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Exploiting Future Word Contexts in Neural

Network Language Models for Speech Recognition
X. Chen, X. Liu, Y. Wang, A. Ragni, J.H.M. Wong, M.J.F. Gales

Abstract—Language modelling is a crucial component in a
wide range of applications including speech recognition. Lan-
guage models (LMs) are usually constructed by splitting a
sentence into words and computing the probability of a word
based on its word history. This sentence probability calculation,
making use of conditional probability distributions, assumes
that there is little impact from approximations used in the
LMs including: the word history representations and finite
training data. This motivates examining models that make use
of additional information from the sentence. In this work future
word information, in addition to the history, is used to predict the
probability of the current word. For recurrent neural network
LMs (RNNLMs) this information can be encapsulated in a bi-
directional model. However, if used directly this form of model
is computationally expensive when training on large quantities
of data, and can be problematic when used with word lattices.
This paper proposes a novel neural network language model
structure, the succeeding-word RNNLM, su-RNNLM, to address
these issues. Instead of using a recurrent unit to capture the
complete future word contexts, a feed-forward unit is used to
model a fixed finite number of succeeding words. This is more
efficient in training than bi-directional models and can be applied
to lattice rescoring. The generated lattices can be used for
downstream applications, such as confusion network decoding
and keyword search. Experimental results on speech recognition
and keyword spotting tasks illustrate the empirical usefulness
of future word information, and the flexibility of the proposed
model to represent this information.

Index Terms—Recurrent neural network, language model,
succeeding words, speech recognition, keyword search

I. INTRODUCTION

Language models (LMs) are crucial components in many

applications, such as speech recognition and machine trans-

lation. The purpose of these language models is to compute

the probability of any given sentence W = (w1, w2, ..., wL).
Language models are normally based on calculating the prob-

ability of current word based on its history words, these will

be referred to as unidirectional LMs in this paper. This form

of LM can be written as

P (W) = P (w0, w1, w2, ..., wL) =
L
∏

t=1

P (wt|w
t−1
0 ) (1)
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ar527@eng.cam.ac.uk, mjfg@eng.cam.ac.uk). X. Liu is with Chinese Uni-
versity of Hong Kong (e-mail: xyliu@se.cuhk.edu.hk). Software for the
techniques described in this paper is available via the open-source toolkit
CUED-RNNLM [3] in version 1.1: http://mi.eng.cam.ac.uk/projects/cued-
rnnlm.

This requires the prediction of the probability of word wt

given its previous history wt−1
0 = w0, w1, ..., wt−1. Two

key research issues for LMs are: how to model long range

dependencies; and how to handle data sparsity issues when

modelling long-span contexts. n-gram LMs [4] and neural

network based language models (NNLMs) [5], [6] are two

widely used forms of language models. In n-gram LMs, a

Markov assumption is made such that only the most recent

n− 1 words are used to represent the complete history. Thus

P (wt|w
t−1
0 ) ≈ P (wt|w

t−1
t−n+1) (2)

This form of truncated history context is also used in feed-

forward NNLMs [5]. In contrast, recurrent neural network

LMs (RNNLMs) model the complete history using a continu-

ous, compact, vector space representation ht−1. The RNNLM

predicted word probability is given by

P (wt|w
t−1
0 ) ≈ P (wt|ht−1) (3)

Most research on language modelling has focused on uni-

directional LMs that only consider the word history. Future

contexts may contain additional, useful, information for pre-

dicting the current word. The word probability was computed

using P (wt|w
t−1
0 , wN

t+1) and the LMs built using this form of

probability may contains complementary with traditional uni-

LMs. There has been increasing research interest within the

speech and language processing community in incorporating

future word contexts to improve neural network language

model performance [8], [9], [7]. For example, succeeding

words were incorporated into RNNLMs within a maximum

entropy framework in [8]. Forward and backward RNNLMs

were separately constructed before being combined using a

log-linear interpolation in [7]. [9] investigated the use of

bidirectional RNNLMs (bi-RNNLMs) for speech recognition.

On a broadcast news transcription task, the authors reported

small improvements using future contexts in sigmoid acti-

vation based bi-directional RNNLMs, while no performance

improvement was obtained using long short-term memory

(LSTM) based bi-directional RNNLMs. To date, only limited

and inconsistent gains in speech recognition performance have

been reported with bi-RNNLMs over uni-directional RNNLMs

(uni-RNNLMs).

In this work, bi-RNNLMs are first constructed and investi-

gated for speech recognition. By applying a simple smoothing

method and a two-stage interpolation between n-gram LMs,

uni-RNNLMs and bi-RNNLMs can produce consistent, and

significant, performance improvements over uni-RNNLMs on

a range of speech recognition tasks. Though they can yield
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performance improvements, bi-RNNLMs pose several chal-

lenges for both model training and inference as they require

the complete previous and future word context information to

be taken into account. First, it is difficult to parallelise training

efficiently. Second, lattice rescoring is complicated for these

LMs as future context also needs to be incorporated when

determining the suitable merging and splitting of lattice paths.

A range of efficient lattice rescoring techniques have previ-

ously been developed for uni-RNNLMs [11], [30], but these

can not be used for bi-RNNLMs. Hence, N-best rescoring is

used for these models [8], [9], [1]. In order to address these

issues, a novel model structure, the succeeding word RNNLM

(su-RNNLM) [2], is evaluated in this paper. Instead of using

recurrent units to capture the complete future word context

as in bi-RNNLMs, feed-forward units are used to model a

small, fixed-length number of succeeding words. The existing

efficient training [14] and lattice rescoring [11] algorithms

developed for uni-RNNLMs can be extended to the proposed

su-RNNLMs. This allows compact lattices to be generated

with su-RNNLMs for many downstream applications. This

paper is an extended version of previous conference articles

[1], [2] that together describe the underlying theory of the

models used. A more detailed discussion of the su-RNNLM

and associated training is given here, along with updated

results for the speech recognition tasks. In addition results

on applying these advanced language modelling techniques to

a keyword spotting task are presented.

