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Abstract. Lymphovascular invasion (LVI) and tumor angiogenesis are
correlated with metastasis, cancer recurrence and poor patient survival.
In most of the cases, the LVI quantification and angiogenic analysis is
based on microvessel segmentation and density estimation in immuno-
histochemically (IHC) stained tissues. However, in routine H&E stained
images, the microvessels display a high level of heterogeneity in terms of
size, shape, morphology and texture which makes microvessel segmenta-
tion a non-trivial task. Manual delineation of microvessels for biomarker
analysis is labor-intensive, time consuming, irreproducible and can suf-
fer from subjectivity among pathologists. Moreover, it is often beneficial
to account for the uncertainty of a prediction when making a diagnosis.
To address these challenges, we proposed a framework for microvessel
segmentation in H&E stained histology images. The framework extends
DeepLabV3+ by using an improved dice coefficient based custom loss
function and also incorporating an uncertainty prediction mechanism.
The proposed method uses an aligned Xception model, followed by atrous
spatial pyramid pooling for feature extraction at multiple scales. This ar-
chitecture counters the challenge of segmenting blood vessels of varying
morphological appearance. To incorporate uncertainty, random transfor-
mations are introduced at test time for a superior segmentation result
and simultaneous uncertainty map generation, highlighting ambiguous
regions. The method is evaluated using 1167 images of size 512x512 pix-
els, extracted from 13 WSIs of oral squamous cell carcinoma (OSCC)
tissue at 20x magnification. The proposed net-work achieves state-of-
the-art performance compared to current semantic segmentation deep
neural networks (FCN-8, U-Net, SegNet and DeepLabV3+).

Keywords: Microvessel detection · Tumor angiogenesis · Lymphovas-
cular invasion · Separable convolution · Pyramid pooling based neural
network · Uncertainty quantification

1 Introduction

The ability for cancer to spread to distant or adjacent tissues is a key indicator
of poor patient prognosis. The tumor cells can gain access to blood or lymphatic
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Fig. 1. Representative images of microvessels in H&E stained histology images of
OSCC tissue, illustrating their shape variability. The microvessel boundary annotation
is shown in red color. (a-c) Microvessel with varying red cells density, (c) Microvessels
at different sizes, (d) Keratinization, which appears similar to microvessel

vessels by intravasation allowing them to circulate through the intravascular
stream. This lamphovascular invasion (LVI) can lead to the proliferation of tu-
mor cells at another site in the body. This phenomena is more commonly referred
to as metastasis. The lymphatic or vascular invasion by the primary tumor is
considered as a sign of aggressive disease and is usually accompanied by metas-
tases to the regional lymph nodes and to distant sites. The formation of new
blood vessels is important for growth, survival and metastatic spread of tumor
cells [2]. Tumor neoangiogenesis leads to formation of new blood vessels in the
tumor tissues, with an initial purpose to facilitate the transport of nutrients
and oxygen to help the tumor cells survive [2]. In diagnostic clinical pathology,
most of the currently existing tissue datasets and pathways recommend com-
menting on the presence or absence of LVI however the degree of angiogenesis
is not routinely examined or reported. In the existing research literature, there
is strong evidence that microvessel density in tumor tissue is directly correlated
with an increased risk of cancer spread, an increased incidence of disease recur-
rence and poor patient survival [10]. Recent studies have re-ported LVI detection
and quantification as an important risk factor in disease progression particularly
in breast, cervical and lung cancers [10]. However, most of the results in these
studies are based on manual localization of microvessels in the subjectively de-
fined regions of tissue whole slide image (WSI). The subjective identification of
LVI and angiogenic regions in the tissues is irreproducible, time consuming and
often requires clinical knowledge. In routine pathological practice, accurate seg-
mentation of microvessels can assist pathologists in identification of LVI which
would otherwise be very time-consuming. Furthermore, objective quantification
of LVI and tumor angiogenesis from multi giga pixel histopathology images will
provide extremely valuable big data aiding prediction of tumor behavior and
prognosis.

