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ABSTRACT: Despite the wealth of studies reporting mechanical

properties of liquid crystal elastomers (LCEs), no theory can cur-

rently describe their complete mechanical anisotropy and non-

linearity. Here, we present the first comprehensive study of

mechanical anisotropy in an all-acrylate LCE via tensile tests that

simultaneously track liquid crystal (LC) director rotation. We then

use an empirical approach to gain a deeper insight into the LCE’s

mechanical responses at values of strain, up to 1.5, for initial direc-

tor orientations between 0� and 90�. Using a method analogous to

time–temperature superposition, we create master curves for the

LCE’s mechanical response and use these to deduce a model that

accurately predicts the load curve of the LCE for stresses applied at

angles between 15� and 70� relative to the initial LC director. This

LCE has been shown to exhibit auxetic behavior for deformations

perpendicular to the director. Interestingly, our empirical model

predicts that the LCE will further demonstrate auxetic behavior

when stressed at angles between 54� and 90� to the director. Our

approach could be extended to any LCE; so it represents a signifi-

cant step forward toward models that would aid the further devel-

opment of LCE theory and the design and modeling of LCE-based

technologies. © 2019 The Authors. Journal of Polymer Science Part
B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym.

Sci., Part B: Polym. Phys. 2019, 57, 1367–1377

KEYWORDS: anisotropic elasticity; empirical model; liquid crystal

elastomer; mechanical properties; nonlinear elasticity

INTRODUCTION A current trend in materials science is to
develop soft materials, which can mimic the structure, anisot-
ropy, and functionality of materials and tissues found in
nature.1–6 Developing such materials would enable and
increase the functionality of next-generation technologies such
as soft robotics and biomedical devices.7–9 Liquid crystal elas-
tomers (LCEs), which incorporate liquid crystal (LC) order
into a lightly crosslinked polymer network, are one such class
of bio-similar materials—celebrated for their unique mechani-
cal behaviors and their remarkable shape responsivity.4,10–21

While the majority of LCE research typically focuses on the
development and application of their shape actuation behav-
ior, there is an increasing body of research studying the use of
LCEs as mechanical and structural materials in fields such as
flexible electronics and biomedical devices.22–25 In these
fields, an LCE’s mechanical anisotropy and programmability,
shape programmability, and shock dissipation offer the

prospect of bio-inspired devices with enhanced functionality
and robustness over existing devices.

Currently, LCE devices are limited to laboratory prototypes,
partly because the full structure–property relationships of
LCEs are yet to be understood, and so real-world devices can-
not yet be designed and developed. For instance, while much
research has investigated the mechanical behaviors of the so-
called monodomain LCEs (in which the average molecular
orientation—or LC director—is aligned over macroscopic
length scales), the vast majority of studies performed to date
focus solely on the case of stresses applied perpendicular to
the LC director.

When taken together, the few known experimental LCE stud-
ies that have considered stresses applied at angles other than
90� to the director clearly show that the general mechanical
behavior of LCEs is highly complex and nonlinear. Specifically,
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an LCE’s load curve shape is fundamentally dependent on the
initial director angle and how the director rotates with
increasing strain.15,22,26,27 However, the existing studies are
limited by the fact most do not simultaneously report the load
curve shape and the director rotation behavior for LCEs pre-
pared with a range of initial director angles spanning between
0� and 90�. Therefore, the precise dependency of the relation-
ship between load curve shape and LCE anisotropy remains
unknown. Moreover, as LCE behaviors are strongly dependent
on LCE chemistry, one cannot draw conclusions from pieces
of data taken from multiple studies performed on different
materials.19,28–30 Put simply, almost 40 years, since the first
LCE was synthesized by Finkelmann and coworkers, a com-
plete picture of a single LCE anisotropic tensile mechanical
behavior does not yet exist.

In this article, we address this knowledge gap by performing
tensile mechanical tests of an all-acrylate, low-glass transition
temperature LCE prepared in monodomain samples and
stressed at a range of angles relative to the director. By simulta-
neously monitoring the stress and director orientation depen-
dencies on applied strain, we build a comprehensive picture of
the LCE mechanical anisotropy. We show that while aspects of
neoclassical LCE theory by Warner and Terentjev appear to suc-
cessfully describe some of the behaviors observed, a complete
understanding that can predict the behavior of the LCE is only
achieved through the development of an empirical model based
on the superposition of tensile load curves via the recorded ori-
entations. The model we develop is currently capable of accu-
rately describing the tensile and director rotation behavior of
the LCE when stressed at any intermediate initial angle between
15� and 70� to the director. We propose that our model could
be used to aid the creation of finite element models of the LCE
that would ultimately allow the simulation of LCE-based
mechanical devices. Moreover, our study demonstrates a novel
method for deducing empirical models of the mechanical anisot-
ropy and nonlinearity LCEs—a method that perhaps could be
extended to other anisotropic materials.

