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Spinodal-Assisted Crystallization in Polymer Melts
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Recent experiments in some polymer melts quenched below the melting temperature have reported
spinodal kinetics in small-angle x-ray scattering before the emergence of a crystalline structure. To
explain these observations we propose that the coupling between density and chain conformation
induces a liquid-liquid binodal within the equilibrium liquid-crystalline solid coexistence region. A
simple phenomenological theory is developed to illustrate this idea, and several experimentally testable
consequences are discussed. Shear is shown to enhance the kinetic role of the hidden binodal.
[S0031-9007(98)06584-3]

PACS numbers: 61.41.+e, 64.70.Dv, 64.70.Ja, 82.60.Nh

Upon cooling a crystallizable polymer melt a hierarchy
of ordered structures emerges [1]. There are crystalline
“lamellae,” comprising regularly packed polymer chains,
each of which is ordered into a specific helical confor-
mation. These lamellae interleave with amorphous layers
to form “sheaves,” which in turn organize to form su-
perstructures (e.g., spherulites). These structures may be
probed by various techniques: e.g., wide-angle x-ray scat-
tering (WAXS) is sensitive to atomic order within lamel-
lae (“Bragg peaks”), while small-angle x-ray scattering
(SAXS) probes lamellae and their stacking. Inspired by
recent experiments, we propose a model for the earliest
stages of ordering in a supercooled polymer melt, and dis-
cuss several experimentally testable consequences, includ-
ing strain and pressure effects.

In a supercooled simple liquid, the following picture [2]
is widely accepted. Nuclei of the lower free energy (crys-
tal) phase are constantly formed by thermal fluctuations.
But the cost of creating an interface means that only large
enough nuclei can grow—the melt ismetastable.An in-
duction time,ti, elapses before the probability of form-
ing such “critical nuclei” becomes significant. This picture
is usually deemed appropriate for polymer melts; instead
effort is focused on explaining the anisotropic shape and
growth rate of crystal nuclei [3].

In the “classical” picture of polymer melt crystallization
we expect and observe Bragg peaks in WAXSafter an
induction periodti . SAXS accompanies the WAXS, cor-
responding to interleaved crystal lamellae and amorphous
regions [1]. No SAXS is expected duringti . However,
recent experiments have reported SAXS peaks during the
induction period andbeforethe emergence of Bragg peaks.
Initially the SAXS peak intensity grows exponentially, and
it may be accurately fitted to the Cahn-Hilliard (CH) the-
ory for spinodal decomposition—the spontaneous growth
of fluctuations indicative of thermodynamicinstability [4].
The peak moves to smaller angles in time, stopping when
Bragg peaks emerge. By fitting to CH theory, an extrapo-
lated spinodal temperature (at which the melt first be-

comes unstable towards local density fluctuations) can be
obtained. Spinodal kinetics have been reported in differ-
ent polymer melts: poly(ethylene terphthalate) (PET) [5],
poly(ether ketone ketone) [6], polyethylene (PE), and iso-
tactic polypropylene (i-PP) [7,8]. Despite these recent re-
sults, no coherent model exists for these phenomena.

Such observations can be explained by appealing to the
concept of a “metastable phase boundary,” a common strat-
egy in metallurgy [9,10]. Consider an alloy quenched into
a region of its phase diagram where we expect coexistence
between two phases, say,a 1 b. If the two phases are
symmetry unrelated there is always an energy barrier for
phase separation, and we donotexpect to see spinodal (un-
stable) dynamics. Nevertheless, spinodal dynamics and
textures have been observed in some such cases. Some
time ago, Cahn suggested [9] that this could be due to a
metastable phase boundary for coexistence between two
symmetry-related phases (say,a 1 a0) buried within the
equilibriuma 1 b coexistence region. Recently, similar
ideas are used to explain slow kinetics in the formation
of colloidal crystals in colloid-polymer mixtures [11] and
globular protein crystallization [12].

