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In recent years our understanding of amyloid structure has

been revolutionised by innovations in cryo-electron

microscopy, electron diffraction and solid-state NMR. These

techniques have yielded high-resolution structures of fibrils

isolated from patients with neurodegenerative disease, as well

as those formed from amyloidogenic proteins in vitro. The

results not only show the expected cross-b amyloid structure,

but also reveal that the amyloid fold is unexpectedly diverse

and complex. Here, we discuss this diversity, highlighting

dynamic regions, ligand binding motifs, cavities, non-protein

components, and structural polymorphism. Collectively, these

variations combine to allow the generic amyloid fold to be

realised in three dimensions in different ways, and this diversity

may be related to the roles of fibrils in disease.
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Introduction
Amyloid is a conformational state that can be achieved by

most (if not all) proteins [1��]. Protein sequences harbor

the information necessary to enable them to fold

into their native, functional 3D structures [2] or, for

intrinsically disordered proteins (IDP), to remain dynam-

ically unstructured [3]. However, proteins also contain

sequences capable of forming an alternative structure(s)

known as the ‘amyloid fold’ [4]. Upon cellular or physical

stress, by a mechanism that is kinetically complex [5] and

difficult to characterise structurally [6], one or more of

these ‘amyloid-prone regions (APR)’, can rearrange to

form b-strands, which stack in layers oriented perpendic-

ular to the fibril’s long axis to generate the ‘amyloid fold’

(Figure 1a) [1��]. These b-strands and their interconnect-

ing loops constitute the ‘amyloid core’. The repeating

nature of amyloid cores, involving extensive mainchain

hydrogen bonding between adjacent b-strands within the
www.sciencedirect.com 
stacked layers (Figure 1b1), and close interdigitation of

sidechains (Figure 1b2), results in a fibril structure that is

enormously stable both thermodynamically [7] and

mechanically [8]. Indeed this stability can far exceed that

of the original native fold of the protein, highlighting the

physico-chemical knife-edge of cellular life because of

the metastable nature of their proteomes [7]. Fascinat-

ingly, despite their high stability, fibrils are dynamic, with

monomers and/or oligomers dissociating from their ends

[9�,10], while the surface of the fibrils can act as a potent

site for secondary nucleation, catalysing the formation of

oligomers and new fibrils [11�,12].

The molecular mechanism(s) by which IDPs and initially

folded amyloidogenic precursors rearrange into an

amyloid core structure and stack into molecular layers

is not well understood. However, it is generally accepted

that this feat is accomplished via the formation of

transient non-native monomeric and oligomeric species

[6,13]. The transient and dynamic nature of such species

has limited the characterisation of their structures and our

understanding of the molecular basis of the cytotoxicity

often associated to amyloid formation [14,15].

Here we review recent advances in our understanding of

the amyloid fold. We describe the interactions that create

the fibril core, as well as less well-ordered and dynamic

regions of the amyloid fold. We also discuss differences

between fibril structures formed in vitro and in vivo, and

how structural polymorphism may rationalise disease

phenotype. Finally, we highlight the need to combine

information from multiple structural, biophysical, and

cellular techniques, including information gained from

in vitro and in vivo analyses, to understand amyloid

formation and disease.

Updating our understanding of the amyloid
fold
One sequence, many structures

The first high resolution structural information about

amyloid came from fibrils assembled from synthetic

peptides [16–19]. These structures revealed the first atomic

resolution details of the stacking of b-strands in the cross-b
architecture, which had been visualised at lower resolution

some 50 years before [20]. The first structures of amyloid

fibrils from intact proteins at atomic/near-atomic resolution

were obtained from fibrils assembled in vitro of the amyloi-

dogenic IDPs Ab40, Ab42, amylin and a-synuclein using

solid state NMR (ssNMR) [21–25]. The recent revolution in

cryo-EM has now expanded this repertoire to fibrils formed

in vitro or extracted ex vivo from b2-microglobulin (b2m),

mouse and human serum Amyloid A (AA), Light Chain (LC)
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Updating the amyloid fold. (a) Schematic of the cross-b fold viewed from (1) side and (2) cross-section, representing the stacking of molecular

layers perpendicular to the long axes of the amyloid fibrils. (b) Detail of the structural elements observed in amyloid cores highlighting (1) in-

register parallel b-sheets [30�], (2) ‘dry’ steric zippers [29], (3) sidechain-mainchain loop hydrogen bonding [37], (4) polar zippers [26�], (5) buried

salt-bridges [36��], (6) structured solvent molecules [27��], (7) polar and apolar channels (green and purple arrows, respectively) [36��], (8) cofactors

(blue density) [27��] and (9) multi-molecular layer interactions between central layer ‘L’ (blue) and the adjacent layers above and below (gold) [35].