EXPERIMENTAL

The synthesis procedure of the LCE used here has been described
in detail previously.19 Briefly, the chemical components displayed
in Figure 1 were mixed together in the composition indicated to
form an LCE precursor with a nematic to isotropic transition
temperature (TNI) of 36 �C. 6-(4-Cyano-biphenyl-40-yloxy)hexyl
acrylate (A6OCB), 1,4-bis-[4-(6-acryloyloxyhex-yloxy)benzoyloxy]-
2-methylbenzene (RM82), and 40-hexyloxybiphenyl (6OCB) are
low-molar mass liquid crystalline molecules. The nonreactive
6OCB is used to broaden the nematic phase range of the LCE pre-
cursor monomer mixture. A6OCB and 2-ethylhexyl acrylate poly-
merize to form polymer chains that are crosslinked via the RM82
groups. Photopolymerization of the LCE is initiated by methyl
benzoylformate (MBF).

The precursor was capillary filled in the isotropic phase
(at approximately 40 �C) into LC devices of dimensions
60 × 15 cm and of cell gap (z) of ~100 μm. The cell substrates

were prepared with a uniaxially rubbed poly(vinyl alcohol)
alignment layer. Upon filling, the cells were cooled to room
temperature and left for half an hour for a monodomain
nematic phase to form. The LCEs were then polymerised
using a 2.5 mW cm−2

fluorescent UV light source for 2 h to
ensure complete polymerization. The polymerised LCEs
were then washed in methanol and dichloromethane to
remove the 6OCB and any unreacted MBF and then hung to
dry. Full details of how the LC devices were prepared and
the LCE synthesized are given in ref. 19 and its Supporting
Information.19

For mechanical testing, ~2 × 20 mm films of LCE were cut
with the LC director at a variety of angles, θi, relative to the
film long axis. The geometry and coordinate system used are
illustrated in Figure 2. The accuracy with which we could cut
samples with an intended director angle was typically �2�.
Thus, after cutting samples, the actual director angle for each
sample was determined with an accuracy of �1�.

Optomechanical testing of the LCE films was performed using
bespoke equipment described in detail in ref. 19 and its
Supporting Information.19 Briefly, the equipment consists of a
miniature tensile testing enclosure containing actuators and a
load cell for measuring the stress–strain curve of a low-
modulus material. During mechanical testing, the equipment
allows for simultaneous observation of the sample between
crossed polarizers via transmitted white light—enabling the
localized deformations and LC director orientation to be
deduced simultaneously.

During each test, the samples were extended in 0.5-mm steps
until failure. After each extension step, the sample was
allowed to stress relax for 2 min before 36 crossed polarizing
photographs (polarizers rotated by 10� between photographs)
and one transmitted white light photograph of the sample

FIGURE 1 Structures of the chemicals, 6-(4-cyano-biphenyl-40-
yloxy)hexyl acrylate (A6OCB), 2-ethylhexyl acrylate (EHA), 1,4-bis-

[4-(6-acryloyloxyhex-yloxy)benzoyloxy]-2-methylbenzene (RM82),

40-hexyloxybiphenyl (6OCB), and methyl benzoylformate (MBF),

used to produce the LCE under test. Figures shown in the brackets

gives the percentage by mole, which gives the composition of the

LCE precursor from which the LCE is polymerised.
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were captured and a load cell reading taken. From the crossed
polarizing photographs, the director angle at the center of the
sample was deduced by finding the minimum of the transmit-
ted light intensity.19 From the white light photographs, the
relative separation of sample features was tracked using a
python package, trackpy, in order to deduce the localized
strain at the center of the sample.31 Together with the load
cell readings, the localized strains allowed the tensile load
curve of each sample to be deduced. This testing procedure is
identical to that previously used in a fundamental mechanical
characterization of the present LCE at director angles of 2�

and 88� .19

As in this article, we aim to deduce how the strain-dependent
LC director angle affects the shape of the LCE tensile load
curve—regardless of strain, we consider the true stresses
evolved within the tested LCE samples as opposed to the engi-
neering stresses. We also calculate true initial modulus values
using the derivative to true stress to total strain. In our use of
true stresses and true moduli, there are key assumptions
important to define.

