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Electrophysiology and Ablation

Ventricular tachycardia (VT) and VF occur mainly in people with 

impaired cardiac function and/or ischaemic heart disease, and account 

for the majority of sudden cardiac deaths worldwide.1 Treatment with 

anti-arrhythmic drugs such as amiodarone may be at best neutral in 

terms of mortality and carries significant long-term risks.2,3 While ICDs 

significantly improve survival for patients with significantly impaired 

left ventricular ejection fraction (LVEF), the devices also carry risks of 

infection and inappropriate shocks being given.4,5 

Some patients may present with a ‘secondary prevention’ ICD 

indication such as sustained VT or VF arrest, but, in the primary 

prevention setting, the risk of arrhythmia is based on the presence 

and severity of structural heart disease. Selection of patients in this 

way lacks precision and fails to identify some at-risk patients while 

leading to overtreatment in others. Current guidelines recommend 

echocardiography as the first-line investigation for cardiac function due 

to ease of access, because the echocardiographic equipment is usually 

available in heart clinics, whereas cardiac MRI (CMRI) services currently 

tend to only be available in specialist (tertiary) centres.6 However, 

CMRI is superior in terms of both accuracy and reproducibility when 

quantifying LVEF and myocardial mass, and can overcome limitations 

of inadequate echocardiographic windows. CMRI offers a one-stop 

investigation for accurately establishing cardiac structure, function and 

myocardial tissue characterisation. 

Understanding the Substrate for Ventricular 

Arrhythmia

Ischaemic Cardiomyopathy

Studies of cardiac tissue obtained before transplantation or following 

left ventricular (LV) aneurysm surgery, as well as more recent human 

and animal CMRI studies, have confirmed our understanding of the 

structural changes that occur in ischaemic cardiomyopathy (ICM). 

Strands of surviving tissue within and at the periphery of the infarct 

region form tortuous and slowly-conducting channels which support 

re-entry, so the infarct border zone frequently has a heterogeneous 

appearance on CMRI.8–10 

Fenoglio et al. demonstrated there were bundles of surviving myocytes 

in endocardial resection samples; some of these had a diameter 

of <100  µm, but it was not known which of these channels were 

mechanistically important.11 De Bakker et al. showed that differential 

slow conduction occurs with multiple tracts <200 µm.9 Recently, ultra-
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high (submillimetre) resolution ex vivo CMRI of infarcted porcine hearts 

showed conducting pathways were mainly subendocardial.12 However, in 

this study, a significant minority of pathways were observed to be entirely 

epicardial and would be inaccessible for endocardial catheter ablation. 

Urgent reperfusion (by either thrombolysis or angioplasty) for MI 

reduces infarct size and the incidence of subsequent chronic VT. In 

observational studies, VT cycle lengths were shorter, possibly suggesting 

a smaller circuit, in patients who had received revascularisation than 

in those who had not been revascularised.13–15 This would suggest that 

reperfusion strategies can introduce greater substrate heterogeneity 

within the infarcted area. 

Techniques that characterise and quantify the scar border zone or 

identify channels could improve risk stratification and treatment 

planning. However, while larger conducting channels may be identified 

using CMRI, it is likely that others are missed because of the limited 

spatial resolution of current clinical imaging. Where channels are too 

small to be visualised, measures of tissue heterogeneity may act as 

surrogates for the presence of ‘sub-resolution’ channels. 

Non-ischaemic Cardiomyopathy

The aetiology of VT in patients with non-ischaemic cardiomyopathy 

(NICM) is less well understood, partly because of the heterogeneity 

of underlying pathological processes in NICM. When regional fibrosis 

is detectable, it is often midwall or subepicardial, making access 

for catheter ablation challenging. These factors may explain why 

outcomes from NICM VT ablation are worse than those in ischaemic 

cardiomyopathy.16

In contrast to macro re-entrant VT, polymorphic VT or VF may occur 

due to distinct (but related) mechanisms. Replacement fibrosis can 

be patchy and/or diffuse, with disruption of the left ventricular 

microarchitecture.17 This diffuse fibrosis provides the substrate for 

conduction block and micro re-entry resulting in VF.18,19 This substrate 

is often dynamic with progressive fibrosis, reducing the long-term 

efficacy of targeted substrate modification.

Cardiac MRI Tissue Characterisation

Late Gadolinium Enhancement

Late gadolinium enhanced (LGE) CMRI imaging has become the de 

facto standard for imaging myocardial fibrosis. This approach uses 

gadolinium as a contrast agent to highlight areas of heterogeneity within 

the myocardium (e.g. fibrotic versus normal areas). In normal tissue, 

the washout of gadolinium is rapid, whereas in areas of myocardial 

fibrosis the washout is slower. By timing the image acquisition to occur 

‘late’ when washout has occurred in normal tissue but not in fibrotic 

tissue, regions of normal and fibrosed tissue can be differentiated. This 

technique relies on setting the inversion time to ‘null’ distant normal 

myocardium, making it appear black. Areas of enhancement have been 

demonstrated to correlate well with both acute myocardial necrosis 

and chronic fibrosis in ischaemic pathological specimens as well as 

replacement fibrosis in non-ischaemic dilated cardiomyopathy.20,21 

Typical image resolution is 1.4 × 1.4 × 10 mm (the 10 mm distance is 

the gap between slices). 

