly, 

the addition of chirality to the highly-directional properties inherent to BP allows for an 

additional degree of freedom when it comes to device fabrication which makes this intriguing 

novel hybrid material unique and of great interest for use in electronics. 
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4. Experimental Section  

Samples: The black phosphorus was purchased from Smart Elements (Art. Nr. 003933), and 

crystals were stored in a glove box (MBraun) to avoid degradation (H2O and O2 levels below 

0.1 ppm). The mechanical exfoliation was carried out using NITTO blue tape (BT-150E-CM) 

inside the glove box. Liquid-phase exfoliation was carried out using isopropyl alcohol (IPA) 

as a solvent and sonication using a sonic tip (Fisher Scientific) for 4 hrs at 60% amplitude.47 

The obtained dispersions were centrifuged in a Heraeus Multifuge X1 Centrifuge at 3000 rpm 

for 90 minutes, followed by the separation of the supernatant from the non-exfoliated material. 

The exfoliated sheets were deposited on TEM holey carbon 200 mesh Cu grids purchased 

from SPI Supplies. Initially the wire growth was achieved by thermally treating the TEM 

grids in a vacuum oven (2 × 10-3 mbar) kept at 110 °C for 5 days. The thermal treatment could 

also be achieved using a hot plate (IKA RCT basic) kept at 300 °C for 5 min.  

Growth of Copper heterostructures: For the controlled growth study, we used two different 

approaches: First, we drop-cast Cu nanoparticles on an SEM stub and then lifted them by 

Coulomb interaction using a fine needle (Picoprobe - GGB Industries controlled by 

Kleindiek-nanotechnik) in a Carl Zeiss Auriga FIB, operated at 5 kV. This way we could 

transfer particles onto exfoliated BP flakes deposited atop a silicon wafer (University Wafer).  

The second methodology involved first exfoliating the BP nanosheets and transferring them 

onto a silicon wafer, followed by lithography using a Raith beam blanking system on a Carl 

Zeiss Supra 40 SEM and then by e-beam metal evaporation using a Temescal. More details on 

both growth procedures can be found in the SI.  

Microscopy: Scanning Electron Microscopy (SEM) images of the controlled growth study 

were acquired using a Carl Zeiss Ultra operated at 5 kV. Aberration-corrected STEM (AC-

STEM) HAADF imaging and EELS were carried out in a NION UltraSTEM200, operated at 

60 kV: for these experiments, the probe convergence semi-angle was 35 mrad with a probe 
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current of 35 pA, resulting in a probe size of 1.2 Å. Further imaging was carried out in a Nion 

UltraSTEM100MC ‘Hermes’, also operated at 60 kV: for these experiments, the probe 

convergence semi-angle was 31mrad with a probe current of 50 pA, resulting in a probe size 

of 1 Å. The HAADF detector inner and outer angles were calibrated as 85 mrad and 185 mrad 

respectively. Both microscopes are fitted with a Gatan Enfinium spectrometer for EELS. In 

situ heating measurements were performed on a S/TEM FEI TITAN 80-300, operated at 300 

kV using a DENS wildfire holder. It is based on a Micro-Electro-Mechanical System 

(MEMS), controlling the temperature environment locally on the device by 4-point-probe. 

The temperature was initially varied from room temperature to 300 °C at 50 °C interval and 

kept at 300 °C for 65 min. The temperature was then raised to 500 °C with 50 °C interval. The 

mechanically exfoliated BP was placed over the MEMS electron transparent windows and Cu 

nanoparticles (Sigma Aldrich 774111-5G) were drop-cast over it. 

Image processing: The HAADF STEM image shown figure 2b was frame averaged and the 

image shown in fig.3b was frame-averaged 48, then template-matched, then denoised.48 

EELS processing: Digital Micrograph was used to perform the EELS and STEM analysis. 