The rest of this paper is organized as follows. Section

II gives a brief review of standard unidirectional RNNLMs.

Section III describes the structure of bidirectional RNNLMs

(bi-RNNLMs). The proposed model with succeeding words

(su-RNNLMs) is introduced in Section IV, followed by a

description of the lattice rescoring algorithm in Section VII.

Several practical issues for the use of bi-RNNLMs (and su-

RNNLMs) are discussed in Section V. Experimental results

are presented in Section VIII and conclusions are drawn in

Section IX.

II. UNIDIRECTIONAL RNNLMS

In standard recurrent neural network language models

(RNNLMs) [6], the history wt−1
0 = w0, w1, w2, ..., wt−1

of word wt is represented using the 1-of-K encoding of

the previous word wt−1 and a continuous vector ht−2, a

compact representation of the remaining context wt−2
0 . Figure

1 shows an example of this unidirectional RNNLM (uni-

RNNLM). The input consists of the most recent word wt−1,

which is projected into a low-dimensional, continuous, space

via a linear projection layer. A recurrent, hidden, layer is

positioned after this projection layer. There are many options

for the recurrent unit used in the recurrent layer, e.g. standard

sigmoid activations [6], or more complicated forms such as

gated recurrent unit (GRU) [17] and long short-term memory

(LSTM) units [18]. A continuous vector ht−1 representing

the complete history information wt−1
0 can be obtained using

ht−2 and previous word wt−1. This vector is used as input

of recurrent layer for the estimation of next word. The output

layer with softmax function is then applied to calculate the

probability P (wt|w
t−1
0 ). An additional node is often added

at the output layer to model the probability mass of out-of-

shortlist (OOS) words to speed up softmax computation by

limiting the vocabulary size [24], [19]. Similarly, an out-

of-vocabulary (OOV) node can be added in the input layer

to model OOV words. The probability of the word sequence

W = wL
0 using these uni-RNNLMs is

Pu(w
L
0 ) ≈

L
∏

t=1

P (wt|wt−1,ht−2) ≈

L
∏

t=1

P (wt|ht−1) (4)

Fig. 1. An example unidirectional RNNLM.

The performance of a language model can be evaluated

using Perplexity (PPL). Based on the definition from [20],

the perplexity can be computed based on the average log

probability at the sentence level using

PPL = exp
(

−
1

L
logPu(W)

)

= exp
(

−
1

L
logPu(w

L
0 )

)

= exp
(

−
1

L

L
∑

t=1

logP (wt|w
t−1
0 )

)

(5)

Thus, for a unidirectional language model, the PPL can be

calculated based on the average log probability of each word.

The training of uni-RNNLMs can be parallelised on Graph-

ics Processing Units (GPUs) by using spliced sentence bunch

(i.e. minibatch) mode [14], [16]. Multiple sentences are con-

catenated to form a long sequence and sets of these long

sequences can then be aligned in parallel from left to right.

In order to train sentence independent model, the sentence

boundaries are marked and used to reset history vector. This

data structure is very efficient for minibatch based training

as they can be arranged to yield comparable total sequence

lengths [14]. When using these forms of language models for

applications such as speech recognition, N-best rescoring is

the most straightforward way to apply uni-RNNLMs. Lattice

rescoring can also become feasible by introducing some ap-

proximation [11] to simplify path merging and expansion in

lattice. This will be described in more detail in Section VII.

III. BI-DIRECTIONAL RNNLMS

In the uni-RNNLMs, only history words are used to predict

the probability of the current word. As previously discussed,

though the sentence probability can be expressed in terms of
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these conditional word-level probabilities, in practice this has

ignored limitations in the conditional probabilities from the

LM. One alternative option is to include future word context

information. Bi-directional recurrent neural networks provide

an option to incorporating this information. Figure 2 illustrates

an example of bidirectional RNNLMs (bi-RNNLMs). Unlike

uni-RNNLMs, both the history word context wt−1
0 and future

word context wL
t+1 are used to estimate the probability of

current word P (wt|w
t−1
0 , wL

t+1). Two recurrent units are used

to capture the previous and future information respectively. In

the same fashion as uni-RNNLMs, ht−1 is a compact con-

tinuous vector of the history information wt−1
0 . Additionally

h̃t+1, another continuous vector, is added to encode the future

information wL
t+1. This future context vector is computed from

the next word wt+1 and the previous future context vector

h̃t+2 containing information of wL
t+2. The history and future

context vector ht−1 and h̃t+1 are concatenated and then fed

into the output layer. The final probability is obtained using a

softmax function. In order to reduce the number of parameter,

the projection layer for the previous and future words are

shared in this paper.

Fig. 2. An example bidirectional RNNLM.

Unlike uni-RNNLMs, the sentence probability of bi-

RNNLMs can not be computed as a product of word probabil-

ity when future information is taken into consideration. In the

same fashion as the product of experts (PoE) framework, the

probability of the word sequence W = wL
0 can be computed

as,

Pb(w
L
0 ) =

1

Zb

P̂b(W) =
1

Zb

L
∏

t=1

P (wt|w
t−1
0 , wL

t+1) (6)

P̂b(W) is the unnormalized sentence probability computed

using individual word probabilities from the bi-RNNLM. Zb

is a sentence-level normalization term to ensure the sentence

probability is appropriately normalized, which is defined as,

Zb =
∑

W∈Θ

P̂b(W) (7)

where Θ is the set of all possible sentences. Unfortunately, this

normalization term is impractical to calculate for most tasks.