Similarly, a plausible explanation for the observation of
spinodal dynamics in polymer melts is the presence of a
metastable liquid-liquid (LL) phase coexistence curve (or
“binodal”) buried inside the equilibrium liquid-crystal co-
existence region (Fig. 1). Quenching sufficiently below
the equilibrium melting pointTm, we may cross the spin-
odal associated with the buried LL binodal at temperature
Ts , Tm. Below, we give a physical mechanism that can
give rise to such a metastable binodal, calculate the phase
diagram using a phenomenological free energy, and delin-
eate some consequences of our model.

Our starting point is the unremarkable statement that,
in order to crystallize, polymer chains must adopt the
correctconformation. For example, chains in crystalline
PE have the all-trans(or “zigzag”) conformation, while in
the melt the conformation is randomlytrans or gauche.
Generally, the preferred conformation is some form of
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FIG. 1. Proposed generic phase diagram for a polymer melt
calculated as described in the text.Tm andTs are the melting
and spinodal temperatures encountered along the (constant
density) quench path (dotted line). Parameters used are
RMb  0.8, kBTp  0.29E0, y  1.4E0w, l  0.1ay0, b 

20.4sy0a
3yE0d1y2, c  0.5a2y0yE0, and a  0.8yw. Inset

shows the measured induction time as a function of temperature
for isotactic polypropylene [7].

helix. Furthermore, the radius of gyration of a (very long)
chain changes little during crystallization, suggesting [13]
that neighboring segments adopt the correct conformation
and crystallizein situ. It is commonly assumed that
conformational (intrachain) and crystalline (interchain)
ordering occur simultaneously. We suggest, in light
of recent experiments, that these processes can occur
sequentially. To motivate this suggestion we examine
more closely the physics of conformation changes.

In a melt, it is believed that chain conformation alone
cannot drive a phase transition. However, conformation
is coupled to density. Chains with the “correct” (helical)
conformation typically pack more densely than those with
more or less random conformations. Moreover, the en-
ergy barriers between different rotational isomeric states
(RIS) are density dependent [14]. We now show that
conformation-density coupling can induce a LL phase
transition. A phenomenological free energy which incor-
porates these effects is a function of the following order
parameters: the (average) mass densityr; the coefficients
hrqj in the Fourier expansion of the crystal density in terms
of the appropriate stars of reciprocal lattice vectorshqj
(essentially the intensities of Bragg peaks) [15]; and the
occupancieshhij of various RIS (and thus chain conforma-
tion). To illustrate the principles, we assume that a single
rq ; rp and a singleh suffice, corresponding to a ficti-
tious polymer with body-centered cubic crystal structure
[16] and two RIS. The free energy per unit volume has
three components:

f  f0srd 1 fpsr, rpd 1 fhsh, r, rpd . (1)

The equation of stater≠fy≠r 2 f  p determines the
T 2 r isobar at pressurep. The first term,f0, is the
free energy of a melt with random chain conformations.
Equation-of-state fits to polymer liquids suggest the fol-
lowing form:

f0srd  RkBTr lnfs1yrd 2 wg , (2)

where R and w are widely tabulated [17]. The (bare)
Landau free energy of crystallization is taken to be [15,16]

fpsr, rpd  rf
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p
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For simplicity we letasr, T d ; a0kBfT 2 Tps1 1 ardg,
wherea andTp account for the enhancement of crystalliza-
tion due to increased density.f0 1 fp has a double well
structure and gives a (bare) first-order transition between
amorphous (rp  0) and crystalline (rp fi 0) states.

fh describes how the distribution of chain conforma-
tions varies smoothly from random (h  0) to totally or-
dered (helix,h  1) as the temperature is lowered to zero
[18]. In isolation a polymer thermally populates its RIS
with a Boltzmann distributionPa , exph2bEaj, where
Ea is the energy of statefa relative to the ground state
f0, andb  1ykBT . As the temperature is lowered the
mean occupancyh of statef0, relative to theT  ` disor-
dered state (h  0), increases. We describe this process,
for a two-state model, by

fhsh, r, rpd 

kBTr

2Mb

∑
h2 cosh2

µ
bE

2

∂
2 h sinhsbEd

∏
,

(4)

whereMb is the mass of a monomer with characteristic
volume y0  wMb . Minimizing fh over h yields the
correct Boltzmann distributionhsTd  tanhsbEy2d. We
choose [19]