The appearance of microvessels in Hematoxylin and Eosin (H&E) stained
histology WSIs is characterized by the presence of endothelial cells forming a
closed structure that surrounds the red blood cells, as illustrated in Fig. 1. The
heterogeneity in the visual appearance of microvessels makes their segmenta-
tion a non-trivial task. Immunohistochemical (IHC) staining for markers such
as CD31 and CD34 can be used for microvessel identification, which is compara-
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tively expensive than H&E staining. Due to this cost, it is not commonly used in
routine clinical practice. Likewise, the IHC-stained histology images are rarely
available in public datasets, which is a major hindrance in the development of
automated methods to investigate the role of microvessels in tumor prognosis
and therapy response.

Deep learning has recently been successfully used for the automated analysis
of histopathology images. Specifically, deep learning based architectures have
been proposed for the detection, segmentation and classification of histopatho-
logical structures in WSI images including deep learning based architectures are
proposed for detection and classification of nuclei [14], mitoses [12], lymphocytes
[13], tumor and stromal regions [15] and glandular structure segmentation [7]. A
few studies have explored automatic quantification of tumor angiogenic hotspots
by the detection of microvessels in IHC stained histology images only [8]. Most
recently, a fully convolutional neural network (FCN) based method for microves-
sel detection in H&E stained images is presented [16]. However, the methods for
microvessel segmentation particularly in H&E stained images are limited.

In this paper, we present a framework for precise segmentation of microvessels
in H&E stained histology images at multiple scales and resolutions by using an
uncertainty aware spatial pyramid pooling deep neural network architecture. The
Deeplabv3+ [4] architecture is extended by using an improved dice coefficient
minimization based custom loss function and by accounting for the uncertainty
of a prediction. The proposed network aims to solve the key challenges posed
by automated microvessel segmentation. The method uses a modified Aligned
Xception model [5] followed by an atrous spatial pyramid pooling (ASPP) unit
[3] for feature extraction at multiple scales. This overcomes a major challenge
of segmenting vessels of various sizes. Moreover, despite achieving state-of-the
art performance in semantic segmentation, the deep networks typically do not
inherently model the segmentation uncertainty. For this purpose, we apply ran-
dom transformations to the images during test time, as a method to generate
the approximate predictive distribution. Taking the average of these predictions
of transformed images yields a superior segmentation and enables us to observe
ambiguous areas, where the network is uncertain in a decision. The method-
ology is evaluated on 1167 images of size 512x512 pixels, extracted from 13
WSIs of oral squamous cell carcinoma (OSCC) tissue at 20x magnification, and
demonstrated promising results. Moreover, the proposed network achieves state-
of-the-art performance compared to current semantic segmentation deep neural
networks (FCN-8 [9], U-Net [11], SegNet [1] and DeepLabv3+ [4]).

2 Proposed Method

We propose a framework for the segmentation of microvessels in H&E stained
histology images. The framework extends the DeepLabV3+ network architec-
ture by utilizing a modified Aligned Xception with ASPP and a custom loss
function for precise segmentation. Moreover, the framework also incorporates
random transformations at test time to account for the uncertainty of a pre-
diction, as shown in Fig. 2. A substantially deep network is needed for mean-
ingful feature extraction. Traditional convolutional neural network architectures
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Fig. 2. The Proposed Framework: The legend represents the color coding of various
types of convolutional layers. The values inside the blocks represents the depth of cor-
responding feature map. In ASPP Unit, the value in brackets denotes the dilation rates
of 6, 12 and 18. To obtain the prediction uncertainty map, Random Transformation
Sampling at test time is applied. The network uses custom loss function based on
minimization of ve of Dice Similarity Coefficient.