Current Opinion in Structural Biology 2020, 60:7–16 www.sciencedirect.com
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amyloid from two human variants, and the IDPs Tau,

a-synuclein and Ab42, [26�,27��,28�,29,30�,31–33,
34��,35,36��,37]. These results show that the same protein

sequence can adopt different amyloid structures, leading to

more fibril structures than sequences (45 amyloid fibril

structures from full proteins and IDPs are currently depos-

ited in the pdb). For a-synuclein, four distinct polymorphs

have been solved by cryo-EM [31,32,33,34��] and one

structure of a single protofibril by ssNMR [23]. For Tau

three different neurodegenerative diseases result in fibrils

with distinct, disease-specific structures, all of which

are different from the structures formed in vitro in the

presence of heparin [26�,27��,28�,38]. Whether this differ-

ence between in vitro and in vivo fibril structures is found for

other amyloid proteins remains an important, open question.

A convoluted amyloid fold

The structures of amyloid fibrils solved by ssNMR [21–24]

and cryo-EM [26�,27��,28�,29,30�,31–33,34��,35,36��,37]
have revealed that a wide variety of interactions can stabi-

lise an amyloid core. While all of these structures have

canonical cross-b amyloid folds, their structures are more

complicated and diverse than originally anticipated. For

amyloid precursors that are initially folded, assembly into

the amyloid core requires wholesale rearrangement of

the polypeptide chain and sometimes reassignment of

the secondary structure elements [36��]. As expected,

extensive backbone hydrogen bonding between b-strands
is observed in these new fibril structures (Figure 1b1), but

the topologies of the structural elements that comprise the

amyloid core is more complex than those seen in fibrils

formed from short peptide fragments [16,18,39,40]. The

b-sheets are not, in general, formed from homotypic ‘dry

steric zipper’ interactions in which two copies of the same

sequence form sidechain-sidechain interactions between

the b-sheets [18,41]. Such zippers are observed in fibrils

formed from intact proteins, but in the interfaces formed

between protofilaments (Figure 1b2) [28�,29,32]. The

current list of interactions and structural motifs known

to stabilise the amyloid core (Figure 1b) also includes

sidechain-mainchain and sidechain-sidechain hydrogen

bonding from loops that interconnect b-strands
(Figure 1b3), tight interdigitation of polar and charged side

chains (named here ‘polar zippers’) (Figure 1b4), buried

salt bridges (Figure 1b5), interactions with solvent

(Figure 1b6) [27��], and both polar [36��] and apolar

[27��,31,36��] internal channels (Figure 1b7). In the latter

case, an un-assigned electron density inside the apolar

channel of tau filaments isolated from patiens that

suffer chronic traumatic encephalopathy suggests that

non-proteinaceous aliphatic molecules may participate in

this amyloid core (Figure 1b8) [27��]. Finally, a given

molecular layer (L), may make interactions with the layer

above (L + 1),below(L � 1),oreven beyondits immediate

neighbours (L + 2, L � 2, etc). Such interactions also

stabilise the amyloid core (Figure 1b9) [35].
www.sciencedirect.com 
Different forms of fibril polymorphism

The biological relevance of amyloid polymorphism

has been extensively documented for several amyloid

diseases [1��]. Fibrils created from the same precursor

have been shown to display different structures in differ-

ent diseases [26�,27��,28�], different seeding characteris-

tics [42], different rates of spread [43], and distinct

patterns of neuropathology [44,45]. Cryo-EM has a

major advantage for structural characterisation of fibril

polymorphs since each structure can (in principle) be

determined independently for each co-populating

polymorph, as long as sufficient images of each type

can be obtained. Polymorphism can take different forms.