Quantification of Late Gadolinium Enhancement 

Although a narrative report of scar distribution is typically given in 

clinical use, the volume of abnormal tissue can also be quantified based 

on signal intensity (SI). Manual planimetry requires the operator to 

manually identify areas of fibrosis, whereas semi-automated standard 

deviation (SD) or full width at half maximum (FWHM) techniques require 

less user input. The SD method defines abnormal voxels with more than 

2, 3, 4, 5 or 6 standard deviations greater than the SI in a user-defined 

region of ‘normal’ myocardium. The FWHM method identifies tissues 

that fall below the SI of a user-defined area of fibrosis. Typical FWHM 

thresholds define a dense scar as one with >50% peak SI and a border 

zone between 35% and 50%.22–24 These techniques generate either a 

mass or percentage value of affected myocardium for the total scar 

burden, or for subdivisions of border zone and scar core. Although these 

techniques are reproducible, depending on the method and threshold 

chosen, significant inter-method variation is seen, and there is limited 

comparison with the gold standard of pathological specimens.25 In a 

small series, FWHM method correlates best with pathological specimens 

in animals and with manual segmentation in humans with ICM.24,26 

T1 Mapping

Conditions with diffuse tissue fibrosis are more challenging to detect 

with LGE if there are no unaffected myocardial segments. Measurement 

of absolute T1 relaxation values sidesteps the requirement for tissue 

inhomogeneity in LGE imaging. Spatial resolution is inferior to LGE 

imaging at approximately 1.4 × 1.9 × 6 mm and is challenging at higher 

heart rates, though native T1 mapping does not require the use of a 

contrast agent.27 As imaging protocols, field strength and acquisition 

methods vary, reference T1 values are specific to the vendor/

manufacturer. 

Unlike LGE, native T1 values are frequently abnormal in diffuse diseases 

of the myocardium, giving insights into the aetiology of NICM. T1 values 

are increased by tissue oedema and fibrosis, and are reduced by 

lipid overload (e.g. in Anderson-Fabry disease) and iron overload.28 

For clinical use, mid-myocardial septal values for T1 are reported, 

though a map can be generated showing the native T1 values across 

an imaging slice. The T1 map may highlight focal areas of oedema as 

seen in acute myocarditis, acute myocardial infarction or takotsubo 

cardiomyopathy.29,30

Extracellular Volume 

Contrast-enhanced T1 mapping allows the extracellular volume (ECV) 

to be estimated. By comparing pre- and post-contrast T1 values 

(referencing the T1 values of the blood pool and the patient’s 

haematocrit), a value for ECV is obtained. This is expressed as a 

fraction of the tissue volume; published normal values for ECV are 

approximately 25%.31,32 While native T1 values examine entire tissues, 

ECV characterises only the extracellular matrix and is therefore less 

affected by acute oedema. Higher ECV values are seen with expansion 

of the interstitium due to fibrosis or deposition and therefore correlate 

well with fibrotic changes at endomyocardial biopsy.33,34

As with native T1, ECV can be expressed as a global value or as a map 

highlighting regional variation. While ECV is raised in areas of chronic 

infarction, its main advantage over LGE for arrhythmic risk stratification 

is its potential to identify diffuse myocardial fibrosis in NICM.28,35 

T2 Imaging

Acute myocardial injury results in interstitial oedema. This occurs 

rapidly after myocardial infarction, and T2-weighted CMRI sequences, 

which identify oedema, can predict final infarct size.36 In chronic 

conditions such as cardiac sarcoidosis, myocarditis, transplant 

rejection and toxic cardiomyopathies, T2-weighted imaging accurately 
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identifies myocardial oedema.37 While arrhythmic complications in 

these conditions may be predicted using CMRI, there is limited data 

to support T2 imaging for arrhythmic risk stratification in patients with 

ICM or NICM.38 

Comparison of Techniques

LGE CMRI identifies the aetiology of left ventricular systolic dysfunction 

(LVSD), and permits the identification and quantification of myocardial 

fibrosis. As a semi-quantitative technique, LGE can demonstrate only 

relative differences between fibrotic and non-fibrotic myocardium. As 

a result, diffuse diseases of the myocardium may be missed with this 

technique. Newer techniques such as T1 and ECV mapping have the 

advantage of being quantitative and, as such, can be used to identify 

such diffuse myocardial fibrosis seen in some forms of NICM. Table 

1 demonstrates these differences. Examples of these techniques are 

shown in Figure 1 and Figure 2.