In a similar form to Equation 5, the PPL of bi-RNNLMs

can be calculated based on sentence probability as,

PPL = exp
(

−
1

L
logPb(w

L
0 )

)

= exp
(

−
1

L
log

1

Zb

P̂b(w
L
0 )

)

(8)

= exp
( 1

L
log(Zb)−

1

L

L
∑

t=1

logP (wt|w
t−1
0 , wL

t+1)
)

In the last line of the above equation, the second term is the

log word probability of bi-RNNLMs, which is similar to uni-

RNNLMs. However, there is an additional term associated

with Zb, which is given in Equation 7, that is normally

impractical to compute. As a result, it is usually not possible

to compute a valid perplexity from bi-RNNLMs. Nevertheless,

the average log probability of each word in bi-RNNLMs can

be used to measure the accuracy of word prediction, which is

referred as “pseudo” perplexity (PPL) in this paper.

PPLpseudo = exp
(

−
1

L

L
∑

t=1

logP (wt|w
t−1
0 , wL

t+1)
)

(9)

This is a “pseudo” PPL because the normalized sentence

probability Pb(W) is discarded and the unnormalized sentence

probability P̂b(W) is used instead. Hence, the “pseudo” PPL

of bi-RNNLMs is not comparable with the standard PPL of

uni-RNNLMs. However, this “pseudo” PPL provides informa-

tion on the average word probability from bi-RNNLMs since

it is based on the individual word probabilities.

This expression illustrates the challenges of inference with

bi-RNNLMs. It is difficult to combine bi-RNNLMs with other,

often unidirectional, LMs such as n-gram LMs and RNNLMs

since the sentence probability of bi-RNNLMs can not be

computed. This will be discussed in Section V-A. Furthermore,

N-best rescoring is normally used for speech recognition

with these models[1]. Lattice rescoring is impractical for bi-

RNNLMs as the word probability calculations require infor-

mation from the complete sentence. However, lattices are very

important in a range of downstream applications, including

confidence score estimation [21], keyword search [22] and

confusion network decoding [23].

Another potential drawback, limiting the use of bi-

RNNLMs, is the difficulty of training the models. The com-

plete previous and future context information is required to

compute the word probability. It is computationally expen-

sive to train bi-RNNLMs sentence by sentence, as well as

difficult to parallelise the training for efficiency. The solution

proposed in [9] is to concatenate all sentences in the training

corpus together to form a single long sequence. This sequence

can then be “chopped” into multiple sub-sequences with the

same, data average, sentence length, enabling minibatch based

training on GPUs. This allows bi-RNNLMs to be trained

efficiently. However, in this fashion, the word is predicted

using the “future” sentences (i.e. sentences after the current

sentence) when the sub-sequence contains more than one

sentence. This will introduce mismatch between training and

real application if “future sentences” are not available. In this

paper, bi-RNNLMs are trained in a more consistent fashion.
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Unlike the training of uni-RNNLMs, where sentences are

concatenated with spliced sentence bunch, for bi-RNNLMs

training, multiple sentences are aligned from left to right to

form minibatches. In order to handle issues caused by variable

sentence length, NULL tokens were appended to the ends of

sentences to ensure that the aligned sentences had the same

length. These NULL tokens are not used for parameter update.

Although resulting in slower training speed, it yielded more

stable convergence and better performance than the approach

in [9] in preliminary experiments.

IV. RNNLMS WITH SUCCEEDING WORDS

As discussed above, there are problems associated with bi-

RNNLMs include the slow training speed and difficulties in

lattice rescoring. In order to handle these issues, a novel struc-

ture, the su-RNNLM, is proposed to efficiently incorporate

future context information. The model structure is shown in

Figure 3. In the same fashion as bi-RNNLMs, the previous

history wt−1
0 is modeled with recurrent units (e.g. LSTM,

GRU). However, instead of modeling the complete future

context information, wL
t+1, using recurrent units, feed-forward

units are used to capture a finite number, k, of succeeding

words, wt+k
t+1 . When the succeeding words are beyond the

sentence boundary, a vector of zeros is used as the word

embedding vector, which is similar to the zero padding used

in the feed-forward forward NNLMs [24]. These previous and

future context information are merged in the output layer and

a softmax function is applied to calculate the probability of the

current word P (wt|w
t−1
0 , wt+k

t+1 ). In this work the projection

layers for previous word and future context are shared.

For each word, as the number of succeeding words is finite

and fixed, its succeeding words can be organized as a n-

gram future context and used for minibatch mode training

as in feed-forward NNLMs [24]. Hence, su-RNNLMs can be

trained efficiently in a similar fashion to uni-RNNLMs using

the spliced sentence bunch mode [14].

Fig. 3. An example su-RNNLM with 2 succeeding words.

Similar to the sentence probability of bi-RNNLMs as given

in Equation 6, the probability of wL
0 can be computed as

Ps(w
L
0 ) =

1

Zs

L
∏

t=1

P (wt|w
t−1
0 , wt+k

t+1 ) (10)

Again, the sentence level normalization term Zs is difficult to

compute and only “pseudo” PPL as defined in Equation 9 can

be simply obtained.

V. USE OF BI/SU-RNNLMS FOR SPEECH RECOGNITION

As discussed previously, it is not possible to calculate the

exact probability of the whole sentence, wL
0 , using both bi-

RNNLMs and su-RNNLMs. This poses several theoretical

and practical challenges when using these models for speech

recognition. In this section, the interpolation of language

models, and the possible sensitivity of systems to ASR errors,

are discussed. As bi-RNNLMs and su-RNNLMs face similar

issues when they are applied for speech recognition, only su-

RNNLMs will be discussed here. The methods described in

this section can be applied directly on bi-RNNLMs without

modification.

A. Language Model Interpolation

n-gram LMs have been the dominant language models

during the last several decades [25], [26]. Uni-RNNLMs

were shown to present different and complementary modeling

ability to n-gram LMs [27], [28]. Improved performance can

be obtained by interpolating n-gram and uni-RNNLMs [27].

