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Abstract 

1.      Forest-grassland mosaics, with abrupt boundaries between the two vegetation types, 

occur across the globe. Fire and herbivory are widely considered primary drivers that main-

tain these mosaics by limiting tree establishment in grasslands, while edaphic factors and 

frosts are generally considered to be secondary factors that reinforce these effects. However, 

the relative importance of these drivers likely varies across systems. In particular, although 

frost is known to occur in many montane tropical mosaics, experimental evidence for its role 

as a driving factor is limited.  

2.      We used replicated in-situ transplant and warming experiments to examine the role of 

microclimate (frost and freezing temperatures) and soil in influencing germination and seed-

ling survival of both native forest trees and alien invasive Acacia trees in grasslands of a trop-

ical montane forest-grassland mosaic in the Western Ghats of southern India. 

3.      Seed germination of both native and alien tree species was higher in grasslands regard-

less of soil type, indicating that germination was not the limiting stage to tree establishment. 

However, irrespective of soil type, native seedlings in grasslands incurred high mortality fol-

lowing winter frosts and freezing temperatures relative to native seedlings in adjoining for-
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ests where freezing temperatures did not occur. Seedling survival through the tropical winter 

was thus a primary limitation to native tree establishment in grasslands. In contrast, alien 

Acacia seedlings in grasslands incurred much lower levels of winter mortality. Experimental 

night-time warming in grasslands significantly enhanced over-winter survival of all tree seed-

lings, but increases were much greater for alien Acacia than for native tree seedlings.  

4. Synthesis: Our results provide evidence for a primary role for frost and freezing tempera-

tures in limiting tree establishment in grasslands of this tropical montane forest-grassland 

mosaic. Future increases in temperature are likely to release trees from this limitation and fa-

vour tree expansion into grasslands, with rates of expansion of non-native Acacia likely to be 

much greater than that of native trees. We suggest that studies of frost limitation to plant es-

tablishment are needed across a range of tropical ecosystems to re-evaluate the general im-

portance of frost as a driver of vegetation transitions in the tropics. 

 

Keywords: Acacia, abrupt transition, climate change, determinants of vegetation structure, 

shola-grasslands, Nilgiris, Western Ghats 

 

Introduction 

Mosaics of forest and grassland patches, with abrupt transitions between the two, are a recur-

rent feature of vegetation across the globe (Bond & Parr, 2010; Parr, Lehmann, Bond, Hoff-

mann, & Anderson, 2014). Such mosaics are found in regions characterized by contrasting 

climatic and edaphic conditions ranging from the Afromontane forest-grassland mosaics of 

Malawi and Madagascar, the Shola-grassland mosaics of the Western Ghats in India, the 

Patanas in Sri Lanka and the South Brazilian Campos, to the grassy balds of Australia and 
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South Appalachia in North America ( Bond, Silander, Ranaivonasy, & Ratsirarson, 2008; 

Delcourt & Delcourt, 1997; Meadows & Linder, 1993; Moravek, Luly, Grindrod, & Fairfax, 

2013; Overbeck et al., 2007; Pemadasa, 1990; Pemadasa & Amarsinghe, 1982; Thomas & 

Palmer, 2007; Webb, 1964). The existence of these forest-grassland mosaics has been long 

debated (Bond et al., 2008; Meadows & Linder, 1993; Moravek et al., 2013; Overbeck et al., 

2007; Thomas & Palmer, 2007; Weigl & Knowles, 2014) as their occurrence contradicts the 

conventional ‘one climate-one biome’ view of a single climax vegetation community for a 

given climate (Bond, 2005; Clements, 1936; Moncrieff, Bond, & Higgins, 2016; Staver, 

Archibald & Levin, 2011a). Interestingly, most of these mosaics occur under climates where 

global biome distribution models predict the existence of forests and not grasslands (Bond, 

2008; Bond, Woodward, & Midgley, 2005; Olson et al., 2001; Whittaker, 1975). Why, then, 

are trees unable to establish in these grasslands?  