To a first approximation, considering the true stresses
removes the strain dependency of the tensile load curves. We
have previously shown that when strained perpendicular to
the director, the present LCE conforms well to the shear-free
volume conserving condition of λxλyλz = 1 (where λi is the
deformation along the ith principle axis)—even at strains of
150%.16 While director rotations within the plane of deforma-
tion may give rise to shear contributions, λxy and λyx, these are
neglected in this work for simplicity. Thus, in all cases, we cal-
culate the true stress (which accounts for the strain-
dependent sample cross-sectional area) by multiplying the
engineering stress (force divided by initial sample cross-
sectional area) by the longitudinal deformation, λx = ϵx + 1,
where ϵx is the longitudinal strain.16,32

In calculating elastic moduli from functions fitted to true
stress load curves, we take the derivative with respect to the
total strain. The total strain will, however, have two
contributions—a component from the purely elastic deforma-
tion of the network (and hence LC order parameter)19 and a
spontaneous component from the rotation of the anisotropic
polymer conformation/LC director. Therefore, there will
essentially be two coupled elastic moduli. As in this work, we
are concerned with the overall material behavior, and since
we cannot currently determine the individual contributions to
the total strain, we will use the true elastic modulus calcu-
lated via the derivative of true stress to overall strain.

RESULTS AND DISCUSSION

Load Curve Anisotropy and Initial Elastic Modulus
Figure 3 shows the true stress tensile load curves for the vari-
ous samples of LCE prepared with a variety of different initial
director angles (between 2� and 88�). As intuitively expected,
these data show that the greater the angle between the initial
director orientation and the applied stress, θi, the softer the
elastic response and the greater the maximum sustainable
strain before failure. The load curves shown here are broadly
consistent with the behavior reported by Ware et al. for their
main-chain, acrylate-amine LCE (engineering stress load cur-
ves of our LCE are shown for comparison in the Supporting
Information Fig. S1). However, the Ware LCE load curves all
show, to varying extents, step-like shapes where the load cur-
ves begin with a steep gradient (high modulus) which

FIGURE 2 Illustration of sample geometries and coordinate set

used. The director angles are measured with respect to the

applied stress (x) axis.

FIGURE 3 True stress load curves fitted with the inverse sigmoidal

function (form given in eq 1). Fitted parameters are shown in Table 1.

For θi = 2 � − 8 � , there are notably few data points available for

fitting. The uncertainties on the initialmoduli given in Table 1 take this

into account. [Colorfigure canbe viewedatwileyonlinelibrary.com]
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decreases until the load curve takes a linear form. By compari-
son for the present LCE, such “steps” in the load curves are
only seen for the samples with θi of 54� , 70� , and 88� .

During mechanical testing, all samples with θi ≥ 12� were seen
to fail at the clamps. This could be explained by director rota-
tion at the clamps causing stress concentrations toward one
edge of the film, which in turn cause failure. Consequently, the
failure point recorded for samples with θi ≥ 12� may be pre-
mature failure points, and therefore, the maximum stresses
recorded are underestimates of the actual maximum stresses
sustainable for the central portion of each film.

To facilitate comparing and understanding the tensile mechan-
ical response of the present LCE, we have fitted each of the
load curves from Figure 3 with curve of the form

σT =A× log
1 + cϵx
1−dϵx

� �
, ð1Þ

where σT is the true stress, ϵx is the applied strain, and A, c, and
d are free parameters. Equation 1 is an inverse sigmoidal function
constrained to pass through the origin (as a load curve must). An
inverse sigmoidal functional form was a pragmatic choice of a
function with minimal free parameters, and a correct shape for
fitting to each load curve, for example, the 88� curve, has a
sigmoidal-like “S” shape reflected in the line y = x. It is important
to explicitly note that despite the quality of the fits of this single
function to all of the load curves presented, to the best of our
knowledge, there is no theoretical basis for our function choice.

The fitted parameters for each load curve are shown in
Table 1. The last column of Table 1 shows values of the initial

elastic modulus for each load curve calculated from the deriv-
ative of eq 1.

E ϵxð Þ = dσT
dϵx

=
A× c + dð Þ

1 + cϵxð Þ 1−dϵxð Þ , ð2Þ

where E(ϵx) is the true modulus as a function of strain, ϵx. For
determining the initial elastic modulus, ϵx is set to zero. For sam-
ples with θi ≤ 54�, the fits performed to the whole data accurately
fit to the low-strain data points. Supporting Information Figure S2
(a) shows, as an example, a magnified view of the low-strain data
and fit for the 54� sample. Supporting Information Figure S2(b,c)
shows that by comparison, the fits of Figure 3 made to the 70� and
88� data miss the low-strain data points. Additional curves shown
are fitted solely to the low-strain data points, from which more
accurate values of the initial elastic modulus can be calculated. The
row of Table 1 marked with footnote “a” shows the fitted parame-
ters and calculated initial elastic moduli for the low-strain fits of
the 70� and 88� data. While these data agree within error to those
deduce from fits to the whole data sets, Supporting Information -
Figure S2(a) clearly shows the low-strain fits give more accurate
values for the elastic modulus for the 70� and 88� data.