 

Current Clinical Application of Cardiac MRI

Current guidelines recommend echocardiography as the firstline 

investigation in patients presenting with heart failure or VT, although CMRI 

gains a class I recommendation if an infiltrative cause is suspected.39,40 

With echocardiography or CMRI, regional wall motion abnormalities and 

wall thinning suggest an ischaemic aetiology, while global hypokinesis 

supports a non-ischaemic cause. However, assessment is highly 

dependent on image quality and CMRI can overcome inadequate 

echocardiographic windows.39 In patients presenting with VT, CMRI is 

particularly useful for identifying inflammatory or infiltrative aetiology as 

well as ischaemic and non-ischaemic cardiomyopathies. In one series, 

CMRI changed the working diagnosis in 50% of patients presenting with 

VT/VF.41 Myocardial infarction shows a subendocardial to full thickness 

pattern of LGE, which will conform to one or more coronary territories. 

Conversely, non-ischaemic dilated cardiomyopathy often has a more 

diffuse pattern of fibrosis.17 As a result, the location of regions highlighted 

by LGE in such patients is variable, but it is more commonly located in the 

midwall or epicardial regions of anteroseptal or inferolateral segments.42 

 

Revascularisation of hypokinetic non-infarcted chronically ischaemic 

tissues may result in functional recovery.43 Hyperenhancement 

transmurality in LGE CMRI correlates well with myocardial recovery 

after revascularisation. In a series of 50 patients, regions with ≤25% 

transmurality were likely to demonstrate improved contractility, while 

those with >50% transmurality showed poor functional recovery  

after revascularisation.20 

 

When myocardial ischaemia causes polymorphic VT/VF, revascularisation 

is indicated. However, in patients with sustained monomorphic VT, 

revascularisation is more contentious, since monomorphic VT usually 

reflects established substrate that may not be altered by revascularisation. 

Indeed, in a case series of 65 patients with coronary disease and VT/

VF, surgical revascularisation did not appear to affect inducibility of 

Table 1: Comparison of Myocardial Tissue Characterisation Techniques

Measurement Scar identification/ 

quantification

Scar density 

estimation

Quantification 

of scar border 

zone

Identification 

of diffuse 

fibrosis

Evidence for use as a 

decision aid for risk 

stratification

Late gadolinium enhancement Semi-quantitative +++ − ++ − ++ (ICM)

+++ (NICM)

T1 mapping Quantitative + + − + +

Extracellular volume mapping Quantitative ++ +++ + +++ +/−

ICM = ischaemic cardiomyopathy; NICM = non-ischaemic cardiomyopathy.

Figure 1: Ischaemic Cardiomyopathy: Image Comparison

LGE

T1 map

200 ms 1,600 ms

ECV map

0% 100%

Anterior MI

Ischaemic cardiomyopathy secondary to an anterior ST-elevation MI. In this short axis slice, 

there is subendocardial LGE in the left ventricular anterior wall. T1 native values are elevated 

in the same region. ECV demonstrates this is a dense scar (ECV >55%). ECV = extracellular 

volume; LGE = late gadolinium enhancement.
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arrhythmia, but was associated with good long-term outcomes.44 Several 

other observational studies have similarly found that a reduction in 

mortality is associated with either PCI or surgical revascularisation in 

patients presenting with VT/VF.45–49 

Cardiac MRI Risk Stratification

Current European Society of Cardiology guidelines for ICD implantation 

(in both ICM and NICM) are based upon LVEF and New York Heart 

Association class but not formal scar quantification.6 The more recent 

2017 American Heart Association guidelines differ slightly, with a 

class IIa recommendation given for the use of CMRI imaging to aid risk 

stratification in patients with suspected NICM.40 

To investigate the role of CMRI as a tool for risk stratification, 

PubMed was searched using the terms (‘Risk Assessment’[Mesh] 

OR ‘Prognosis’[Mesh] OR ‘Predictive Value of Tests’[Mesh]) AND 

(‘Myocardial Ischemia’[Mesh] OR ‘Dilated Cardiomyopathy’[Mesh]) 

AND (‘Magnetic Resonance Imaging’[Mesh]) OR ‘Gadolinium’[Mesh]) to 

identify studies using CMRI to guide risk stratification. These studies 

are summarised in Table 2. 

Ischaemic Cardiomyopathy

The presence of LGE with CMRI imaging strongly predicts mortality 

in patients with ischaemic cardiomyopathy, independently of LVEF, 

including in patients without detectable LVSD.50–52 Total scar burden 

correlates with mortality and ICD discharges, even in multivariate 

models including LVSD (Table 2).51–56 Quantification of the scar border 

zone (rather than scar core) or quantifying the number of peri-infarct 

channels are alternative approaches to predicting VT/VF events.57–60 

Non-ischaemic Cardiomyopathy

As in ICM, the presence of LGE on CMRI in patients with NICM strongly 

predicts mortality and arrhythmic events across the spectrum of LV 

impairment.21,61–63 Patients with fibrosis identified by LGE are also 

less likely to achieve reverse remodelling with medical therapy.64 

The spatial distribution of fibrosis is also important, with septal 

scarring conferring a higher risk of sudden cardiac death (SCD) than 

inferolateral variants, and subepicardial scarring conferring a higher 

risk than linear mid-wall fibrosis.65 

 

Although patients with a low LVEF (<35%) have the highest individualised 

risk of SCD, this accounts for only ~20% of all cardiac arrests. The great 

majority of cardiac arrests occur outside this high-risk category.1 

Patients with fibrosis identified by LGE have worse outcomes than 

those without and risk stratification of individuals based on the 

presence or absence of LGE rather than on LVEF alone may aid patient 

selection for ICDs.66 For example, compared with all those with LVEF 

<35% (i.e. using echocardiographic risk stratification alone), those with 

an LVEF >35% and LGE have similar risks of SCD.63 Moreover, these 

selected patients with preservation of pump function will often have a 

lower competing risk of non-arrhythmic death. 