However, for su-RNNLMs, it is difficult to calculate the sen-

tence level normalized probability thus traditional interpola-

tion approaches involving su-RNNLMs are more complicated.

Linear and log-linear interpolation are the two most popular

approaches to combine multiple language models and will be

discussed below.

1) Linear Interpolation: linear interpolation is widely used

to combine multiple uni-LMs. Here considering the linear

interpolation of n-gram and uni-RNN LMs,

P (wt|w
t−1
0 ) = λPrnn(wt|w

t−1
0 )+(1−λ)Png(wt|w

t−1
0 ) (11)

where λ is the interpolation weight of RNNLM. The resulting

interpolated probability is a valid probability mass function

(PMF), which means that this interpolated LM is still a valid

unidirectional language model. It can be used to calculate

sentence probabilities using Equation 1.

However, applying linear interpolation to combine uni-LMs

and su-RNNLMs would yield,

P (wt|w
t−1
0 , wL

t+1) = (12)

λPuni(wt|w
t−1
0 ) +

1

Zsu

(1− λ)Psu(wt|w
t−1
0 , wL

t+1)

It is usually not practical to calculate the normalisation term

Zsu, thus it is problematic to combine uni-LMs and bi-LMs

using linear interpolation and obtain a valid PMF.
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2) Log-linear Interpolation: an alternative approach to

combine LMs is log-linear interpolation, which applies linear

interpolation in the log domain [29]. For two uni-LMs this

yields

P (wt|w
t−1
0 ) = (13)

1

Z(wt−1
0 )

Prnn(wt|w
t−1
0 )λPng(wt|w

t−1
0 )1−λ

where Z(wt−1
0 ) is a history-dependent normalisation term,

which can be computed by summing over the vocabulary V ,

Z(wt−1
0 ) =

∑

w∈V

Prnn(w|w
t−1
0 )λPng(w|w

t−1
0 )1−λ (14)

where λ is the “weight” assigned to the uni-RNNLM 1.

Log-linear model combination with su-RNNLMs is again

complicated by the need to compute normalisation terms when

using future word information. To address this, models can

be interpolated at the sequence, rather than word level. Thus

considering the combination of a uni-LM and su-RNNLM

P (W) =
1

Z
Puni(W)λPsu(W)1−λ

=
1

Z̄
Puni(W)λP̂su(W)1−λ (15)

where Z̄ is the sentence-level normalisation term and P̂su(W)
is the unnormalized sentence probability defined in Equation

6. Log probabilities are usually used in speech recognition,

thus Equation 15 becomes,

logP (W) = C + λ logPuni(W) + (1− λ) log P̂su(W) (16)

where C is a constant and does not alter the rank ordering

of hypotheses. Thus, sentence level log-linear interpolation of

uni-LMs and su-LMs, without computing C, can be used for

speech recognition. Though the performance of su-RNNLMs

cannot be evaluated using perplexity, it is valid to evaluate su-

RNNLMs in terms of ASR performance such as word error

rate (WER). It is also worth noting that the sentence level log-

linear interpolation is equivalent to the word level log-linear

interpolation, as shown in Equation 15.

In this paper, we adopted a two-stage interpolation to

combine n-gram, uni-RNN and su-RNN LMs. The n-gram and

uni-RNN LMs are first combined using linear interpolation 2

and the resulted uni-LM is further log-linear interpolated with

su-RNNLMs in sentence level.

In uni-LMs, the sentence probability was computed based

on P (wt|w
t−1
0 ). While in su-RNNLMs, the sentence proba-

bility is estimated based on P (wt|w
t−1
0 , wN

t+1), although the

sentence probability is difficult to compute. The combination

of su-RNNLMs and uni-LMs can be operated on sentence

level. As su-RNNLMs make use of future context for word

prediction, it might contain complementary information when

combining with traditional uni-LM estimated using Equation

1. In this paper, we used the same training data for construc-

tion of n-gram, uni-RNN and su-RNN LMs (bi-RNNLMs).

1The weights of the two models do not need to sum to one, but this
simplifies the empirical tuning of the weights.

2linear interpolation and log-linear interpolation of n-gram and uni-RNN
LMs gave similar performances.

Hence, we did not tune the interpolation weight and chose

equal interpolation weight for simplicity. We also found the

performances were not sensitive to the interpolation weight.

B. Bi/Su-RNNLMs probability Smoothing

In [1], it was found that the word-level probability distribu-

tions from bi-RNNLMs are much sharper than those of uni-

RNNLMs. This is easy to explain as the word-level predictions

of bi-RNNLMs, which use both previous and future contexts,

are much sharper than uni-RNNLMs where only history

information is used. However, there is a potential drawback

when using this sharp distribution for speech recognition. Bi-

RNNLMs will be more sensitive to errors in the hypothesis

from speech recognition systems, especially for tasks with high

WERs. One approach to mitigate this effect is to smooth the

well-trained bi-RNNLMs probabilities at inference time [1].

The smoothing algorithm can be written as,

P (wi|w
t−1
0 , wL

t+1) =
exp(αyi)

∑V

j exp(αyj)
(17)

su-RNNLMs have the similar issue caused by the sharp proba-

bility distribution as bi-RNNLMs when the future information

is used to predict current word. In this paper, probabilities from

su-RNNLMs and bi-RNNLMs are smoothed using Equation

17. The smoothing factor α is chosen as 0.7 empirically. More

details about the effect of smoothing procedure could be found

in [1].

VI. NCE TRAINING OF SU-RNNLMS

Cross entropy (CE) is a widely used objective function for

training neural network based language models. The probabil-

ity of each word needs to be computed in CE training, which

requires a normalization term to be computed over the whole

vocabulary. This is computationally feasible for tasks with

a small vocabulary, e.g. smaller than 20K words. However,

the training is slow for tasks with a large vocabulary, e.g.

larger than 50K words. In order to address this issue, noise

contrastive estimation (NCE) has been applied to improve

both training and evaluation efficiency [15], [14]. In NCE

training, unnormalized probabilities are used during training,

the normalization term is approximated by a constant that

does not vary with the word context. During inference the

unnormalized word probability can be used as the “constant”

normalisation term will not alter the hypotheses ranking. Using

NCE significant speedups can be achieved in both train and

test time.