 

Ecologists have invoked a range of different explanations for the absence of trees in the 

grasslands of these mosaics. A historical view has been that these grasslands are anthropo-

genic in origin, having arisen as a result of human clearing of forests, resulting in the mosaics 

observed today (Bond & Parr, 2010; Joshi, Sankaran & Ratnam, 2018; Thomas & Palmer, 

2007).  However, paleo-ecological evidence and the levels of endemism in these grasslands 

indicate that many of these mosaics are in fact ancient ecosystems that pre-date human pres-

ence and so are unlikely to be anthropogenic in origin (Bond et al., 2008; Dumig, Schad, 

Rumpel, Dignac, & Kogel-Knabner, 2008; Karunakaran, Uniyal, & Rawat, 1998; Meadows 

& Linder, 1993; Overbeck et al., 2007; Parr et al., 2014; Pemadasa & Amarasinghe, 1982; 

Premathilake, 2012; Sukumar, Ramesh, Pant, & Rajagopalan, 1993). An alternate mechanism 

frequently invoked to explain the maintenance of mosaics of closed forests and open grassy 

vegetation is fire (Bond et al., 2005; Bond & Parr, 2010; Hirota, Holmgren, Van Nes, & 
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Scheffer, 2011; Staver et al. 2011a;  Staver, Archibald & Levin, 2011b).  Fires are a common 

occurrence in grasslands, but rarely spread into forests.  By killing tree seedlings and promot-

ing grasses, fires can generate a feedback loop that limits tree seedling establishment only to 

forest patches and not grasslands, thereby reinforcing boundaries between these vegetation 

types (Blanco et al., 2014; Bond, 2008 ; Bond & Parr, 2010; Bor, 1938; Delcourt & Delcourt, 

1997; Fairfax et al, 2009; Fensham & Fairfax, 1996; Meadows & Linder, 1993; Overbeck et 

al., 2007; Parr et al., 2014; Phipps & Goodier, 1962; Weigl & Knowles, 2014). However, the 

notion that ‘natural’ self-sustaining fire regimes of sufficient magnitude and frequency to 

maintain open grasslands can emerge in the absence of any human intervention remains de-

bated (Veenendaal et al., 2018). 

 

Besides humans and fires, frost has also been previously invoked as a potential factor main-

taining forest-grassland mosaics (Meher-Homji, 1965, 1967; Ranganathan, 1938).  Tropical 

woody species do not tolerate freezing, and are often killed at temperatures below -1°C (Sa-

kai & Larcher, 1987).  Because the occurrence and impacts of frost are typically greatest in 

open grassy areas compared to closed-canopy forest patches, frost can act to reinforce exist-

ing spatial patterns of tree cover and contribute to the maintenance of forest-grassland or for-

est-savanna mosaics in landscapes (Devaney, Lehmann, Feller, & Parker, 2017; Hoffmann et 

al., 2018).  Although recent evidence suggests that occasional frosts can reinforce demo-

graphic bottlenecks to tree seedling establishment imposed by other drivers such as fire and 

herbivory (Hoffmann et al. 2018; Holdo, 2006; Wakeling, Cramer, & Bond, 2012), whether 

and when frosts by themselves can maintain forest-grassland mosaics remains unclear.  Frost 

was first suggested as a potential mechanism maintaining forest-grassland mosaics nearly 80 

years ago (Ranganathan, 1938), but to date, there have been no experimental tests of the same 

that we are aware of.  
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In addition to frost, it has also been argued that edaphic factors may be important drivers in 

maintaining forest-grassland mosaics, with grasslands expected to occur on shallow soils 

with low nutrient levels and low water holding capacity (Fensham & Fairfax, 1996; Jose, 

Sreepathy, Kumar, & Venugopal, 1994; Meadows & Linder, 1993; Overbeck et al., 2007).  

There is evidence to suggest that soil nutrients (organic C, total N and P), soil moisture con-

tent and soil pH tend to be higher in forest patches compared to adjacent grasslands or savan-

nas (Dantas, Batalha, & Pausas, 2013; Jose et al., 1994; Jose, Gillespie, George, & Kuma, 

1996; Raghurama, 2013), but such differences are likely to both result from, and drive, dif-

ferences in forest and grassland vegetation states. At present, the extent to which edaphic fac-

tors act as drivers of the occurrence and maintenance of forest-grassland mosaics remains un-

clear. 