Principal Component Analysis (Multivariate Statistical Analysis from the Interdisciplinary 

Centre for Electron Microscopy (CIME) using 60 components were used for de-noising the 

STEM EELS maps shown in fig.2.49  

Density functional theory: The DFT approach was applied as implemented in the CP2K code 

(www.cp2k.org). The CP2K Kohn and Sham orbitals were expanded in a mixed Gaussian (double-

ȗ plus polarization, DZVP) and plane-waves basis set. A 600 Ryd energy cut-off was used for 

the plane-wave expansion of the electronic density. Tether and Goedecker-type 

pseudopotentials were used for all atoms, and Brillouin Zone integration was restricted to the 

ī-point. The geometry and simulation cell were relaxed until the maximum force on each 

atom was less than 0.01 eV/Å. The PBE 50 exchange and correlation functional was used with 
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a Van der Waals correction at the Grimme-D3 level 51 The Nudged Elastic Band (NEB) 

approach in its climbing image implementation was used to evaluate energy barriers along the 

Cu diffusion pathway heterostructure 52-53. Adsorption energies per Cu atom were evaluated 

as ǻE = (EBP + nECu – ECu@BP – n’EP)/n, where EBP is the energy of the reference bulk BP slab, 

ECu is the chemical potential of a Cu atom (as taken from a reservoir represented by a 841 

atoms Cu cluster), ECu@BP is the energy of the decorated BP slab, n is the number of the 

adsorbed Cu atoms (NCu in table SI13 in SI) and n’ the number of P atoms that have been 

released (Psubst in Table S1, in the SI). EP is the energy of a P atom, taken from a reservoir 

represented by the ideal BP bulk reference.  More detail about the modelling of the interstitial 

periodical 2D heterostructures within BP is reported in SI. 

Quantitative HAADF STEM: Quantitative STEM imaging was carried out at the FEI X-Ant-

EM Titan class microscope at EMAT (Antwerp), which is equipped with an aberration 

corrector for the probe-forming system. The microscope was operated at 120keV primary 

energy and HAADF STEM images were acquired with a Fischione Model 3000 detector 

operated in its linear range, with acceptance angles of 46 to 215 mrad. Measured intensities 

were normalised to the incident beam intensity and compared to simulations employing the 

MULTEM software, which took the inhomogeneous detector sensitivity and partial spatial 

coherence into account. Thermal diffuse scattering was simulated with the frozen phonon 

model in an Einstein approximation using 20 phonon configurations. Statistical parameter 

estimation theory was employed as implemented in the StatSTEM software [34] to model the 

intensity distribution of each atomic column with a Gaussian in both simulation and 

experiment. This yields the integral scattered intensity of an atomic column, the scattering 

cross-section, which increases monotonically with specimen thickness. In order to improve 

the precision, we measured the cross-section of a P-dumbbell and compared with its simulated 

counterpart to determine the specimen thickness in Fig. 3a. 



  

15 
 

Further image simulations: Faster, less comprehensive image simulations of BP were 

performed using the Prismatic Software for STEM simulation.54 Settings used: 1 frozen 

phonon per simulation for simulations shown in SI, 5 frozen phonons for the main paper 

(when directly comparing for the same structure, only slight improvements in noise-levels 

were observed when comparing images generated using between 1 up to 20 frozen phonons); 

potential bound = 0.3 Å; Pixel size = 0.1x0.1 Å. Images were generated for outer detector 

angles up to 200 mrad. A source size of 0.8 Å was added as well as a realistic noise level 

using a Matlab routine based on a Poisson distribution function.  
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Supporting Information 

All supporting Information is available from the Wiley Online Library. 

The following information can be found in the main SI file:  

• SI 1 Ex-situ and In-situ Heating Experiments 

• SI2 Orientations of Black Phosphorus  

• SI3 Controlled instigation of self-assembly of Cu heterostructures 

• SI4 Undulations of copper heterostructures and spacing between copper 

heterostructures in black phosphorus 

• SI 5 Computational Approach and Modelling 

In addition the following files are provided separately:  

• Table S1. Catalogue showing the stable and energetically favorable 2D copper (Cu) 

heterostructures within black phosphorus (BP) bulk as found using an iterative 

combination of density functional theory (DFT) and image simulation (Prismatic).  