Figure 4 shows the calculated elastic moduli plotted against θi.
For the 70� and 88� samples, the moduli from fits to the low-
strain data points are used. We can additionally fit the expected
variation in initial modulus with angle for orthotropic materials
(determined from the stiffness matrix of classical elasticity).33,34

1

Eθ
=
cos4θ

E1
+
sin4θ

E2
+
sin2 2θð Þ

4k
, ð3Þ

TABLE 1 Parameters and Moduli from Fitting eq 1 to True Stress Load Curves (Fig. 2)

Initial Director Angle, θi (�)

Function Fitting Parameters

Initial Elastic Modulus (MPa)A c d

2 182 −3.06 3.15 17 � 2

3 138 −2.90 3.04 20 � 2

5 135 −2.64 2.80 20 � 2

8 78.8 −2.73 2.98 20 � 2

12 80.5 −1.81 1.97 13 � 1

15 41.6 −1.54 1.91 15 � 1

19 4.23 −0.13 2.57 10 � 1

28 6.86 −0.38 1.13 5.2 � 0.7

39 5.48 −0.11 0.87 4.1 � 0.6

54 1.95 1.23 0.93 4.2 � 0.1

70 1.60 1.92 0.84 4.4 � 0.7

70a 1.02 3.86 1.11 5.1 � 0.2

88 1.59 2.14 0.71 4.5 � 0.8

88a 1.34 3.20 0.73 5.3 � 0.2

Errors on initial moduli were manually deduced assessing curves plotted

against low-strain data.

a Fits performed to low-strain data points.
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where

1

k
=

1

G12
−
2ν21
E2

: ð4Þ

In eqs 3 and 4, E1 is the modulus along the principal axis
(in this case, the x axis), E2 is the modulus perpendicular to
the principal axis, in this case, the modulus in the yz plane,
G12 is the axial shear modulus in the 1–2 plane, and ν21 is the
Poisson’s ratio for a strain, ϵ2, induced in response to an
applied strain, ϵ1. In fitting, E2 was fixed at 5.3 MPa (Table 1)
and E1 and k were free parameters found to be 20 and
1.7 MPa, respectively. Since the form of eq 3 does not allow it
to replicate the apparent initial increase in modulus between
θi = 0� and 10�, it is not surprising that the best-fitted value
for E1 lies outside the range (17 � 2 MPa) measured from the
2� sample. As we have previously deduced that, for the pre-
sent LCE, ν21 ffi 0, the above fitting allows us to deduce an
approximate value for G12 of 1.7 MPa.16

Figure 4 shows that the model described by eq 3 fits well to the
experimentally measured data—almost passing through the
error bars of all points. The model replicates the key features of
the sharp decrease in modulus between θi = 10� and 30� and
the modulus minimum occurring for θi < 90� . However, the
model does not replicate the apparent initial increase in modulus
at low θi (discussed above) and the modulus minimum at θi = 45�

(fourth order polynomial fitted to data gives the minimum to be
at θi = 44.9�). Indeed, the model can only exhibit a minimum at
θi = 45� for G12 ! 0 at which point Eθ = 0 for all angles.

Director Rotation Behavior
Figure 5 shows, for each of the tested samples, the evolution of
the director orientation with imposed strain along with model

curves of the expected director rotation behavior (described
and discussed below). In all cases, the director rotates with
strain toward the stress axis as would be expected. The forms
of director rotation for the θi = 88� and 70� samples appear
similar to those reported by Hirschmann et al. for their all-
acrylate LCEs prepared with θi = 89� and 67�.27 This similarity
in behavior is to be expected as, like the present LCE, the LCE
studied by Hirschmann et al. (first reported by Mitchell et al.)
deforms via a “Mechanical Fréedericksz Transition” (MFT) pro-
cess when stressed perpendicular to the director as opposed to
via semi-soft elasticity as is observed in other LCEs.27,35

In the previous section, we were able to fit all the load curve
data quite accurately with a single function. Achieving a similar
result for the strain dependence of the director orientation will
allow us to relate the mechanical deformations for each curve
to the strain-dependent director orientation. As Hirschmann
et al. were able to well fit a model for director rotation devel-
oped by Bladon et al. in the MFT framework (with an assumed
constant order parameter), we use the same model here.27,36

Bladon et al. derived the following equation for describing the
director orientation, θ (relative to the stress axis), based on
the initial director angle relative to the stress axis (θi) and the
applied deformation, λx.