 

Here, we experimentally examined the role of micro-climate and soils in regulating the estab-

lishment of native trees in grasslands of a tropical montane forest-grassland mosaic in the 

Western Ghats biodiversity hotspot in India. Locally known as shola-grasslands, multiple ex-

planations have historically been invoked for the absence of native trees from the grasslands 

of these mosaics. Early observers suggested limitation of trees by frosts which were observed 

to occur in the grasslands (Meher-Homji, 1965, 1967; Ranganathan, 1938). Likewise, fire 

(Bor, 1938; Chandrasekharan, 1962; Gupta, 1960 a,b; Noble, 1967) and mammalian 

herbivory (Bor, 1938), both of which were associated with the grassland state, were implicat-

ed in the maintenance of the mosaic. Potential differences in soil properties were also in-

voked (Ranganathan, 1938), with more recent work documenting greater soil organic C, total 

C, total N, available P and soil moisture in sholas relative to grasslands (Jose et al., 1994, 

Raghurama, 2013). At the current time, these mosaics are severely threatened by the invasion 

of alien plant species (Arasumani et al., 2019; Thomas and Palmer, 2007; Srinivasan, 2012), 
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particularly a non-native plantation tree, Acacia mearnsii, into the grasslands. Planted for for-

estry purposes since the early nineteenth century in this landscape (Joshi et al., 2018), these 

trees are able to establish and survive in grasslands, in contrast to native shola tree species. 

Specifically, we asked the question: What factors maintain this landscape mosaic where na-

tive tree species are unable to establish in adjoining grasslands but an alien invasive tree spe-

cies is able to do so?  

 

Study site 

The study was carried out in the upper plateau (11.2 - 11.4° N and 76.4 - 76.6°E) of the 

Nilgiri Biosphere Reserve, Tamil Nadu, which is a part of the Western Ghats biodiversity 

hot-spot in southern India (Fig. 1; Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 

2000).  Elevation at the site ranges from 2000 to 2500 m a.s.l.  Annual rainfall in the area 

ranges from 2500-5600 mm (Caner, Seen, Gunnell, Ramesh, & Bourgeon, 2007; Zarri, 

Rahmani, Singh, & Kushwaha, 2008), the bulk of which falls during the Asian southwest 

monsoon, between April and September. Mean annual temperature is around 15°C (Range: -

2.1to 29oC;  IMD:1969-2005), and frosts are common occurrences in the tropical winter (~15 

frost nights with night-time temperatures dropping as low as -4°C in January were observed 

during the winter in our study).   

 

Soils of the study area are derived from parent rocks which are gneiss, charnockites and 

schists (Sukumar et al., 1993). Top soils of both shola forests and grasslands vary in colour 

from pale brown to black. Shola soils have higher total carbon and nitrogen content than 

grasslands (Raghurama, 2013). Grassland soils are less moist, more compact (Mean bulk 
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density: Grassland = 0.71g/cm³, Shola forest = 0.54g/cm³) and slightly lower in their clay 

content than shola soils (Mean clay content: Grassland = 10.76%, Shola forests = 13.53%; 

see Table S1 for detailed description of soil properties).  

 

The natural vegetation of the area is a two-phase mosaic comprising patches of stunted tropi-

cal evergreen forests, locally referred to as ‘sholas’, embedded in a grassland mosaic. Large-

scale planting of alien trees including A. mearnsii, Eucalyptus spp. and Pinus spp. in grass-

lands during the last century has, however, resulted in large sections of grassland being con-

verted to exotic tree plantations (Joshi et al., 2018). Importantly, of these planted species, A. 

mearnsii has since invaded large tracts of native unplanted grassland.  

 

Methods 

Between June 2013 and February 2015, we conducted a series of experiments to investigate 

how soil, habitat type and micro-climatic differences, specifically temperature, influenced the 

germination success and seedling survival of native shola tree species as well as the invasive 

A. mearnsii in both grassland and forest patches at our study site. 

 

GERMINATION EXPERIMENT 

Between June and August 2013, we carried out a 2×2 factorial experiment involving two hab-

itat treatments (forest patches vs. grassland) and two soil treatments (forest soil vs. grassland 

soil) to investigate the effects of soil properties and differences in micro-climate between 

grassland and forest patches on the germination success of a native tree species Syzygium 

grande as well as the alien invasive A. mearnsii. We timed our experiment to coincide with 
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the typical germination period of trees in this system (i.e. during the southwest monsoon from 

June to August in 2013). Seeds of native S.grande as well as the invasive A. mearnsii were 

collected from adjoining sites during the first week of June 2013. Although we would have 

ideally liked to include more native tree species in this experiment, shola trees display high 

inter-annual variability in seed production ( AA Joshi, personal observation; D Mudappa, 

personal  communication), and we were unable to get sufficient seeds from other species dur-

ing 2013 to include in our experiment. 