Firstly (type 1), it can involve different packing

arrangements of the same protofibril, as was observed

for amyloidogenic peptides of transthyretin (TTR) [40]

and immunoglobulin LC l-1 (Figure 2a) [46], as well as

for entire proteins such as b2m (Figure 2b) [30�]. In some

cases, this type of polymorphism can involve

subtle changes in the contact angle or arrangement of

interactions between protofilaments, exemplified by the

difference in Paired Helical Filaments (PHF) and

Straight Filaments (SF) of Tau fibrils analysed from

Alzheimer’s patients (Figure 2c) [28�], and in early

models of fibril structures of Ab40 observed by ssNMR

(Figure 2d) [19,22]. In other cases, this polymorphism can

involve fibrils comprised of different numbers of

protofilaments, such as in the narrow (NPF) and wide

(WPF) filaments observed in Tau fibrils from Pick’s

disease (Figure 2e) [26�]. A second type of polymorphism

(type 2) can occur when a common structure is adopted by

one region of a protein sequence, while different

structures are adopted by other regions. This is observed

in the ‘Rod’ and ‘Twister’ polymorphs of a-synuclein
fibrils (Figure 2f) [32] and in Serum Amyloid A (AA) fibrils

[35] (Figure 2g). A third type of polymorphism (type 3)

combines types 1 (different packing of protofilaments)

and type 2 (partial common fold) and has been observed

for Ab42 in structures elucidated by cryo-EM [29] and

ssNMR [24]. These structures exhibit a common fold (the

‘S motif’) that packs through different interfaces and with

different structures for the N-terminal domain

(Figure 2h). Other polymorphs of Ab42 have also been

observed in which different numbers of protofilaments

with different twists are involved [47], but it is not yet

known which molecular interactions create these

different polymorphs. The fourth (type 4), and most

drastic, kind of polymorphism occurs when both the

protofilament structure and packing interactions vary,

as observed in polymorphs of Tau fibrils formed in vitro
in the presence of heparin (Figure 2i) [38], and in fibrils

formed from fragments of TDP43 in vitro, in which three

polymorphs are observed for the same sequence segment

(Figure 2j) [48]. At least for Tau, samples from 17 patients

that suffered from two variants of the same disease

possessed fibrils with a similar fold, suggesting that a

common fibril structure could be associated with a
Current Opinion in Structural Biology 2020, 60:7–16
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Figure 2
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The many faces of an amyloid. Fibril polymorphs observed for (a) peptide fragments of LC l1 [46] and for the full-length proteins (b) b2m [30�], (c)

Tau in AD [28�], (d) Ab40 [19,22], (e) Tau in Pick’s Disease [26�], (f) a-synuclein [32], (g) mouse and human serum AA [35], (h) Ab42 [24,29], (i) Tau

in presence of heparin [38] and (j) segments of TDP43 [48]. These fibrils were isolated ex vivo (c,e,g) or formed in vitro (a,b,d,f,h,i,j). Illustrations in

(a) and (b) are reproduced with permission [30�,46].
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Figure 3
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Amyloid is more than a rigid core. LDRs are shown on the structures of amyloid fibrils of full-length proteins formed in vitro or isolated ex vivo. The

top of each panel shows a schematic of the full-length sequence (bar) with the sequence involved in forming the ordered amyloid core in blue and

LDRs in white. The image on panels (a–h) corresponds to an orthogonal view down the fibril axis of the reported density maps contoured at two

different levels. The regions of localised disorder are shown as broad/noisy density (orange) surrounding the amyloid core density (blue) for (a) Tau

in Alzheimer’s disease [28�], (b) Tau in CTE [27��], (c) two polymorphs of a-synuclein [32], (d) b2m [30�], (e) IGLV6-57 derived LC amyloid [37], (f)

www.sciencedirect.com Current Opinion in Structural Biology 2020, 60:7–16
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particular disease [49]. Yet, in all of the above cases less

abundant polymorphs could also be present, albeit in too

low a number to enable structure determination.