Esr, rpd  E0 1 yr 1 lr2
p

. (5)

As more bond sequences occupy the ground state,
monomers can rearrange to pack tighter and reduce the
excluded volume interaction (hence, the perturbationyr).
A positive y encourages phase separation to take advan-
tage of this density-conformation coupling. Similarly,
adjacent ground state sequences enhance crystallization
(hence, the termlr2

p
). The l term is quadratic inrp by

symmetry [16].
To calculate the phase diagram in the temperature-

density (T -r) plane we first minimizef with respect toh.
Note that minimizingfh over h and expandingf in r
renormalizesasr, Td andc in Eq. (3) and, at sufficiently
small T , destabilizes the homogeneous melt. Physi-
cally, the system gives up conformational entropy to
relieve packing frustration, and separates into a dense,
more ordered liquid and a less dense and less ordered
liquid. The renormalization ofc lowers the barrier
to crystallization in the dense, high-h liquid. Next,
f is minimized with respect torp to give a final free
energy with two branches,̂fsr, rp  0d (liquid) and
f̂sr, rp fi 0d (solid). The common tangent constructed
between these two branches at any temperature gives the
densities of coexisting liquid and crystal phases at that
temperature (Fig. 2) [20]. At low enough temperatures,
the liquid branch gives a spinodal buried entirely within
the equilibrium liquid-crystal coexistence region given as
usual by the points of inflection,≠2f̂y≠r2

 0. If a melt
is quenched inside this spinodal, it will phase separate

374



VOLUME 81, NUMBER 2 P H Y S I C A L R E V I E W L E T T E R S 13 JULY 1998

ρ
L1
ρ

L2
ρ

C
ρ

L

f

ρ

crystal

fluid

FIG. 2. Schematic free energy density plots at a particular
temperature. At this temperature, a melt with densityrL ,
r , rc will phase separate into coexisting liquid and crystal
phases at densitiesrL andrc. The common tangent drawn on
the liquid branch alone gives the densities,rL1 andrL2, on the
metastable LL binodal (see Fig. 1).

into two coexisting liquids, given by the common tangent
construction, with a coarsening interconnected domain
texture (Fig. 3). The two liquids differ in their distribu-
tions of conformations, with the denser liquid adopting a
distribution closer to that needed for crystalline packing.

To calculate Fig. 1 we fix the dimensionless parameter
RMb  0.8, appropriate for PE [17], leavingyysE0wd as
the only adjustable parameter to determine the spinodal
temperatureTs. For y  1.4E0w we find an LL critical
point at kBTc  0.75E0 and rcw  0.53. Experiments
on PE, for whichrw . 0.685 (w  0.875 cm3 g21 [17]
and r  0.783 g cm23 [21]), give kBTs . 0.86E0 [7]
(using E0  930 calymole [14]). The value fory cor-
responds to a relative change ofE by order10.58 on go-
ing from single chain to melt conditions [Eq. (5)]. This
agrees, in sign and magnitude, with the known behavior
of common polymers [21]. The agreement oversign is
particularly significant. We suggest that density and con-
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FIG. 3. Schematic representation of the late-stage spinodal
texture for coexisting liquid phases with different con-
formations, showing a single chain; thin line: disordered
conformation; thick line: correct (helical) conformation for
crystallization. Each chain is a “conformational copolymer.”

formation work cooperatively, i.e.,y . 0; no LL binodal
within the required temperature range was obtained for
y , 0. Even a crude Landau theory, therefore, puts con-
straints on allowable physical mechanisms. Our choice
of crystallization coefficients (a, b, c, l) (caption, Fig. 1)
gives a reasonable value forTm, but the crudeness of Lan-
dau theory for first-order transitions renders detailed fit-
ting somewhat meaningless.