 

We selected 14 replicate forest patches and paired adjacent grassland sites for our experi-

ment. Forest patches were matched for size (~0.4ha) and aspect.  At each site, we placed two 

trays – one filled with soils collected from the grassland and the other with soils collected 

from within shola forest patches – both inside the forest patch and in the adjacent open grass-

land. Each tray contained 25 mature seeds of each of the two focal plant species. Seed loca-

tions were marked with labels on germination trays for ease of identification during monitor-

ing and all trays covered with a wire mesh to prevent seed predation. Seed germination was 

monitored weekly for a total of 90 days.  

 

The roles of microclimate and soil on seed germination were analyzed using a mixed effect 

model with binomial errors and a logit link function in the lme4 package in R (Bates, 

Maechler, Bolker, & Walker,  2014; R Core Team, 2016).  Microclimate and soil were treat-

ed as fixed effects and site was included as a random effect. P-values were obtained by likeli-

hood ratio tests of the model with the effect in question against the model without the effect 

in question. 



 

This article is protected by copyright. All rights reserved. 

SEEDLING SURVIVAL EXPERIMENT 

In the next experiment, we evaluated how soil and micro-climatic differences between shola 

forest and grassland patches influenced subsequent seedling survival of both native and alien 

tree species.  We transplanted seedlings of both native S.grande and A. mearnsii that had 

germinated in the previous experiment into six litre black polythene nursery bags containing 

the same soil medium as their germination trays i.e. either forest or grassland soil.  We chose 

two replicate shola-forest and paired adjacent grassland sites for this experiment. At each site, 

ten seedlings of each species were transplanted into nursery bags containing either forest or 

grassland soil media, and placed in grasslands as well as in the adjoining forest patches.   

 

Seedlings of both focal species at one of the sites in grassland were destroyed by elephants 

(Elephus maximus) during the first week of the monitoring period. After reallocation of seed-

lings, this site had only five seedlings per soil type per microclimate for the rest of the moni-

toring period. There were no fires at the sites, nor were any signs of mammalian herbivory 

recorded on seedlings during the monitoring period. Our final sample sizes included 30 seed-

lings per species per treatment. Seedling survival was monitored every 15 days for eight 

months, from October 2013 to June 2014, of which October to January were the coldest 

months.  

 

Kaplan-Meier survival functions were computed to analyze seedling survival over time using 

the survival package in R. The survival distributions of two focal groups were compared us-

ing non-parametric logrank test – a method used to compare survival distributions when data 

are right skewed and censored (Therneau, 2015).  
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FREEZING TEMPERATURE – SEEDLING SURVIVAL EXPERIMENT 

During 2014-15, we also carried out an additional manipulative experiment to investigate if  

freezing temperatures limit the establishment of tree species in these grasslands. Seedlings of 

five common native tree species – Cinnamomum wightii, Glochidion neilgherrense, Syzygium 

calophyllifolium, Syzygium densiflorum and S. grande - and the alien invasive A. mearnsii 

were used for the study. These five species (out of 57 native shola tree species) account for 

~20% of tree abundance in sholas across  the study area (Mohandass & Davidar, 2009).  

Seeds of all species were collected from the field prior to the experiment between (15 May 

and 30 June), germinated in a greenhouse, and transported to one of the protected shola for-

ests in the field when three to four  months old. Transportation was done overnight in a semi-

closed vehicle to avoid seedlings becoming heat stressed. Seven days after transportation to 

the field, seedlings were transplanted into six litre nursery bags at the same site and allowed 

to acclimatize to the field environment for a month. 