In this paper, NCE is applied to the training of su-RNNLMs

on tasks with large vocabulary and large quantities of training

data. As NCE training only affects the computation in the

output layer, the NCE objective function can be directly ap-

plied to the su-RNNLM structure given in Figure 3. However,

in initial experiments it was found that su-RNNLMs did not

converge well using NCE training. Furthermore, the variance

of the normalization term was found to be large, this impacts

the accuracy of the inference process, this is illustrated in 5.

Despite examining a range of hyper-parameter settings it was

not possible to address these problems. A possible explanation
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for this behaviour is that the context representations using

recurrent neural networks and feed forward neural networks

are very different. Thus, it can be challenging for the linear

transform at the output layer to map these two representations

into a ”consistent” where a constant normalization term yields

good language model parobabilities. In order to mitigate this

issue, a modified su-RNNLM model structure is used, shown

in Figure 4. An additional non-linear feed forward layer is

added to combine the past and future contexts, this is the

shared layer in Figure 4. In this work a sigmoid activation

was used in this layer.

Fig. 4. An example su-RNNLM with 2 succeeding words with an additional

shared layer.

Figure 5 shows the variance of the log-normalization term

(over the observed contexts) for the original and modified

su-RNNLMs architectures during NCE training on the AMI

IHM (individual headset microphone) meeting corpus (see

section VIII for details), evaluated on the validation data set.

The green line shows the variance of the log normalization

of the su-RNNLM without the shared feed forward layer

(as shown in Figure 3). The red line corresponds to the su-

RNNLM with a feed forward layer on top of the output layer

(as shown in Figure 4). It can be seen that for the standard su-

RNNLM without the shared feed forward layer, the variance of

log normalization term increases significantly during training.

In contrast, the variance is much smaller when using the

modified su-RNNLM.

When using CE training the performance in terms of speech

recognition was similar for the two su-RNNLMs architec-

tures, Figures 3 and 4, indicating that the additional layer is

not required for improved system performance with standard

training. However, for NCE training, the modified su-RNNLM

architecture, Figure 4 was found to be more stable and exhibit

better convergence. The NCE training of su-RNNLMs yields

similar performance as the CE training on small amounts

of training data, such as AMI-IHM in Section VIII-A. su-

RNNLMs with a shared layer were used in the experiments

in Section VIII-B where the model was trained on large

quantities of data, requiring NCE for efficiency. The standard

su-RNNLM architecture was used in all other experiments.
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Fig. 5. Variances of log normalization with and without the shared feed

forward layer in su-RNNLMs on MGB3 data.

VII. LATTICE RESCORING

Lattice rescoring of feed-forward NNLMs with short context

length (e.g. 3) is straightforward by expanding the lattice ac-

cording to its n-gram history [24]. Additional approximations,

discussed below, are required for efficient uni-RNNLMs lattice

rescoring and resulting lattice generation [11], [12], [13], [30].

However, it is not simple to extend the uni-RNNLM approach

to bi-RNNLMs as both the complete previous and future con-

text information are required. As a result, N-best rescoring has

previously been used for bi-RNNLMs. However, lattices are

very useful in many applications. In contrast to bi-RNNLMs,

su-RNNLMs only require a fixed number of succeeding words,

instead of the complete future context information. Thus su-

RNNLMs can be viewed as a combination of uni-RNNLMs for

history and feed-forward NNLMs for future context. Hence,

lattice rescoring is feasible for su-RNNLMs by extending

the lattice rescoring algorithm of uni-RNNLMs to consider

additional fixed length future contexts.

A. Lattice rescoring with uni-RNNLMs

In this paper, the n-gram approximation [11] approach is

applied for uni-RNNLMs lattice rescoring. Here two paths

are merged if the previous n − 1 words of these two paths

are identical. Figure 6 shows an example of partial lattice

generated with a 2-gram LM. In order to apply uni-RNNLM

lattice rescoring using a 3-gram approximation to this lattice,

the grey shaded node in Figure 6 needs to be duplicated as

word w3 has two distinct 3-gram histories, which are (w0, w2)
and (w1, w2) respectively. Figure 7 shows the expanded lattice

after rescoring using a uni-RNNLM with 3-gram approxi-

mation. The history information from the best path is kept

for the following RNNLM probability computation and the

histories of all other paths are discarded. For example, the path

(w0, w2, w3) is kept and the alternative path (w1, w2, w3) is

discarded in arc w4.

The implementation in this work differs slightly from that

in [11]. There are two types of approximation involved in this

uni-RNNLM lattice rescoring, which will be referred to as the

merge and cache approximations. The merge approximation
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controls the merging of two paths described above. In [11]

an additional approximation was used for implementation

simplicity, the history of the first path reaching the node

was kept and all other paths with the same n-gram history

were discarded irrespective of the associated scores. This

introduces inaccuracies in the RNNLM probability calculation.

To address this the path with the highest accumulated score is

kept. Secondly, for fast probability lookup in lattice rescoring,

n-gram probabilities can be cached using n−1 words as a key.

A similar approach can be used with RNNLM probabilities,

namely the cache approximation. In [11], RNNLM probabili-

ties were cached based on the previous n− 1 words, where n

was constrained to be the same as the merge approximation.

Thus a word probability obtained from the cache may be

derived from a different complete history sharing the same

n− 1 previous words. The cache approximation here uses the

complete history as the key for caching RNNLM probabilities.

Both modifications yield small but consistent improvements

over [11] on a range of tasks, at only a very small computa-

tional load increase.