In contrast with ICM, where scar-related monomorphic VT predominates, 

patients with NICM are more likely to experience polymorphic VT and 

VF.67 On a review of the literature, most studies examining CMRI for risk 

stratification in NICM do not differentiate between VT and VF (Table 

2). This practical approach is helpful for treatment decisions. However, 

Piers et al. found that scarring predicts monomorphic VT but not 

polymorphic VT or VF, suggesting that factors other than macroscopic 

anatomical substrate may be important in arrhythmogenesis in NICM.68

Patients with NICM with no evidence of fibrosis on CMRI have fewer 

arrhythmic events, a lower risk of death and a higher likelihood of 

reverse remodelling. Careful patient selection for prophylactic ICD 

implantation in this population is required, and it therefore seems 

logical that identification of fibrosis using CMRI could more accurately 

identify those who would benefit, particularly patients with NICM and 

those with an LVEF >35%. However, no trial data exist to supports 

this approach. 

Late Enhancement 

There is now persuasive evidence that quantification of the scar and/

or border zone burden can be used to help risk stratify patients with 

both ICM and NICM, in addition to measures of LVEF. The fact that this 

relationship exists across the range of LVSD suggests that fibrosis 

itself is an important determinant of arrhythmic risk, rather than being 

simply a marker of end-stage disease. 

While the presence of any degree of LGE predicts risk in both NICM 

and ICM, quantification of scar extent only appears to add substantial 

incremental risk prediction benefit in patients with ICM. However, 

the clinical applicability of fibrosis quantification is limited by a lack 

of consensus over which scar metrics and thresholds are the best 

predictors of outcomes, or how to apply these metrics to individuals.69

Figure 2: Non-ischaemic Cardiomyopathy: 
Image Comparison

These two cases of non-ischaemic cardiomyopathy highlighting the utility of LGE, T1 and ECV. 

LGE+ is a case with mid-myocardial fibrosis (orange arrows), with globally high ECV. LGE− did 

not demonstrate any fibrosis on LGE imaging but had high native T1 and globally raised ECV, 

confirming the diagnosis of non-ischaemic cardiomyopathy. ECV = extracellular volume; 

LGE = late gadolinium enhancement.
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Table 2: Prognostic Impact of Cardiac MRI

Author n Method for Scar  

Quantification

HR for Adverse Outcome (95% CI) Result

Ischaemic Cardiomyopathy

Bello et al. 200554 48 ≥2 SD above remote normal 

myocardium

Not given, p=0.02 Greater infarct mass and infarct surface area 

predicts inducible VT at EPS

Yan et al. 200658 144 ≥2 SD above remote normal 

myocardium

1.45 (1.15–1.84) per 10% increase in scar 

border zone

Extent of the peri-infarct zone defined 

by delayed-enhancement CMRI is an 

independent predictor of post-myocardial 

infarction all-cause and cardiovascular 

mortality, after adjusting for LV volumes 

or LVEF

Schmidt et al. 2007119 47 FWHM Not given, p=0.02 Border zone mass was higher in those with 

inducible VT than those with no inducibility, 

but there was no difference in scar core 

mass

Roes et al. 2009120 91 FWHM (35-50%) 1.49 1.01–2.20) per 10 g increase in scar 

border zone.

Extent of infarct border zone is the strongest 

predictor of subsequent ICD therapy

Kwon et al. 200950 349 ≥2 SDs above remote normal 

myocardium

1.02 (1.003–1.03) per 1% increase in  

LV scar

Scar mass predicts mortality or 

transplantation

Kelle et al. 2009121 177 Number of AHA 17 segment 

model with enhancement

1.27 (1.064–1.518) per additional 

enhanced segment

Number of AHA segments involved predicts 

death and non-fatal myocardial infarction. 

Heidary et al. 201057 70 FWHM border zone (remote max 

to 50%), FWHM scar core (>50%)

Not given, p=0.03 Total scar mass and border zone mass 

(but not scar core mass) predict adverse 

outcomes

Scott et al. 201153 64 The number of transmural scar 

segments (using AHA 17 segment 

model)

1.48 (1.18–1.84) in multivariate analysis The number of transmural scar segments 

predicts subsequent ICD therapies

Krittayaphong et al. 2011122 1,148 Visual presence of LGE 3.92 (1.98–7.76) in multivariate analysis LGE predicts MACE in a cohort with normal 

wall motion.