36

tan2θ =
2× λ3c −1

� �
× λ3=2x × sin 2θ0ð Þ

λ3c + 1
� �

λ3x −1
� �

+ λ3c −1
� �

λ3x + 1
� �

× cos 2θ0ð Þ , ð5Þ

where λc is the critical deformation for director reorientation
in the MFT model.36

In Figure 5, we have plotted model curves using λc = 2.1
(as deduced from the θi = 88� curve) and values of θi
corresponding to each experimental data set. We have also

FIGURE 4 The initial elastic modulus of the studied LCE from

Table 1. For the θi = 70� and 88� samples, moduli shown are

from fits made to low-strain data. The fourth order polynomial

fitted to the θi = 8 − 88� data has a minimum at θi = 44.9�. [Color
figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 Director orientation curves plotted against the

deformation, λx = ϵx + 1, parallel to the stress axis. Points

correspond to experimentally measured points. Calculated

curves are generated using eq 3 and λc = 2.1. [Color figure can

be viewed at wileyonlinelibrary.com]
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plotted an additional model curve using θi = 89� (green dashed
line) for comparison with the θi = 88� model and experimental
data. We see that the model curve for θi = 89� lies much closer
to the experimental data points than the model curve for θi = 88� .
This slight disagreement is not too surprising given the present
LCE is known to have a strain-dependent order parameter when
stretched perpendicular to the director, while eq 5 assumes a
constant order parameter.16,19

Turning our attention to the rest of the data, we note that for
samples prepared with director angles θi ≳ 30, the model cur-
ves agree well with the experimental data at low strains; how-
ever, with increasing strain, the model tends to over-predict
the magnitude of director rotation. For samples with θi ≲ 30 � ,
the model curves agree very well with the experimental data
for the full mechanical test. Overall, we would say the level of
agreement between the model and experimental data is
remarkably good given the model developed by Bladon et al.
assumes a constant LC order parameter (and hence polymer
conformation anisotropy) when we know this is not necessar-
ily true for the present LCE.16

Analyzing eq 5 a little further allows us potential insight to why,
in Figure 4, we saw that θi = 45� corresponds to the minimum in
the initial elastic modulus. Differentiating eq 5 with respect to λx
and considering the unstrained state, that is, λx = 1, gives the fol-
lowing result (see Supporting Information Section 1):

∴
dθi
dλx

= −
3 λ3c + 1
� �
4 λ3c −1
� � sin 2θ0ð Þ, ð6Þ

which has a minimum for θi = 45�—that is, the director rotat-
ing toward the strain axis (thus decreasing) at its fastest.
According to the theory of Warner and Terentjev, director
rotation provides a mechanism for a spontaneous strain, all-
owing a reduction in the free energy cost of an LCE mechani-
cal deformation and hence a reduction in the elastic modulus
calculated using the overall strain. As the initial director rota-
tion is at its greatest for θ0 = 45� , the spontaneous strain will
also be at its greatest for θ0 = 45�. We propose that this is the
reason why the initial elastic modulus shown in Figure 4 has
a minimum for θi = 45�. Moreover, if we could decouple the
spontaneous and elastic strains, we would likely be able to
calculate initial elastic modulus values that would better agree
with those predicted by eq 3 and classical elastic theory.

The Director–Moduli Relationship
By linking together the results of the previous two sections,
we are able to deduce relationships between the strain-
dependent director angle and the nonlinear load curves. Rear-
ranging eq 3 to give the deformation, λx, as a function of
current and initial director angles (θ and θi, respectively—see
Supporting Information Section 2) and inserting this into eq 2,
we can plot the elastic modulus against director angle for each
experiment (Fig. 6).

The most striking feature of Figure 6 is that for the range of
director angles between ~15� and ~70�, the plotted curves

largely overlap with one another. This means that over this
range of director angles, the elastic modulus of the LCE is pre-
dominantly dependent on the current director angle present
and that strain dependencies are a secondary contribution. In
turn, this implies that, in the region of overlapping curves,
imposed stresses only cause the polymer conformation to
rotate without being deformed (which would affect the elastic
modulus preventing the curves overlapping). Moreover, as the
polymer conformation shape and tensoral LC order parameter
are intrinsically linked, we can conclude that the LC order
parameter remains largely constant for deformations within
this region of director angles.

By comparison, for initial director angles less than ~15�, the
director rotates by much smaller amounts and the curves no
longer overlap with one another. In this region, it is therefore
likely that the deformation of the polymer conformation domi-
nates the nonlinear mechanical behavior observed. The shape
of the 88� curve is more difficult to interpret as the majority
of the plateau-like region of the curve corresponds to a rela-
tively small change in strain and so much of the behavior is
confined to extremes of the curve.