B. Lattice rescoring with su-RNNLMs

Lattice rescoring with su-RNNLMs can be implemented by

extending the n-gram approximation above to support future

word context. In order to handle succeeding words correctly,

paths will be merged only if the succeeding k words, as well

as the previous n − 1 words, are identical. Thus, the path

expansion needs to be carried out in both directions.

Again considering a 3-gram rescoring history approxima-

tion, using the 2-gram lattice in Figure 6. In order to apply

su-RNNLMs for lattice rescoring, the succeeding words also

need to be taken into account. Figure 8 is the expanded lattice

using a su-RNNLM with 1 succeeding word. The grey shaded

nodes in Figure 7 need to be expanded further as they have

distinct succeeding words. The blue shaded nodes in Figure 8

are the expanded node in the resulting lattice.

Fig. 6. Lattice generated by 2-gram LM.

Fig. 7. Lattice generated by uni-RNNLMs with 3-gram approximation.

The computation cost of the lattice rescoring of su-

RNNLMs with the n-gram history approximation and k suc-

ceeding words, is similar to an (n+k)-gram lattice expansion

Fig. 8. Lattice generated by su-RNNLMs with 3-gram approximation for

history context and 1 succeeding word.

for uni-RNNLMs. For larger values of n and k, the resulting

lattices can be very large. This can be mitigated by applying

beam width pruning during the lattice expansion. In this paper,

we only presented the WER results of su-RNNLMs lattice

rescoring with 1 and 3 succeeding words.

VIII. EXPERIMENTS

In this section, the performance of the su-RNNLM is eval-

uated for speech recognition and its impact on a down-stream

processing task, keyword-spotting. The experiments are split

into three sets. The first experiments examine the su-RNNLM

for speech recognition in different configurations on a pub-

lic data set, the AMI-IHM (individual headset microphone)

meeting corpus. The second set of experiments illustrates the

performance of su-RNNLMs when a large amount of training

data is available, the MGB3 corpus. The final experiments

investigate the performance of su-RNNLMs on a keyword

search task using Babel-program data. Where results are stated

as being significant, the matched pairs sentence-segment word

error (MAPSSWE) based statistical significance test was used

with a significance level of p = 0.05 and the tools provided

by NIST3.

A. Experiments on AMI-IHM data

The public AMI-IHM meeting corpus [36] was used to eval-

uated the performance of su-RNNLMs for speech recognition.

The data configuration is the same as the Kaldi s5 recipe

setup. A total of 78 hours of speech was used for acoustic

model training. This consists of about 1M words of acoustic

transcriptions. Eight meetings were excluded from the training

set and used as the development and test sets. The TDNN-

LSTM topology was used to build sequence-trained acoustic

model [38] with the Kaldi toolkit [37].

The first part of the Fisher corpus, comprising 13M words,

was used as additional language modeling training data. The

decoding vocabulary consisted of 49k words. All LMs were

trained on the combined (AMI+Fisher) 14M words. A 4-gram

KN smoothed back-off LM without pruning was trained and

used for lattice generation. GRUs were used as the recurrent

unit for all unidirectional and bidirectional RNNLMs 4. 512

hidden nodes were used in the hidden layer. The latest

version of the CUED-RNNLM toolkit [3] was used to train

the uni-RNNLMs, bi-RNNLMs and su-RNNLMs. The linear

3http://www1.icsi.berkeley.edu/Speech/docs/sctk-1.2/sc stats.htm
4The GRU and LSTM gave comparable performances, while GRU LMs

were faster for training and evaluation.
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interpolation weight λ between the 4-gram LMs and uni-

RNNLMs was set to 0.5. The log-linear interpolation weight,

(1 − λ) in Equation 15, for bi-RNNLMs (or su-RNNLMs)

was set to 0.3. The probabilities of bi-RNNLMs and su-

RNNLMs were smoothed by a smoothing factor of 0.7. The

3-gram approximation was applied for the history merging of

uni-RNNLMs and su-RNNLMs during lattice rescoring and

generation [11].

Table I gives the training speed for the su-RNNLM, mea-

sured in words per second (w/s), and (“pseudo”) PPLs with

different amounts of future word context. When the number

of succeeding words for the su-RNNLM is 0, it corresponds

to the baseline uni-RNNLM. When the number of succeeding

words is set to ∞, it is equivalent to a bi-RNNLM. It can

be seen that su-RNNLMs can be trained at a similar speed

to the uni-RNNLM when using limited future word contexts.

The additional computational load of the su-RNNLMs mainly

comes from the feed-forward unit for succeeding words as

shown in Figure 3. The cost of this part is much less than that

of other parts such as the output and GRU layers. Furthermore,

the training of the su-RNNLMs is much faster than that

of the bi-RNNLMs as the training su-RNNLMs is easy to

parallelise efficiently. It is worth mentioning again that the

PPLs of uni-RNNLMs cannot be compared directly with the

“pseudo” PPLs of bi-RNNLMs and su-RNNLMs. But both

PPLs and “pseudo” PPLs reflect the average log probability

of each word. From Table I, with increasing number of

succeeding words, the “pseudo” PPLs of the su-RNNLMs

keeps decreasing. It is also worth noting that there are some

minor differences between the estimation of sentence end

</s> in bi-RNNLMs and su-RNNLMs. In su-RNNLMs, there

is zero padding for the succeeding words it is beyond the

sentence boundary. When all succeeding words are padded

with 0, it strongly indicates that it is sentence end. However,

for bi-RNNLMs, there is no padding to indicate the sentence

end </s>. Therefore, pseudo-PPLs are not strictly comparable

between su-RNNLMs and bi-RNNLMs.

TABLE I
TRAIN SPEED AND (PSEUDO) PERPLEXITY OF UNI-, BI-, AND

SU-RNNLMS. 0 SUCCEEDING WORD IS FOR UNI-RNNLMS AND ∞ FOR

BI-RNNLMS ON AMI-IHM DATA.