Boyé et al. 2011123 52 ≥5 SD Not given, p=0.02 Infarct mass expressed as a percentage of LV 

mass predicts appropriate device therapy

Rubenstein et al. 201359 47 Between 2 and 3 SD above 

remote normal myocardium

1.97 (1.04–3.73) per 1% change in border 

zone mass in multivariate analysis

Border zone mass higher in those with VT 

inducibility (2.64% of LV mass) than those 

without (1.35%)

Alexandre et al. 2013124 49 Scar mass by manual planimetry 1.08 (1.04–1.12) unadjusted, 3.15 

(1.35-7.33) in multivariate analysis 

(per 1g extra scar mass)

Scar mass predicts appropriate device 

therapy

Kwon et al. 2014125 450 ≥2 SD above remote normal 

myocardium

1.34 (1.15–1.55) in multivariate analysis Scar percentage strongly predicts mortality

Demirel et al. 2014126 99 FWHM 2.01 (1.17–3.44) in multivariate analysis Ratio of peri-infarct border zone to scar core 

is associated with appropriate ICD therapy

Rijnierse et al. 2016127 52 FWHM (>50%) Not given, p=0.07 Trend towards higher scar burden in those 

with inducible VT (not significant)

Non-ischaemic Cardiomyopathy

Assomull et al. 200662 101 Visual presence of midwall LGE 3.4 (1.4–8.7) for presence of LGE Presence of midwall fibrosis predicts death 

or hospitalisation

Wu et al. 200861 65 Visual presence of LGE 8.2 (2.2–30.9) in multivariate analysis Presence of LGE predicts cardiovascular 

death, ICD therapy and HF hospitalisation

Iles et al. 2011128 61 Visual presence of LGE Not given, p=0.01 Patients with LGE had significantly higher 

rates of appropriate ICD therapy

Lehrke et al. 2011129 184 Visual presence of LGE, SD >2 

for quantification

3.5 for presence of scar. 5.28 using 

threshold of scar >4.4% total LV mass

Presence of LGE predicts cardiac death, ICD 

therapy or HF hospitalisation

Neilan et al. 2013130 162 Both FWHM and SD methods  

used

14.5 (6.1–32.6) for LGE presence, 1.15 

(1.12–1.18) for each 1% increase in scar 

volume

Presence and volume of LGE predicts 

cardiovascular death or ICD therapy

Gulati et al. 2013131 472 Visual presence, FWHM 2.96 (1.87–4.69) for presence of LGE, 

1.1 (1.06–1.17) per 1% extra LGE

LGE presence, extent predicts mortality, 

independently of LVEF

Machii et al. 2014132 72 Visual presence of LGE Not given, p=0.02 for extensive LGE 

versus no LGE

Lower event-free survival in patients with 

extensive LGE

(Continued)
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Extracellular Volume and T1 Mapping for Risk 

Stratification

Alternative metrics, such as native T1 values and ECV, measure diffuse 

myocardial fibrosis. In patients with both ICM and NICM, myocardial 

T1 values (at sites spatially discrete from areas of LGE) incrementally 

improved risk stratification in a model that already included LVEF, QRS 

duration, and metrics of scar core and border zone (using LGE).70 In 

a similar study using ECV rather than T1, high ECV values correlated 

with mortality.71 In two small case series, high ECV values correlated 

with ICD therapies.35,72 These studies suggest that, when dense scar is 

surrounded by diffusely fibrotic myocardium, VT/VF is more likely than 

if the scar is encompassed by normal myocardium. 

 

ECV and T1 mapping techniques have a sound physiological basis for 

identifying diffusely abnormal myocardium not identified with LGE 

imaging. ECV is of particular interest as a marker of risk in patients 

with NICM who do not have identifiable LGE, since it offers the ability 

to identify diffuse interstitial fibrosis. Complementary assessment of 

diffuse and regional disease by ECV mapping and LGE respectively 

may provide incremental benefit for risk stratification in both ICM and 

NICM. ECV may also have value in further characterising the density of 

discrete scars, although data to support this use are limited. 

Ablation for Ventricular Tachycardia

For patients with a high burden of VT, catheter ablation can successfully 

reduce ICD shocks.73–75 These procedures can be challenging, with 

significant morbidity and mortality, since VT is frequently poorly 

tolerated and precise localisation of re-entrant circuits using traditional 

electrophysiological techniques is often challenging. VT ablation 

therefore often targets the myocardial scar substrate.76 Differing 

approaches to substrate ablation have been described – linear 

transection, core isolation, scar homogenisation or abolition of late 

Table 2: Cont.