What drives fibril diversity is unclear. It could result from

the intrinsic properties of the polypeptide sequence; the

presence or absence of post-translational modifications;

interaction with cofactors or cellular components;

the nature of the environment (pH, ionic strength etc),

or the cell type in which amyloid is formed. That inter-

action with cofactors can modulate the abundance of

polymorphs has been shown for Tau, with heparin

inducing structurally heterogeneous fibrils, while RNA

induces structurally homogeneous fibrils [50��]. Sequence

variation can also contribute to polymorphism. For

example, fibrils generated from the 3R isoform of Tau

in Pick’s disease (NPF and WPF, Figure 2e) [26�] are

different to those generated by the 4R isoform in

Alzheimer’s disease (HPF and SF, Figure 2c) [28�].

Dynamic regions are integral to the amyloid fold

Another remarkable characteristic of the amyloid fibril

structures determined recently is that relatively short

regions of a protein sequence form the amyloid core

[26�,27��,28�,30�,31,32,33,35,36��,37], with the remaining

segments exhibiting high structural variability (Figure 3).

Disordered regions map to the termini (Figure 3a–i)

[23,24,26�,27��,28�,32], and to internal loops/segments

of the polypeptide chain (Figure 3e) [37]. For example,

the amyloid core of Tau fibrils involves between 72 and

94 of its 441 residues, with the number of ordered amino

acids depending on the tauopathy (Figure 3a–b)

[26�,27��]. For a-synuclein, 40–59 of its 140 residues form

the amyloid core depending on the polymorph (Figure 3c)

[32]. Similar observations have been made for b2m (63 out

of 100 residues [30�] (Figure 3d), antibody LC case 1

(77 out of 111 residues [37] (Figure 3e)), or case 2 (91 out

of 118 residues [36��] (Figure 3f)), SAA from mouse

(69 out of 83 residues), and SAA from humans (53 out

of 67 residues) [35] (Figure 3g and h, respectively). We

refer to these as ‘Locally Disordered Regions’ (LDRs) to

signify their localised high structural variability. LDRs

have also been described in fibrils of Ab42, where the N-

terminal 14–15 residues, that coincide with the least

amyloidogenic regions, are not involved in the amyloid

core (Figure 3i) [24]. Similarly, the N-terminal 10 residues

of b2m are highly dynamic, with the succeeding

10 residues less so (but not organised into the amyloid

core) [30�]. Finally, for the structure of a-synuclein fibrils

determined using ssNMR, three regions (1-24, 55-62

and 97-140) lack assignment [23] and this is usually

interpreted as signifying dynamic behaviour.
(Figure 3 Legend Continued) GLV1-44 derived LC amyloid [36��], (g) mous

fibrils determined by ssNMR [24], where regions of disorder are modeled as

used is indicated on each panel. The blue maps are countered to the recom

5 Å low-pass filtered of the deposited map countered to 1.75 RMS using C
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LDRs are important in amyloid formation and in disease.

For example, they can kinetically define the amyloid

structures that result from aggregation [51]. Fibrils,

including their LDRs, are also known to be involved in

engaging with cellular components that regulate the

health of the cell, including molecular chaperones [52],

other proteins that contain IDRs or IDPs [53],

components of the extracellular matrix [54�], biological

membranes of different type [55] or other cellular com-

ponents [56]. These dynamic regions must not be over-

looked, despite the fact that they are difficult, if not

impossible, to structurally characterise using cryo-EM

or ssNMR. Single-molecule FRET, hydrogen/deuterium

exchange, oxidative labelling and cross-linking methods

offer exciting possibilities to characterise these regions

and their interactions in vitro and in vivo in the future.

Left or right-handed, parallel or anti-parallel?

Contrary to the canonical right-handed b-sheets observed

in globular proteins, amyloid fibrils can adopt right-

handed or left-handed b-sheets, with a switch between

handedness requiring only subtle differences in the

b-strand w/c angles [57]. For example, mouse and human

AA amyloid have opposite chirality despite having 78%

sequence identity [35]. While anti-parallel b-strands
were observed in amyloidogenic fragments using X-ray

crystallography [18,41], ssNMR [16] and X-ray fibre

diffraction [58], amyloid fibrils formed from longer

precursors commonly adopt a parallel in-register structure

(Figure 1a and b1) [1��]. In these structures each

molecular layer ‘L’ deviates from planarity, which allows

intermolecular interactions beyond the immediate neigh-

bouring layers ‘L + 1’ and ‘L � 1’ [29,35]. The number of

molecules that can interact in this mode can span up to

10 molecular layers, as observed in human AA amyloid

(Figure 1b9) [35]. Non-planarity of the layers also confers

a subtle polarity to the fibrils because it generates

structural differences between the two fibril ends.