(AlexNet, VGG, Google Net, ResNet e.t.c.) used for image classification has in-
herited limitations to model geometric transformations due to fixed geometric
structures in their building modules. Moreover, these networks use a hierarchical
combination of maxpooling and convolutions to increase the receptive field size.
This results in loss of image information which may be very significant for precise
object segmentation. In order to deal with these issues, the feature extraction
process should be invariant to geometric transformations and retain the low level
image information. The Xception model [5] has demonstrated promising perfor-
mance in image classification task on ImageNet in terms of speed and accuracy.
Xception has been modified to incorporate geometric transformations modeling
capability for feature extraction. Further to this, Chen et al. [4] proposed the
replacement of all max pooling operations with depthwise separable convolu-
tions with striding. This allows the application of atrous separable convolutions
for multiscale feature extraction at arbitrary resolution. Atrous convolution is
an extension of the standard convolution operation, which provide us with the
ability to explicitly control the resolution of features computed by deep convolu-
tional neural networks and adjust filters receptive field for capturing multiscale
information. The use of separable convolutions reduces the number of convolu-
tional parameters, hence increasing the computational efficiency. Subsequntly,
this is more suitable for processing of multi giga pixel WSIs.

Inspired from [4], we have use modified Aligned Xception model for microves-
sel feature extraction at multiple scales and resolution with geometric deforma-
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tion invariance. Incorporating multiscale and geometric transformation invariant
features allow us to perform accurate microvessel segmentation. Atrous spatial
pyramid pooling [3] with varying dilation rates (6, 12 and 18) is applied at the end
of the encoder, to aggregate the multilevel features. This pooling module allows
our proposed network to segment microvessels of varying shape and sizes. Global
average pooling has been used to incorporate the global level context. Moreover,
a 1x1 convolution is performed before each operation, followed by a dropout
layer and another 1x1 convolution for dimensionality reduction. The features
from each dilation operation is concatenated to give a powerful representation
of high level image contextual information. The low level image information for
precise delineation of microvessel boundaries is taken from the shallow layers of
the deep network and concatenated with the feature map obtained after bilinear
upsampling by a factor of 4. The feature map size is illustrated at each block
level. The output is upsampled twice by a factor of 4 to obtain the final output
after applying the softmax layer. We have used the loss function τDSC based
on minimizing the negative of dice similarity coefficient (DSC) for training the
network. The custom loss function is explained in Eq. 1

τDSC = −
2
∑n

i=1
ypya∑n

i=1
yp +

∑n

i=1
ya

(1)

where, yp represents the value of softmax predicted segmentationmap ∈ [0, . . . , 1],
and ya is the ground at each pixel i.

Traditional deep learning models are capable of learning discriminative fea-
tures and have the ability to accurately map the high dimensional input data
to expected output. However, the models do not quantify that how certain the
model is its prediction. A Bayesian approach in machine learning can model the
uncertainty, but current deep learning models do not represent the prediction
uncertainty. Recently, a number of methods for uncertainty quantification by
estimating the posterior distribution have been proposed [6]. We estimate the
model uncertainty by applying random transformations [7] to the test input im-
ages. With this we are able to capture the noise inherent in the input data and
visualize the regions where the segmentation network is uncertain in its predic-
tion. To obtain the predictive distribution, we apply a random transformation
δ(x) to a set of m images, where δ performs median blur, Gaussian blur, rotation,
flipping or Gaussian noise. Taking the mean of this ample gives the refined pre-
diction and the variance within the sample gives the uncertainty in prediction.
The prediction and the uncertainty can be defined as;

µ = −
1

m

m∑

i

f(δi(x);W ) ; σ = −
1

m

m∑

i

f(δi(x);W − µ)2 (2)

where, µ is the prediction of microvessel segmentation, σ is the prediction uncer-
tainty and m in the number of applied transformations. δi denotes the random
transformation applied to the input image x. Taking the average of the prediction
of transformed images give better segmentation.

3 Experiments and Results
3.1 Materials
We have used a set of 1167 image tiles of size 512x512 pixels taken from 13
H&E stained WSIs of OSCC tissue at 20x magnification. The ground truth
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Table 1. Quantitative performance measures of miscrovessel segmentation, compared
with FCN-8[9], U-Net[11], SegNet[1] and DeepLabv3+ [4].