Perazzolo-Marra  

et al. 2014133

137 Visual presence of LGE 3.8 (1.3–10.4) in multivariate analysis LGE presence, but not extent, predicts 

adverse arrhythmic outcome

Masci et al. 2014134 228 Visual presence of LGE 4.02 (2.08–7.76) in multivariate analysis LGE presence predicts adverse outcomes 

in patients with asymptomatic LVSD

Piers et al. 201568 87 Visual presence, FWHM 2.71 (1.10–6.69) for LGE presence LGE predicts monomorphic VT, but not 

polymorphic VT/VF

Shin et al. 2016135 365 FWHM 8.45 (2.91–24.6) for LGE extent ≥ 8%, 

increasing to 6.98 (1.74–28.0) for those 

with subepicardial pattern of disease

Presence of LGE strongly predicts arrhythmic 

events, risk varies with location of fibrosis

Mueller et al. 2016136 56 Visual presence of LGE 1.9 (1.1–3.4) Presence of LGE predicts VT inducibility

Puntmann et al. 2016137 637 T1 mapping 1.1 (1.07–1.17) per 10 ms change in T1 

time, multivariate analysis

Higher T1 values predict mortality and HF 

outcomes

Halliday et al. 201763 399 Visual presence of LGE, FWHM 

for quantification

9.2 (3.9–21.8) in patients with LVEF > 40% A 17.8% event rate (median follow-up  

4.6 years) in patients with LGE

Halliday et al. 201665 874 FWHM LGE extent of 0 to 2.55%, 2.55% to 

5.10%, and >5.10%, respectively, were 

1.59 (0.99 to 2.55), 1.56 (0.96 to 2.54), 

and 2.31 (1.50 to 3.55) for all-cause 

mortality 

The presence and pattern, rather than the 

extent, of LGE predicts all-cause mortality

Studies Including Both ICM and NICM

Kwong et al. 2006138 195 ≥2 SD 8.29 (3.92–17.5) unadjusted, 8.65 

(2.45–30.5) in multivariate analysis

Presence of LGE predicts cardiac events in 

patients with suspected CAD

Klem et al. 201151 1560 Number of segments with LGE 1.007 (1.005–1.009) unadjusted, 1.004 

(1.002–1.007) in multivariate analysis

Number of segments with LGE incrementally 

prediction of all-cause mortality over LVSF 

and clinic parameters

Gao et al. 201256 124 ≥2 SD 1.4 (1.21–1.62) unadjusted Scar quantification predicts arrhythmic 

events

Dawson et al. 2013139 373 Visual presence of LGE, FWHM 

for quantification

3.5 (2.01–6.13) for presence of LGE,  

1.12 per 5% extra LGE

In patients presenting with VT, LGE predicts 

arrhythmic events

Almehmadi et al. 2014140 318 ≥5 SD 2.4 (1.2–4.6) in multivariate analysis Midwall striation predicts sudden death or 

appropriate ICD therapy

Chen et al. 201570 130 Native T1 value 1.1 (1.04–1.16) per 10 ms change in T1  

time, multivariate analysis

Myocardial T1 predicts ventricular arrhythmia 

independently of scar quantification

Mordi et al. 2015141 539 Visual presence of LGE 2.14 (1.06–4.33) in multivariate analysis LGE predicts MACE in all-comers attending 

for CMRI

Acosta et al. 201860 217 FWHM 40–60% (border zone), 

>60% (scar core)

1.06 (1.04–1.08) for border zone mass (g) Scar mass, border zone mass and border 

zone channel mass all predict ICD therapy 

or SCD

Olausson et al. 201835 215 ECV 2.17 (1.17–4.00) for each 5% increase 

in ECV

Diffuse fibrosis (as evidenced by ECV) 

predicts appropriate ICD therapy

Studies showing the prognostic effect of CMRI data in ischaemic cardiomyopathy and non-ischaemic cardiomyopathy. AHA = American Heart Association; CMRI = cardiac MRI; 

EPS = electrophysiology study; ECV = extracellular volume; FWHN = full width at half maximum; HF = heart failure; LGE = late gadolinium enhancement; LV = left ventricle; LVEF = left 

ventricular ejection fraction; MACE = major adverse cardiac event; VT = ventricular tachycardia.
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potentials.77–80 Often, this requires extensive, time-consuming ablation 

in haemodynamically fragile individuals, which could be streamlined 

with a more detailed appreciation of the underlying substrate. CMRI 

can be used to predict the location of re-entrant circuits and channels 

within the scar to guide ablation lesions, the success of which can be 

predicted by computer modelling.81,82

Planning

The configuration of LGE on CMRI allows the operator to estimate 

the likelihood of successful ablation and identify whether epicardial 

access is required. Predominantly subendocardial ischaemic scar-

related VT is usually treatable with endocardial ablation.75 Conversely, 

VT ablation in NICM may be hampered by inaccessibility of the 

substrate, and epicardial access may be required for patients with 

inferolateral and/or subepicardial scarring.83 Epicardial access is 

typically not required for patients with VT originating from a septal 

intramural scar, although outcomes from ablation of ‘deep’ substrate 

are poorer, as might be expected.84 

Image Fusion 

Conventional 3D electroanatomical maps (EAMs) generated during 

ablation procedures may be inaccurate because of poor catheter 

contact or reach, and contact mapping of entire cardiac chambers is 

time consuming. 