 

We used in-situ experimental night-time warming treatments to examine the role of low tem-

peratures in limiting the establishment of tree seedlings in grasslands. Three replicate grass-

land blocks, each 10 m × 20 m in size, and separated from one other by at least 100 m, were 

identified and fenced off.  One block was located at the valley bottom, the second at mid-

slope, and the third on the hill crest.  Within each fenced block, we demarcated eight replicate 

plots (1.5 m×3 m), four of which were randomly assigned the experimental warming treat-

ment and four of which served as control plots. In each plot, nursery bags containing seed-

lings of both native tree species and A. Mearnsii were placed in 30cm deep pits to ensure that 

the soil surface in seedling bags matched the ground level. Because of differences in germi-

nation success, our final sample sizes differed between species. Each replicate plot, both 

warmed and control, contained seven C. wightii, six S. calophyllifolium, four S. densiflorum 
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and seven A. mearnsii seedlings. Because of low seedling numbers for S. grande and G. 

neilgherrense, we were only able to have four seedlings of each species in two and seven rep-

licate plots of both control and experimental warming treatments, respectively. Experimental 

night-time warming was achieved through the use of thermal blankets (Coleman Emergency 

Blanket, 53×32 inch) that were pasted on plastic sheets and placed on scaffolds to cover ex-

periment plots between 5 pm in the evening and 8 am the next morning. However, the seed-

lings were not covered on two nights during the course of the study: once because of logisti-

cal reasons and the second time due to high winds that blew away the blankets. Seedling sur-

vival and soil moisture in seedling bags in control and experimentally warmed plots were 

monitored every alternate day and weekly respectively, during the peak of winter, from 3 De-

cember 2014 to 2 February 2015.  

 

Temperature data loggers (DS 1921G-F5 thermochrons, Homechip Ltd.) were deployed to 

record temperature every 30 minutes in both control and experimental warming plots.  In ad-

dition, we also measured temperatures in the interior of forest patches, at the forest-grassland 

edges, and in the open grasslands to quantify natural variation in temperatures across the mo-

saic.   

 

Kaplan-Meier survival analysis and log rank tests were used for statistical analyses as de-

scribed in the previous section. All statistical analyses were performed using R statistical 

computing software (R Core Team, 2016). 
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Results 

ROLE OF MICROCLIMATE AND SOIL IN SEED GERMINATION   

Contrary to our expectations, germination success of both native S. grande and the alien A. 

mearnsii was higher in grasslands when compared to adjoining forest patches (Fig 2a; S. 

grande:  Ȥ² = 44.642, df = 1, P <0.001; A. mearnsii: Ȥ² = 45.611, df = 1, P<0.001).  Soil type 

had no effect on germination success of either species in both grassland and forest habitats 

(Fig 2b, S. grande: Ȥ² = 0.32, df = 1, P = 0.57; A. mearnsii: Ȥ² = 0.13, df = 1, P = 0.72). Over-

all, germination success of A. mearnsii was almost three times higher than the native S. 

grande, irrespective of microclimate and soil type (Mean germination: A. mearnsii = 13.8% 

(SE =1.3), S. grande = 4.8% (SE = 0.6)).  

 

ROLE OF MICROCLIMATE AND SOIL IN SEEDLING SURVIVAL 

Over-winter survival of native S. grande seedlings in grasslands was extremely low, and 

nearly all seedlings (89%) were dead by the end of the winter (Fig. 3a). Survival of S. grande 

seedlings within forest patches, on the other hand, was much higher, with nearly 77% of 

seedlings surviving the winter (Fig. 3a; logrank test: P < 0.001). Soil type did not have any 

effect on survival of S. grande in either grasslands or forest patches (P = 0.93).  In contrast, 

A. mearnsii seedling survival did not differ appreciably between the micro-climates as well as 

between the soil types (Fig. 3b; microclimate: P = 0.236, soil: P = 0.766).  

Overall, A. mearnsii seedling survival (50%) was much higher than that of native S. grande 

seedlings in grasslands (P < 0.001) as well as in both soil types (grassland soil: P = 0.027; 

shola soil: P = 0.039). However, survival within forest patches did not differ between species 

(P = 0.25).  
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ROLE OF FREEZING TEMPERATURES IN TREE SEEDLING SURVIVAL IN GRASS-

LANDS 

Night-time temperatures in the experimental warming treatments were approximately 3 to 

4°C higher than that of adjacent control plots during the experiment (Mean night-time tem-

perature: Control: 8.1°C, Warming: 11.7°C; Range: Control: -4.5 to 24.5°C, Warming: -2.5 

to 24.5°C). In control plots, we noted the occurrence of frost on 15 mornings when tempera-

tures during the previous night had dropped below 0°C (Fig.4a), whereas we observed frost 

in experimental warming plots only on the two nights when the thermal blankets were not in 

place (see Methods).  In contrast, winter temperatures within forest patches did not fall below 

freezing, with mean night-time temperatures averaging 9.8°C (range: 5.6 to 14.1°C) across 

the duration of the experiment. Over the course of the study, temperatures within forests and 

at forest edges never dropped below 0°C, whereas temperatures below zero were recorded on 

six nights in adjacent grasslands (Fig. 4b). 