#succ words 0 1 3 7 ∞

train speed(w/s) 4.5K 4.5K 3.9K 3.8K 0.8K
(pseudo) PPL 66.8 25.5 21.5 21.3 22.4

Table II gives the WER results of 100-best rescoring with

different language models. As discussed in section V it is

not possible to use linear interpolation for bi-RNNLMs (or

su-RNNLMs). Log-linear interpolation was applied for the

interpolation between these models and unidirectional LMs.

The first block of Table II compares the WER results of uni-

RNNLMs and bi/su-RNNLMs. The bi-RNNLM outperforms

the uni-RNNLM by 0.2% absolute, the su-RNNLM yields

the same performance as the uni-RNNLMs. The bi-RNNLM

is statistically better than the uni-RNNLM and su-RNNLM

on this task. The performance difference between the su-

RNNLMs and uni-RNNLM is not statistically significant. In

previous experiments on AMI-MDM (multiple distant micro-

phones) and Babel “Dholuo” experiments [1], bi-RNNLMs

were slightly worse than uni-RNNLMs. One possible expla-

nation for the improvement of bi-RNNLM on the AMI-IHM

task is that the reference segmentation is used here, and the

WER is relative low compared to the AMI-MDM and babels

tasks.

The second and third blocks in Table II show the WER

results for the combination of three LMs, using a ”reverse”

uni-RNNLM or su-RNNLM to get future word context. It can

be seen that increasing the number of succeeding words con-

sistently reduces the WER. With 1 succeeding word, the word

error rate was reduced by 0.2% absolutely. Su-RNNLMs with

more than 2 succeeding words gave about 0.4% absolute WER

improvement. These improvements using an interpolation of

uni-RNNs su-RNNLMs (from 1 to 7 words) are statistically

significant over the baseline uni-RNNLM. Additionally the

gains from increasing of number of succeeding words are

statistically significant when going from 0 to 1 to 2 succeeding

words. The bi-RNNLM (shown in the bottom line of Table

II) outperforms the su-RNNLMs by 0.1%, again statistically

significant, as the recurrent units are more suitable to capture

the complete future context information. Table II also presents

the number of model parameters for different model structures

in the third column. It can be seen that the bi-RNNLMs

and su-RNNLMs have similar amounts of model parameters

compared to uni-RNNLMs.

TABLE II
WERS OF UNI-, BI-, AND SU-RNNLMS WITH 100-BEST RESCORING. 0

SUCCEEDING WORD IS FOR UNI-RNNLMS AND ∞ FOR BI-RNNLMS ON

AMI-IHM DATA.

LM #succ words #param (M) dev eval

4-gram - 22.0 22.7
+uni-RNN - 26.2 20.4 21.0
+bi-RNN - 27.4 20.2 20.8
+su-RNN (3 su-words) - 26.8 20.4 21.0

+uni-RNN+reverse-RNN ∞ 52.4 20.0 20.6

+uni-RNN+su-RNN

0 26.2 20.4 21.0
1 26.4 20.2 20.7
2 26.6 20.0 20.6
3 26.8 19.9 20.5
4 27.0 19.9 20.5
5 27.1 19.9 20.4
6 27.3 19.9 20.4
7 28.5 19.9 20.4
∞ 27.4 19.8 20.3

Another way to incorporate future word context for lan-

guage modelling is to train reverse-order uni-RNNLMs from

the end to the beginning of a sentence [7]. The two-stage

interpolation was again used to combine the 4-gram, standard

uni-RNN and reverse-direction uni-RNN LMs. WER results

are shown in the third line of Table II. It can be seen that the

reverse RNNLMs can yield a moderate WER improvement,

but is slightly worse than su-RNNLMs and bi-RNNLMs. Note,

this form of reverse RNNLM is also difficult to use with lattice

rescoring for the same reason as bi-RNNLMs, as the complete

future word context is required.

For the experiments in Table II, the su-RNNLMs were

built using the configuration shown in Figure 3. An additional
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experiment was carried out to confirm whether su-RNNLMs

with an additional shared feedforward layer (configuration

in Figure 4) impacts performance when using the standard

cross entropy training criterion. The experimental results show

that these two su-RNNLM structures, both with 3 succeeding

words, yield the same WER.

Table III shows the WERs of lattice rescoring using su-

RNNLMs. The lattice rescoring algorithm described in Section

VII was applied. As lattices are generated from this process,

confusion network (CN) decoding was subsequently run on

the genetated lattices, yielding additional performance im-

provements 5. Su-RNNLMs with 1 and 3 succeeding words

were used for lattice rescoring. From Table III, su-RNNLMs

with 1 succeeding words gives 0.2% WER reduction and

using 3 succeeding words gives about 0.5% WER reduction.

These results are consistent with the 100-best rescoring result

in Table II. Confusion network decoding can be applied on

the rescored lattices and additional 0.2% WER performance

improvements are obtained on the dev and eval test sets.

TABLE III
WERS OF UNI-RNNLMS AND SU-RNNLMS WITH LATTICE RESCORING

ON AMI-IHM DATA

LM
#succ dev eval
words Vit CN Vit CN

4-gram - 22.0 21.8 22.7 22.5
+uni-RNN - 20.4 20.2 20.9 20.7

+su-RNN 1 20.2 20.1 20.7 20.5
3 19.9 19.7 20.3 20.1

B. Experiments on Multi-Genre Broadcast Data

This set of experiments investigates the use of su-RNNLMs

on a larger corpus, the English Multi-Genre Broadcast

(MGB3) challenge. Again TDNN-LSTM acoustic models

were built using the Kaldi toolkit [37] using a total of 275

hours of data. More details of the acoustic model construction

can be found in [40]. All language models were trained on

645M words, comprising 4M words of acoustic transcriptions

and 640M words of subtitles. The vocabulary size was chosen

to be 64K for building LMs. A 4-gram LM was used to gen-

erate lattices. Standard uni-RNNLM and su-RNNLMs were

trained with the CUED-RNNLM toolkit [3]. Again GRUs were

used as the recurrent unit. Given the increase in the quantity

of training data, NCE training [14] was applied to efficiently

train both the uni-RNNLM and su-RNNLM. RNNLMs were

trained with 1024 hidden nodes and 1000 noise samples shared

within each minibatch. It took about 3 days to train the su-

RNNLMs on one K80 machine. As discussed in Section VI,

an additional hidden layer was added in su-RNNLM, shown

in Figure 4. The performance was evaluated on the dev17b

test set distributed with the MGB3 challenge.