Jaccard Index DSC Accuracy Sensitivity Specificity Precision Recall

FCN-8 0.8562 0.9225 0.9612 0.9086 0.9791 0.9368 0.9086

U-Net 0.8561 0.9225 0.9616 0.9010 0.9818 0.9442 0.9017

SegNet 0.8431 0.9148 0.9569 0.9100 0.9729 0.9524 0.8854

DeepLabv3+ 0.8741 0.9329 0.9667 0.9085 0.9834 0.9540 0.9089

Proposed 0.8851 0.9390 0.9694 0.9261 0.9862 0.9558 0.9225

for microvessels is validated by two independent pathologists. The dataset is
split into training, validation sets such that 686 training and 226 validation
images are obtained from 10 WSIs. The test set is comprises of 255 images
taken from remaining 3 WSIs. The training and validation images are augmented
with random rotation, elastic distortion, random flip, median blur and Gaussian
blurring.

3.2 Experimental Settings

The framework is implemented in Keras 2.2 with TensorFlow backend and
trained on workstation equipped with Nvidia GeForce GTX 1080 Ti for 175
epochs (35000 iterations). We have used Adam optimizer, the learning rate was
initialized at 10-4, the input image to the network is 512x512x3 and the batch
size is 2. As explained in section 2, we have used a custom loss function based
on minimizing the dice score.

3.3 Evaluation

The model is quantitative evaluated using Jaccard index, Dice Similarity Coef-
ficient (DSC), Accuracy, Sensitivity, Specificity, Precision and Recall. Further-
more, several state-of-the-art segmentation methods including FCN-8 [9], U-Net
[11], SegNet [1] and DeepLabv3+ [4] are implemented for comparative analysis,
which is presented in Table 1.

4 Discussion and Conclusion
Microvessels in H&E stained histology images display a high level of hetero-
geneity with respect to their size, shape, texture, and luminal red cells density.
Fig. 3 shows the visual results of four challenging cases in microvessel segmen-
tation. Fig. 3(a,b) shows a vessel partially filled with red cells. U-Net is unable
to segment the microvessel region where red cells are not present whereas Seg-
Net, FCN-8 and DeepLabV3+ manage to segment the microvessel but with low
confidence. In contrast, the proposed method segments the complete vessel with
high confidence. The misdetections of variable sized microvessels and the seg-
mentation microvessels located in close proximity are the other challenging case,
illustrated in Fig. 3c and Fig. 3d respectively. FCN-8, U-Net and DeepLabv3+
are unable to segment small vessels Fig. 3c and the SegNet merged the two
closely located by vessels into one large vessels (Fig. 3d). The proposed method
successfully segments the vessels belonging to these challenging cases. The pro-
posed method achieves a superior performance for all evaluation measures as
illustrated in Table 1. Although, the quantitative performance gain may not ap-
pear notably significant, the visual results illustrated in (Fig. 3) show that the
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Fig. 3. Visual illustration of microvessel segmentation results shown as miscrovessel
prediction heatmap obtained by FCN-8[9], U-Net[11], SegNet[1], DeepLabv3+[4] and
the proposed approach, overlaid on the original images. The miscrovessel boundary is
marked on the original images in the 1st column.

proposed framework successfully localizes and segments the microvessels of dif-
ferent shapes and sizes with mercurial density of red cells. The segmentation of
microvessels in the histology images is the first step in automated quantification
of LVI and estimation of tumor angiogenesis. In routine pathological practice,
the microvessels can be identified using IHC stained histology images with as-
sociated time and cost implications. We have present a method for the precise
segmentation of microvessels in H&E stained histology images. The proposed
method uses a modified aligned Xception model, atrous spatial pyramid pooling
and a customized dice coefficient minimization based loss function to segment
microvessels of various shapes and size. Random transformations at test time
are used to incorporate the predictive uncertainty. Taking the average of these
predictions gives a superior segmentation. The visual results and quantitative
performance measures illustrate that the proposed method is able to precisely
segment the microvessels in challenging cases.
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