Master Curves, Empirical Equations, and Modeled
Deformations
Figure 6 tells us that in the region of 15 � < θ < 70�, the ten-
sile load curves plotted in Figure 3 will have equal moduli
(i.e., equal gradients) at points of corresponding director
angle. It is therefore reasonable to expect that the curves
could form a master curve if they are superpositioned via
points of equal director orientation. Such a master load curve
for generic uniaxial deformations would allow for generalized

FIGURE 6 Using the inverse sigmoidal functions (eq 2) fitted to

the tensile load curves and the Bladon model for director rotation

with strain (eq 5), we can produce plots, for each experiment, of

the elastic modulus against director angle θ. For the range of

15 � < θ < 70�, the curves significantly overlap suggesting that

deformation behavior in this range is independent of strain and

the LCE deforms with a constant LC order parameter. [Color

figure can be viewed at wileyonlinelibrary.com]
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predictions of the LCE uniaxial mechanical behavior (for the
range of 15 � < θ < 70�) predicted solely from the initial
director angle and the applied stress.

In order to form the superpositioned master load curve, we
must first identify the stresses and strains by which the indi-
vidual load curves must be shifted. We first identify the strain
shift factors required to form a director rotation–strain master
curve using the data of Figure 5. Although we showed in
Figure 5 that the (complicated) Bladon model well describes
the director rotation behavior for the LCE, we here use (sim-
pler) linear curves—fitted to each data set from Figure 5.
Between curves of adjacent θi, there are a range of over-
lapping director angles, all of which could have been used for
creating our superposition. We chose to use the midpoint of
overlapping angles. To illustrate the process, we discuss the
strain shift factor of the θi = 39� data relative to the
θi = 54� data.

From the last recorded angle of the 54� curve (30.9�) and the
first recorded angle of the 38� curve (which by definition is
38�), we calculate the average angle (34.5�). Using the fitted lin-
ear curves, we can calculate strains of the θi = 54� and 39� cur-
ves for θ = 34.5� . The difference between these strains gives a

strain of 0.52 (Table 2), which corresponds to the strain the 39�

director orientation and load curve data needed to be shifted by
along the strain axis in order to superpose with the 54� curve.
As the 54� will itself need to be shifted by a strain, calculated as
0.56 (Table 2), in order to superpose onto the 70� curve, the
39� curve would need to be shifted by the cumulative strain
shift factor of (0.52 + 0.56 = 1.08). The second and third col-
umns of Table 2 give the individual and cumulative strain
shift factors calculated for each set of director orientation–
strain data (Fig. 5) and stress–strain data (Fig. 3).

Figure 7(a,b) shows the strain-shifted director orientation–
strain and stress–strain curves of Figures 5 and 3, respectively.
The transposition of the director orientation data has led to
the data collapsing onto a master director (MD) curve, which
has been fitted to a linear curve of the form

θ = 68:5−27:6× ϵ: ð7Þ

The shifted stress–strain curves of Figure 7(b) do not yet form
a master curve; however, they have been shifted to positions
such that where they overlap they are expected (from Fig. 4)
to have the same moduli (gradients).

TABLE 2 Shift Factors Used to Translate the Individual Director–Strain and True Stress Load Curves to Form Their Respective Master

Curves Shown in Figures 7(a) and 8

Sample

θi (
�)

Individual Strain Shift

Factor

Cumulative Strain Shift

Factor

Individual Stress Shift

Factor (MPa)

Cumulative Stress Shift

Factor (MPa)

70 0 0 0 0

54 0.56 0.56 2.26 2.26

39 0.52 1.08 2.37 4.63

28 0.28 1.36 1.42 6.06

19 0.49 1.85 4.36 10.42

FIGURE 7 (a) MD curve formed by shifting individual director–strain curves to overlap with one another. (b) The corresponding true

stress load curves shifted by the same amounts to positions where they are expected to have matching gradients (elastic moduli).

[Color figure can be viewed at wileyonlinelibrary.com]
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Repeating a similar process as above for the θi = 19� to 70�

stress–strain data, but now using the fitted inverse sigmoidal
function (eq 1) and fitted parameters from Table 1, we cal-
culated the individual and cumulative stress shift factors,
shown in the fourth and fifth columns of Table 2, respec-
tively. Figure 8 plots the strain and stress-shifted θi = 19 –
70� load curves of Figure 3 and shows that as predicted
from the result of Figure 4, the gradients between the over-
lapping portions of the stress–strain curves match excep-
tionally well with one another. The result is that the curves
collapse onto a single seamless director–modulus superposi-
tion (DMS) curve that can be well fitted by an inverse sig-
moidal function of

σ = 4:39× log
1 + 0:426ϵ

1−0:444ϵ

� �
: ð8Þ

An Empirical Model
Given that we, for our LCE, were able to create two continu-
ous curves linking the evolution of the director orientation
and the stress to imposed strains, we can now develop an
empirical model describing the behavior of the LCE in
response to arbitrary uniaxial stresses applied at angles in the
range of 15 � < θ < 70� to the LC director.