The experimental results are shown in Table IV. The WER

improvements are consistent with the AMI-IHM system in the

previous section. Standalone su-RNNLMs gave similar perfor-

mance to uni-RNNLMs. The performance difference between

5The N-best lists can be converted to lattices and CN decoding can then
be applied, but it may require a large N-best list, such as 10K used in [11].

the standalone su-RNNLM and uni-RNNLM is not statistically

significant. 0.3% absolute improvement was obtained from

Viterbi decoding, and 0.5% improvement from CN decoding,

of by combining the uni-RNNLM and su-RNNLM. These

improvements over the baseline uni-RNNLMs are statistically

significant. This shows that the combination of uni-RNNLMs

and su-RNNLMs performs well even on large amounts of

training data.

TABLE IV
WERS OF SU-RNNLM WITH 3 SUCCEEDING WORDS TRAINED ON 645M

WORDS WITH LATTICE RESCORING ON MGB3 CHALLENGE

LM
WER

Vit CN

4-gram 21.3 21.1

+uni-RNN 20.0 19.9
+su-RNN 20.1 20.0
+uni-RNN+su-RNN 19.7 19.4

C. Experiments on Keyword Search

Lattices are very useful for a range of downstream ap-

plications in spoken language processing. Thus developing

language models that can act on, and generate, lattices is

important. The application considered in this work is keyword

spotting (KWS). The Swahili (IARPA-Babel202b-v1.0d) FLP

from the Babel program was used for all experiments. In

these experiments the performance of su-RNNLMs, which can

be directly applied to lattices is compared to uni-RNNLMs.

In [41] uni-RNNLMs were demonstrated to be effective for

KWS. A total about 50 hours of transcribed conversational

telephone speech data are provided to build the ASR and

keyword search systems.

TABLE V
EXPERIMENTAL RESULTS ON KEYWORD SEARCH USING SU-RNNLMS ON

SWAHILI BABEL CORPUS

System WER MTWV
IV OOV Total

OpenKWS 2015 CUED 44.7 0.5718 0.4264 0.5438
LF-MMI TDNN-LSTM 37.8 0.6333 0.3430 0.5783

+uni-RNN 37.0 0.6389 - -
+su-RNN-1word 37.3 0.6343 - -
+su-RNN-3word 37.0 0.6363 - -
+uni-RNN+su-RNN-1word 36.8 0.6442 - -
+uni-RNN+su-RNN-3word 36.6 0.6450 - -

All LMs were trained on the 400K acoustic model tran-

scription with a vocabulary containing 24K words. The KWS

performance was measured by maximum term weighted value

(MTWV) in this paper, which is the TWV achieved at the

optimal setting of the decision threshold in the DET curve

[44].

Both ASR and KWS performance results are given in

Table V. The first two lines show baseline systems using

a 4-gram LM but with different acoustic models. The first

line shows the CUED 2015 OpenKWS results. The second

line presented the results of an improved acoustic model

baseline with lattice-free MMI (LF-MMI) trained TDNN-

LSTM [42], which yielded improved performances in both
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WER and MTWV. Since the In-Vocabulary (IV) performance

for the keyword search system is most relevant for improved

language modelling, indeed the language model weight for

the out-of-vocabulary (OOV) search can be set to zero, only

the performance of IV query terms is given. As shown

in Table V, the standalone su-RNNLM with 1 succeeding

words is worse than the uni-RNNLM and su-RNNLM with

3 succeeding words. The performance difference between the

su-RNNLM with 3 succeeding words and the uni-RNNLM is

not statistically significant. However, uni-RNNLMs achieved

better KWS performances. The combination of uni-RNNLMs

and su-RNNLMs consistently improves both ASR (statistically

significant) and KWS performances, interpolating with the su-

RNNLM with 3 succeeding words yields the best performance.

IX. CONCLUSIONS

Language models are an essential component of systems for

many language processing tasks. Current state-of-the-art lan-

guage models are usually based on recurrent neural networks

that use a compact history context representation to predict

the next word. In this paper, models that enable the efficient

use of future word context information for neural network

language models have been described and evaluated. Initially

Bi-directional recurrent neural network language models (bi-

RNNLMs) were described. These provide a straightforward

way to incorporate both past and future context information.

However, they have some significant drawbacks: they are slow

to train; and difficult to apply to lattice rescoring. This limits

their potential applications. A novel model structure, the su-

RNNLM, is proposed to address these issues. Instead of using

a recurrent unit to capture the complete future information, a

feed-forward unit is used to model a finite number of succeed-

ing words. This structural change enables existing training and

lattice rescoring algorithms for uni-RNNLMs to be extended

for the proposed su-RNNLMs. Experimental results show that

the combination of su-RNNLMs and uni-RNNLMs achieves

significant performance improvements over standalone uni-

RNNLMs. Further performance gains can be obtained with su-

RNNLM by taking advantage of their ability to be applied in a

lattice rescoring mode. To further demonstrate the advantages

of this form of model, the combination of su-RNNLMs and

uni-RNNLMs is shown to consistently outperform conven-

tional model on a keyword spotting task using uni-RNNLM.
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