• Movie S1. In-situ heating Transmission Electron Microscopy (TEM) of the growth 

process of the Cu heterostructures. 
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Figure 1: Rapid self-assembly of Copper (Cu) heterostructures of high aspect ratio 

templated by the Black Phosphorus (BP) lattice.  a) High-angle annular dark field (HAADF) 

Scanning Transmission Electron Microscopy (STEM) image of the heterostructures formed 

during in situ heating to 300 °C.  The Cu heterostructures were found to form rapidly, with 

formation speed >100 nm/sec. b) Large arrays of parallel Cu heterostructures in the BP were 

found to self-assemble. c) Atomic model of a BP nanosheet viewed along the [001] 

crystallographic directions; the red arrow illustrates the direction of the Cu heterostructure 

growth. d) High resolution HAADF STEM image and e) corresponding Bright Field (BF) 
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image of the same region as marked in red in b), showing a pair of undulating Cu lines and a 

third straighter line of Cu.   
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Figure 2:  Three-atoms-wide polymorph chiral Copper (Cu) structures templated by Black 

Phosphorus (BP) nanosheets. Orientations a-e) R17/-R17 and f-h) [001] revealed that the 

Cu structures are only 3-atoms-wide with a)* a sharp interface between Cu and phosphorus 

(marked with blue dotted line).  b)-d) Compositional analysis (using CL EELS) confirmed that 

the structure is composed solely of Cu. e)-h) Polymorphisms and chirality: In the EM 

projections of the Cu in the BP, different stepping behavior was observed (dotted red line vs 

continuous blue line in e) and red line in h)). f) In the thinner BP sheets, the Cu structures 

exhibit undulations in the R17 orientation. Relative intensities of the Cu structures in thinner 

BP sheets (inset in f)) were different compared to the thicker BP nanosheets (in e)). g) Cu 

structures exhibit undulating patterns and were regularly spaced (red markings). h) The 

undulating pattern varied across the structures: 1,2 and 4 (where 4 only showed very faint 

undulating pattern) are of different chirality compared to 3. In the projections of the R17/-

R17 orientation, the Cu structures appear to introduce a different step into the BP in regions 
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of same thickness. Structures 1-3 introduce a step, but 4 does not (red dotted line). (* Image 

was frame-averaged as described in [35].) 

 

Figure 3: Thickness of copper (Cu) heterostructures in the BP determined using 

quantitative imaging. a) The typical thickness of the BP nanosheets for Cu//BP hybrids (here 

in R17/-R17 orientation) was found to be 9 unit cells, or ~5.5 nm. b) Empirical model 

structure obtained to estimate thickness of the Cu in the BP lattice overlaid over template-

matched experimental STEM image of Cu structures in BP nanosheets (experimental image 

alone in c)*). d) MULTEM simulated image obtained from the empirical model structure 

confirming that the Cu structures have a certain thickness. (*frame-averaged [35], then 

template-matched, then denoised.) 
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Figure 4: Theoretical investigation of chiral polymorphism and metallic nature. Chiral, 

stable and energetically favorable Copper (Cu) heterostructures in the Black Phosphorus 

(BP) nanosheets found using an iterative combination of density functional theory (DFT), 

image simulation and comparison to experiment. a) Ball and stick representation of the 

structure that was found to provide the closest match with experiment in orientations [100], 

[010], -R17, [100] and R17. Green and cyan balls represent P and Cu atoms, respectively. b) 

Simulated images55 of the structure shown in i) [001] orientation and iii) -R17 orientation 

and compared to experimental STEM images in the same orientation shown in ii) and iv) 

respectively. c) Density of states (DOS), of the structure as shown in a) represented with a 

dashed black line, suggests that the heterostructure in the BP nanosheet is metallic. DOS of 

the clean BP substrate and the Projected DOS on P and Cu atoms of the structure are also 

represented in red and green, respectively.  
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A simple and reproducible method to trigger self-assembly of arrays of Cu heterostructures 

templated by the structural anisotropy in black phosphorus (BP) nanosheets is presented. 

Using multimodal electron microscopy techniques the Cu structures will be shown to be 

atomically-thin heterostructures. Using density functional theory calculations, the growth 

process, the atomic structure and metallic nature of the Cu heterostructures in BP were 

investigated.  
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