For clarity, we proceed with the forms of the DMS and MD
curves (eqs 8 and 7, respectively) with the numerical con-
stants replaced by symbols:

σ =A× log
1 + cϵ

1−dϵ

� �
, ð9aÞ

θ = α−βϵ: ð9bÞ

By specifying a particular initial director angle, θi, between
15� and 70�, at which a stress is applied, we can rearrange eq

8b to identify the starting strain, ϵi, of the DMS and MD
curves.

ϵi =
α−θi
β

: ð10Þ

Feeding ϵi into eq 8a provides the zero-stress level, σi, from
the DMS curve. If the origin were now shifted to (ϵi, σi) on the
DMS curve, the resultant curve (in the positive quadrant)
would correspond to the expected true stress load curve for
the LCE stressed at θi to the LC director.

If this hypothetical sample were strained by Δϵ, the final
strain, ϵf, according to the DMS and MD curves would be

ϵf = ϵi +Δϵ, ð11Þ

which would correspond to a DMS curve final stress level of

σf =A× log
1 + c ϵi +Δϵð Þ
1−d ϵi +Δϵð Þ

� �
: ð12Þ

Therefore, the true stress,
P

T, induced within the sample is
given by

X
T
= σf −σi, ð13aÞ

X
T
=A× log

1 + c ϵi +Δϵð Þ
1−d ϵi +Δϵð Þ ×

1−dϵiÞ
1 + cϵi

� �
, ð13bÞ

and so the engineering stress,
P

E, is given by

X
E
=

1

1 +Δϵ
A× log

1 + c ϵi +Δϵð Þ
1−d ϵi +Δϵð Þ ×

1−dϵiÞ
1 + cϵi

� �� �
: ð14Þ

Given the linear relationship of the MD curve in Figure 7(a),
we can also find the expected magnitude of director rotation,
Δθ, from the imposed strain, Δϵ,

Δθ = β×Δϵ: ð15Þ

The ease with which the above relationships have been
derived is attributed to the simple forms of the MD and DMS
curves (eq 9a,9b) which are readily inverted.

Testing the Model
Figure 9(a) plots the engineering load curves from the sam-
ples tested with θi between 19� and 70� along with model
load curves using eq 14 and the same values of θi. The cur-
ves generated from the empirical model demonstrate a
remarkable level of agreement with the experimental data,
verifying the accuracy of the empirical model. Given this
level of agreement, we propose that empirical models of LCE
deformations have significant potential for predicting the

FIGURE 8 Master curve from which generic deformations of LCE

A with director angles between 15� and 70� can be deduced.

[Color figure can be viewed at wileyonlinelibrary.com]
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deformation behavior for LCEs with complex director
geometries.

Inverting eq 13b to give the strain, Δϵ, as a function of true
stress,

P
T, and ϵi (and hence θi via eq 13a) yields

Δϵ =
1 + cϵið Þ 1−dϵið Þ 1 + exp

P
T=A

� �� �
c 1−dϵið Þ+ d 1 + cϵið ÞexpPT=A

, ð16Þ

Figure 9(b) plots eq 16 to show the expected strain, Δϵ, as a
function of initial director angle, θi, for a several different
applied true stresses. This alternative representation of the
deformation behavior of the LCE would be useful in device
design if the target true stress for a system is known and a
target strain is required. The optimal initial director angle can
then be found by generating the relevant curve. Moreover, as
eq 15 shows the director rotation is proportional to the strain
of the sample, the final director angle can also easily be
extracted from Figure 9(b) via the right hand axes. As one
would have expected, Figure 9(b) shows that larger strains
can be obtained by applying larger stresses and by increasing
the initial angle between the director and the stress axis.

The presented form of the model is, however, not without lim-
itations. If one aims to design a device based on a stress which
can be applied, then it will be the engineering stress that
would be known as opposed to the true stress. Equivalent
versions of the equations used to generate Figure 9(b) cannot
be derived analytically as this would require inverting eq 14
to have the strain, Δϵ, as a function of the engineering stress,P

E, and θi. To generate such curves, numerical methods to
invert eq 14 would be required.

Extending the Model to Geometry Changes
By applying a similar process as above, we can also attempt
to develop an empirical model to describe the geometrical

deformations of the LCE when strained at angles between 15�

and 70� .