Amyloid structures: beyond protein

The interactions between amyloid fibrils and cofactors has

been long studied, with the list of ligands including nucleic

acids [50��,59], lipids [60], metal ions [61], glycosaminogly-

cans [62], glycoproteins [63] and others (reviewed in Ref.

[54�]). The consequences of these interactions include

modulation of fibril growth kinetics and fibril stability

[62,64], changes in amyloid-associated cytotoxicity [65]

and altered seeding efficiency [50��]. The recent elucidation

of the structure of Tau fibrils extracted from patients with

Chronic Traumatic Encephalopaty (CTE) have provided

the first atomic-resolution information showing that
e AA and (h) human AA [35]. Panel (i) shows the structure of Ab42

 loops that point away from the core. The EMD code of each map

mended level indicated for the deposited maps. The orange maps are

himeraX [72].
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Figure 4
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A combination of techniques is required to understand the amyloid fibril structure and its cellular consequences. However, the picture is still

incomplete. The missing aspects will be achieved through biochemical, biophysical and cellular investigation. Only by an integrative approach in

which in vitro, ex vivo, in situ and in vivo approaches are combined can we hope to achieve the structural, cellular and mechanistic understanding

required to fully understand the amyloid structure and to inspire biomedical progress.
co-factors can be an integral part of the amyloid core

(Figure 1b8) [27��].

The amyloid fold in vivo

Recent developments in Cryo-Electron Tomography

(CryoET) have started to reveal the organisation of amyloid

fibrils in situ and how fibrils can disturb cellular processes

[66,67�]. Using kinetic experiments in vitro amyloid fibril

formation can be explained as a combination of elementary

mechanisms including primary/secondary nucleation,

elongation and fragmentation [68��]. This has allowed

the identification of small molecules and antibodies/cha-

perones that target specific steps in amyloid assembly

[69,70]. Importantly, the finding that the same compounds

are active in vitro and in vivo, validates the utility of in vitro
observations for understanding amyloid disease. In the

same way, fluorescent oligothiophene conjugates designed

in vitro have also been used to analyse amyloid in situ and

shown to be able to differentiate conformational variants of

Ab plaques in patients with different subtypes of

Alzheimer’s disease [71].

Although extraordinary progress has been made in our

understanding of amyloid in vivo, the resolution currently
www.sciencedirect.com 
possible by cryo-ET (�3 to 10 nm) does not enable fibril

structure details to be visualised within cells. Hence, the

full diversity and complexity of the amyloid fold in vivo
are yet to be revealed. To complete the picture (Figure 4)

we need to improve the resolution of fibril structures in
vitro and in situ, and to employ different techniques,

in combination, to inform on different aspects of the

amyloid fold, including the functionally important

dynamic regions discussed above. We also need to

remember that oligomers also play a key role in amyloid

disease [14,15], yet structurally characterising these

species remains a hugely challenging task in vitro, and

is not possible currently in vivo.

Summary and outlook
Recent discoveries about the structure of amyloid fibrils

have shifted our understanding of the amyloid fold from

an initially simple set of structural elements, to a complex

architecture in which apolar, polar, ionic and hydrogen

bonding interactions, together with solvent and co-factor

binding, structured cores and locally disordered regions,

build the fibril. Cofactors and post-translational modifica-

tions can also have profound effects on the structure,

kinetic and thermodynamic properties of amyloid fibrils
Current Opinion in Structural Biology 2020, 60:7–16
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and their cellular effects. By integrating methods able to

interrogate the structured and dynamic regions of

amyloid, and exploiting the powers of cryo-EM/ET to

determine amyloid structures in vitro, ex vivo and in situ,
we will soon have a better understanding of the amyloid

fold as a whole and how this amazingly diverse, but stable

structure, affects cells. Rather than a generic and simple

amyloid fold, there is a remarkable array of amyloid

structures, each of which may uniquely contribute to

the generation of cellular dysfunction and disease.
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