Clinical CMRI studies can be reconstructed into 3D geometries 

demonstrating the distribution of a scar (Figure 3). With further refinement 

using 3D acquisition and image-processing methods, channels that 

might facilitate re-entry can be identified in advance (Figure 4).85 These 

geometries can be used simply as a road map for the operator during 

ablation procedures. Alternatively, fusion of these 3D geometries with the 

EAM system can leverage the accurate and high resolution anatomical 

detail of clinical imaging, allowing the operator to observe CMRI (and/or 

CT) images directly in the mapping software to reduce the time spent 

generating EAMs.86–89 Contact mapping can be focused on regions of 

interest determined in advance, e.g. by using algorithms for localising the 

VT origin based on 12-lead ECG morphology or by non-invasive mapping 

(ECGI) techniques.90–95 While image fusion has the potential to streamline 

ablation procedures, as yet, the benefits of such an approach have not 

been formally evaluated, and widespread applicability is not assured 

since it requires significant clinical and imaging expertise. 

Future Directions

Overcoming Technical Limitations of Cardiac MRI

Many patients at risk of VT/VF have cardiac implantable electronic 

devices (CIEDs).96 Historically, MRI has been contraindicated in patients 

with CIEDs due to safety concerns. However, with advances in CIED 

technology such as MRI-conditional devices, growing experience 

and appropriate precautions and monitoring, CMRI can often be 

performed safely even in patients with historic non-conditional 

devices.69,97,98 Nevertheless, images may be significantly degraded by 

the presence of CIEDs, particularly the anteroseptal regions of the left 

ventricle in patients with left-sided pulse generators that lie in close 

proximity to the heart. Wideband sequences are described which can 

reduce these artefacts.99 

LGE imaging is usually obtained by multiple short axis planes through the 

heart. This results in excellent in-plane resolution, but a large slice width 

(approximately 10 mm) between images. Reconstructions of the heart can 

suffer with a ‘partial voluming’ artefact that can overestimate the infarct 

border zone.100 This effect can be mitigated by evolving techniques such 

as 3D image acquisition or super-resolution image reconstruction.101,102

Histological studies have demonstrated myocyte fibre disarray at the 

border zone of a chronic infarction.103 Due to anisotropic conduction 

of myocytes, knowledge of fibre orientation is potentially important 

to understand propensity to arrhythmia. Diffusion tensor imaging 

can demonstrate fibre direction and may therefore inform computer 

models of arrhythmia, although this use of CMRI is in its infancy.12,104,105

Ventricular Tachycardia Stimulation and Modelling

Inducibility of VT during an electrophysiology study (EPS) by programmed 

ventricular stimulation (PVS) pacing from a right ventricular site predicts 

arrhythmic events in ICM.106 This meta-analysis demonstrated PVS had 

the power to predict subsequent arrhythmic events (pooled OR 4.00, 

95% CI [2.30–6.96]). Depending on patient selection and the number 

of extrastimuli used, the sensitivity, specificity and predictive value of 

this test varies, although is not commonly used clinically due to its 

invasiveness, cost and insufficient negative predictive value. In NICM, 

assessment with PVS is less well studied and probably less effective 

than with ICM.107 

Figure 3: Image Post-processing of 2D Cardiac MRI Images

A B C

Short axis late gadolinium enhancement images (A) are contoured to identify endo- and 

epicardial boundaries, before a full width at half maximum thresholding approach identifies areas 

of dense scar (red) and border zone (yellow), then (B) the short axis stack is reconstructed to 

form a 3D volume (C) which can be imported into electroanatomical maps software.

Figure 4: 3D Multiplanar Reconstruction
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Conventional clinical 2D late gadolinium enhancement imaging can pose challenges for 

reconstruction including slice alignment. This example of 3D multiplanar reconstruction 

(performed at our own institution) yields more realistic geometry with areas of dense 

scar (red) and border zone (blue). Putative conducting channels have been indicated and 

numbered in preparation for ventricular tachycardia ablation.
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Electrophysiology and Ablation

Scar-related re-entry often relies upon functional block as well as 

anatomical barriers to conduction.108 Scar quantification methods 

do not account for these complex mechanisms, but computer 

modelling has the potential to improve risk stratification by 

combining a personalised anatomical model with simulation 

of tissue electrophysiology. This method allows simulated PVS 

performed from multiple sites in both ventricles. In a retrospective 

study of 41 patients with severe LVSD, by comparing these patient-

specific simulations with clinical outcomes, a positive ‘virtual-heart 

arrhythmia risk predictor’ simulation was associated with adverse 

outcomes (OR 4.05 (95% CI [1.20–13.8]), which is similar to published 

results from invasive PVS. Work is ongoing to determine the utility of 

such simulations in preserved LVSF.82,109

Simulated PVS methods are computationally significantly more 

challenging in NICM where myocardial fibrosis is less confluent and 

more heterogeneous, and the microscopic nature of the substrate 

is difficult to fully characterise with clinical imaging. Moreover, the 

substrate in NICM is often progressive and, as such, risk stratification at 

a single time point may fail to accurately estimate lifetime risk.