Figure 10 plots the transverse strains along y and z axes for
tested samples with initial director angles ≥19�. Data for sam-
ples ≤19� have, for clarity, not been plotted here; however,
they are shown in Supporting Information Figure S3. Each
data set of Figure 10 shows anisotropy between the strain
responses in the y and z transverse directions. While the
strains along y are largely linear, the strains along z are highly
nonlinear—that is, the instantaneous Poisson’s ratio νxz varies
with strain ϵx. The 88� sample shows a minimum in ϵz (νxz = 0),
beyond which the material enters a negative Poisson’s ratio
(or auxetic) regime—a phenomena previously discussed.16

The 39�, 54�, and 70� curves show similar behavior as they
tend to a plateau in ϵz. Given this shared feature of ϵz, it seems
plausible that these samples may have also entered an auxetic
regime if they had not failed when they did.

To a first approximation, the transverse strains, ϵy, of the
15�–70� samples show identical linear behavior. Fitting a
linear curve to these data, constrained to pass through the
origin, yields

ϵy = −0:35× ϵx: ð17Þ

By replacing ϵx for Δϵ (deduced in eq 17) from equation, we
can attempt to predict the transverse strain along y in
response to an applied true stress. Further by using the fact
that the present LCE is known to deform at constant volume
(i.e., λxλyλz = 1), we can extract model predictions for the
transverse deformations along z as a function of applied true
stress.16

For the experimentally measured cases of θi = 19 � − 70�,
Figure 11 plots model transverse deformations as a function
of applied true stress against the original data. While the pre-
dictions of Figure 11 are comparatively worse than the level

FIGURE 9 (a) Verification of the accuracy of the model developed by regenerating load curves for the original mechanical responses

and comparing them to the experimentally measured data. (b) Alternative representation of the empirical model that would be useful

for predicting deformations and the director response based on applied true stresses and initial director angles. [Color figure can be

viewed at wileyonlinelibrary.com]
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of agreement between the model load curves of Figure 9(a),
they still offer a reasonably good model, which could still be
useful for a first prediction of the complete geometry changes
of LCE under deformation.

Interestingly, the curves shown in Figure 11(b) suggest the
emergence of auxetic behavior for the 54� and 70� curves.
These results suggest that the auxetic response of the LCE
may be tuned via θi in addition to tuning via polymer confor-
mation anisotropy as previously suggested. Theoretically, the
predictions of auxeticity by Warner and Terentjev apply only
to stresses applied perpendicular to director—stresses at
other angles remain uninvestigated.32

CONCLUSIONS

In this study, we have reported, for the first time, experimen-
tal results for the tensile load and director rotation behavior
of an LCE stressed at a variety of different angles relative to
the LC director. We have seen that the material displays

highly nonlinear behavior, which is also anisotropic. While the
anisotropy in elastic moduli broadly agrees with expectations
for uniaxial anisotropic materials, the additional complexities
reported show the mechanical richness of LCEs continues
to grow.

Given the anisotropic nature of many biological tissues, we
believe the controllable anisotropic deformations of LCEs
demonstrated here could have applications to biomimetic soft
robotic and biomedical devices. While LCEs have been touted
for such applications in the past, one of the limitations has
been an unknown theoretical relationship between director
angle, director rotation, and tensile load behavior. In this
work, we have shown that empirical methods can accurately
describe much of the uniaxial tensile behavior of LCEs. While
the mechanical behaviors of LCEs also depend on their partic-
ular chemistries, we believe the accuracy of the empirical
model derived here, and the ease with which it was created,
shows the promise of such techniques for modeling the behav-
ior of LCEs and designing LCE-based mechanical devices. The

FIGURE 10 Transverse strains along the (a) y and (b) z axes for samples with initial angles, θi ≥ 19 � , according to the coordinate

system illustrated by Figure 1. Strains along the z axis are determined from strains measured in the xy plane and the constant

volume condition. Transverse strains along y for the 19�–70� samples replotted from Figure 4 along with a fitted line which, to a first

approximation, each of the curves follows. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Predictions for the transverse strains along the (a) y and (b) z axes compared against experimentally measured strains.

[Color figure can be viewed at wileyonlinelibrary.com]
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need for such models is becoming increasingly important as
LCEs are stepping ever closer to commercial application and
so will need to be rigorously modeled and tested—something
not yet possible using purely theoretical models.

A particularly striking result of this paper is how well the
inverse sigmoidal function fitted to all of the load curves pres-
ented. While it is always possible to fit any function to a data
set given enough free parameters, the function chosen only had
three free parameters and fits extremely well to all 12 data sets.
We noted that there was no known theoretical basis for our
choice of function. However, given the quality of the fits, we
propose the fits and data shown could guide the further devel-
opment of theory to build our fundamental understanding of
the mechanical behaviors of this remarkable class of materials.
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