One of the coexisting liquids is closer in density and
conformation to the crystal phase than the original melt,
and has a lower energy barrier,DsT , rd, to crystallization,
so inducing “spinodal-assisted nucleation.” We expect
DsT , rd to decrease with increasing quench depth belowTs

(and, hence, widening the LL coexistence gap). Indeed, in
our simplified model, we findDsT , rd  0 at temperature
Tr , Ts. The induction time,ti , is then

ti , ts 1 const3 eDsT ,rdykBT , (6)

wherets is the time to reach an intermediate spinodal tex-
ture (Fig. 3) in which the regions have (almost) the coex-
isting LL densities. We expectts to be weakly (at most
power-law) dependent on temperature. The exponential
term accounts for the barrier to nucleate a crystal from the
dense liquid. The strong temperature dependence ofti

should change over to a much weaker dependence at some
Tr , Ts, whereDsTr , rd & kBTr . This has been found
in i-PP (inset, Fig. 1) [7].

The characteristic length scale associated with the
developing spinodal texture gives rise to a SAXS peak,
which evolves initially according to CH theory [22]. The
coarsening of this texture is observed to be arrested at
the end of the induction period (typical scalejm), when
Bragg peaks appear in WAXS [7]. It is at present unclear
how the spinodal texture at the end of the induction period
evolves into spherulites. However, the final spinodal
texture length scalejm evidently controls the thickness
of the first crystal lamellae. Moreover, large stress will
develop once one of the two liquids in a bicontinuous
texture (Fig. 3) crystallizes. We expect such a texture to
fragment into individual crystalline lamellae.

Our arguments so far have been based on conformation-
density coupling. Once a polymer segment has adopted
the correct (helical) conformation its persistence length
should increase, which couples to theorientationalorder
of chains. Indeed, depolarized light scattering by Imai and
co-workers has suggested the existence of orientational
fluctuations during the spinodal phase of a crystallizing
PET melt [23]. Provided that orientational ordering is
not strong enough to induce a separate transition, then the
inclusion of a nematic order parameter in Eq. (1) only
renormalizes the coefficients inh-dependent terms. In
some cases, the increasing chain stiffness accompanying
conformational order may be sufficient to drive an
isotropic! nematic transition, resulting in athree-step
process: melt! sisotropicd liquids1d 1 liquids2d, fol-
lowed by liquid(2) liquids2d ! nematic! crystal. This
possibility should be investigated. It should also be
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possible to model specific polymers, e.g., using density
functional theory [21], augmented to include the effects
leading to Eq. (5) [14].

Until recently, spinodal scattering was mainly observed
in polymer melts crystallizingunder shear[1,8,24]. This
may be understood in a natural way within the present
framework. Shear (and extensional) flow couples prin-
cipally to the orientation of polymer segments, hence,
straightening chains and enhancingh, thereby biasing the
tendency towards LL separation. A simple way to in-
corporate this is to renormalize the activation energyE

as E 2 y0s, where s is the stress. It is highly sug-
gestive that, for appropriate values of stress under strong
flow (the plateau modulusG0) and volume (y0 above),
the LL binodal of Fig. 1 is shifted upward significantly
(by dTs , 0.01E0ykB). Flow will shift the liquid-solid
coexistence curve much less because the regions with
crystalline order will resist deformation.

Our simple theory suggests several interesting experi-
ments. First, and most directly, conformational fluctua-
tions just aboveTs could be detected and studied, e.g.,
by Raman spectroscopy [1], perhaps simultaneously with
depolarized light scattering (to monitor orientational fluc-
tuations). Second, on approaching a spinodal line, various
properties (e.g., correlation length) should exhibit power-
law divergences. The observation of such divergences
will lend much weight to the correctness of our model.
Third, the point at which the LL spinodal is encountered
in a quench can be modified by pressure (Fig. 1). In par-
ticular, it may be possible to access the LL critical point,
Tc: recent simulations suggest a massive enhancement
of the nucleation rate in the vicinity ofTc [25]. More
generally, the coupling of density to (molecular) struc-
tural order parameters is an emerging generic theme in
the study of supercooled liquids (water! amorphous ice,
[26]; polymer melts near the glass transition [27]). Fi-
nally, processes such as surface nucleation could give rise
to a SAXS peak, but are unlikely to follow Cahn-Hilliard
kinetics. Also, effects other than conformation and ori-
entation (e.g., polydispersity) may induce LL phase sepa-
ration. Experiments on monodisperse alkanes are under
way to address this possibility.
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