These methods are promising but are potentially limited 

by simplifications and assumptions in models of cell and tissue 

electrophysiology, the computational resources required, and the 

resolution of currently available clinical imaging. Despite encouraging 

preliminary studies, there are significant obstacles to be overcome 

before these approaches can be used routinely in clinical practice.110 

Constructing a personalised computational model of anatomy and 

electrophysiology requires calibration from clinical images and data 

that are often noisy and incomplete, so methods for embedding 

uncertainties and variability into computational models are an area of 

active research.111 Whether these approaches can be used to guide ICD 

implantation in the future remains to be seen. Technological advances 

in imaging and modelling, along with clinical studies of their utility, will 

help advance this promising concept.

Future Clinical Studies

Tissue characterisation to determine who needs and, perhaps more 

importantly, who does not need an ICD is a complex but evolving field. 

Estimates of risk currently do not allow for disease progression, and it is 

unclear how frequently investigations should be repeated, particularly for 

the dynamic substrate that occurs in some forms of NICM. The effect of 

dynamic conditions such as electrolyte disturbance, volume overload and 

myocardial ischaemia on arrhythmic risk remains unknown.

In the DANish Randomized, Controlled, Multicenter Study to Assess the 

Efficacy of Implantable Cardioverter Defibrillator in Patients With Non-

ischemic Systolic Heart Failure on Mortality (DANISH) trial (NCT00542945), 

investigators found no overall mortality benefit for primary prevention ICD 

implantation in patients with NICM.112 However, outcomes were improved 

by ICD implantation for those in prespecified subgroups – namely younger 

patients and those with lower levels of N-terminal pro-brain natriuretic 

peptide (NT-proBNP) – who, presumably, had a lower risk of non-sudden 

death. Since CMRI studies have consistently demonstrated a higher 

arrhythmic burden in those with evidence of LGE, a clinical trial that used 

CMRI-based risk stratification in NICM patients with LVEF <35% would 

provide clinically useful information. 

Similarly, the Cardiac Magnetic Resonance GUIDEd Management of 

Mild-moderate Left Ventricular Systolic Dysfunction (CMR_GUIDE) trial 

(NCT01918215) will identify patients who have evidence of LGE but do 

not qualify for ICD treatment under current guidelines (LVEF 35–50%), 

to determine whether prophylactic ICD implantation is beneficial.113 The 

Programmed Ventricular Stimulation to Risk Stratify for Early Cardioverter-

Defibrillator (ICD) Implantation to Prevent Tachyarrhythmias Following 

Acute Myocardial Infarction (PROTECT-ICD) trial will examine whether a 

multiparametric risk stratification algorithm (including echocardiography, 

CMRI and PVS) used post-infarction will identify those who may benefit 

from early ICD implantation.114

Contribution to Novel Therapies

Recent developments in CMRI and electrophysiology mapping 

systems have shown real-time tracking and visualisation of catheter 

position during ablation procedures to be feasible and safe for an 

‘anatomical’ ablation of the cavo-tricuspid isthmus.115,116 Advantages 

of such a system include 3D visualisation of catheter position within 

complex anatomical structures (including the ability to see surrounding 

structures) and real-time lesion evaluation. This technology has the 

potential to improve outcomes in ablation procedures, but significant 

technological challenges remain for its use in ventricular arrhythmia.

Stereotactic body radiotherapy has recently been reported as a novel, 

non-invasive treatment for VT.117,118 It is dependent on accurate anatomical 

localisation of arrhythmic substrate to determine the radiotherapy target. 

CMRI imaging is the ideal modality for treatment planning.

Conclusion

CMRI imaging can accurately quantify cardiac function, and characterise 

the myocardial substrate to refine risk stratification to identify people 

who may benefit from ICD implantation and revascularisation. Although 

large-scale trials in this area are required, it is likely that measures of 

scar quantification will become increasingly recognised by guidelines 

in future.

A multiparametric approach using imaging and other criteria may provide 

the most accurate risk assessment in the future, although the interaction 

between each of the metrics discussed is complex and requires careful 

study. Advanced techniques such as automated image segmentation and 

channel detection, or computer simulation of electrophysiology, offer 

significant potential, but are still in the early stages of development. 

Significant challenges remain in overcoming technological barriers 

and understanding how best to use the considerable information 

gained from a CMRI study. Nevertheless, CMRI offers clinicians and 

researchers an increasingly comprehensive way to diagnose, risk 

stratify and tailor the treatment of patients with cardiomyopathy. 

Clinical Perspective

• Cardiac MRI (CMRI) is the gold standard imaging modality for 

ejection fraction and myocardial tissue characterisation.

• CMRI evidence of fibrosis independently predicts arrhythmic 

risk, even in multiparametric models which include clinical 

risk factors and ejection fraction, in both ischaemic and non-

ischaemic cardiomyopathies.

• CMRI can be used to inform and guide ablation procedures by 

characterising the ventricular tachycardia substrate. 

• Novel metrics such as extracellular volume mapping and channel 

identification have the potential to aid the electrophysiologist and 

provide a more robust method of risk stratification. 
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