 

Seedling survival in control and experimental warming treatments 

Survival of both native species and Acacia was significantly higher in experimentally 

warmed plots than in control plots (Fig. 5a & b, P<0.001; see supplementary Fig. S1 for re-

sponses of each native species individually).  In both warmed and control plots, the alien in-

vasive A. mearnsii had significantly higher survival rates than native species (Fig. 5a & b; 

both control & experimental warming: P < 0.001).  
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Although seedling survival of both native species and A.mearnsii was higher in warmed rela-

tive to control plots across all site locations, seedling survival in control plots was higher at 

hill-top compared to mid-slope and foot-slope locations (P < 0.001; supplementary Fig. S2), 

consistent with lower frequencies of frost nights and higher minimum temperatures experi-

enced at hill-top sites (supplementary Table S1).   

 

Discussion 

Our results demonstrate that frosts and freezing night-time temperatures that occur during the 

winter kill native tree seedlings in grasslands, and thereby maintain this tropical montane for-

est-grassland mosaic system. Further, our results suggest that seedling establishment rather 

than seed germination is likely the primary demographic bottleneck to native tree establish-

ment in these grasslands. Although earlier studies have suggested a role for edaphic differ-

ences in maintaining these forest-grassland mosaics (Jose et al., 1994), we found no evidence 

for this, with germination and seedling survival of native species being comparable across 

grassland and forest soils within each micro-climate.  Although we do not have comprehen-

sive data on soil properties, which limits our inferences, these results suggest that differences 

in soil texture, bulk density, organic matter content and nutrient availability between forest 

and grassland patches (Table S1; Jose et al., 1994; Raghurama, 2013) are more likely to be a 

consequence of differences in aboveground vegetation characteristics between these two hab-

itat types, rather than the underlying driver maintaining forest-grassland mosaics in this sys-

tem. 
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In contrast to native seedlings, the higher germination rates and greater tolerance of non-

native A. mearnsii seedlings to frosts and freezing temperatures underlie the ongoing wide-

spread invasion by this species into the grasslands.  Experimentally elevated night-time tem-

peratures enhanced seedling survival of both native tree and alien A. mearnsii seedlings, sug-

gesting that climate warming will promote both shola expansion and increased exotic inva-

sion into the grasslands. However, the increase in survival with warming is much greater for 

A. mearnsii relative to native seedlings, and combined with the greater fecundity of this spe-

cies, suggests that climate warming will disproportionately accelerate grassland invasion by 

A. mearnsii. 

 

The high germination rate of Syzygium grande, a dominant native shola species, in grasslands 

establishes that germination was not the limiting stage for the establishment of this native 

species in grasslands. We were constrained to this species by lack of fruiting of other species 

in the year the experiment was conducted. Many shola tree species fruit supra-annually such 

that only a few species may produce seeds in any given year (see Methods). Anecdotally, 

across the period of this study, we routinely observed germination and very young seedlings 

of various shola tree species, typically during and post-monsoon, in the grasslands, whereas 

we rarely saw established seedlings or saplings. These observations support the results from 

our experiment with S.grande, that germination per se may not be a primary limiting stage 

for native tree establishment in grasslands.  

 

Studies across a range of tropical forest-grassland mosaics have postulated and/or demon-

strated a major role for fires and herbivory in maintaining these mosaics (Bond& Keeley 

2005; Bond & Parr, 2010; Bor, 1938; Dumig et al. 2008; Fairfax et al., 2009; Fensham & 
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Fairfax, 1996; Karunakaran et al., 1998; Meadows & Linder, 1993; Noble, 1967; Overbeck et 

al., 2007; Srinivasan, 2012). Fires and mammalian herbivory, both of which are frequent in 

grasslands, but rare in forests, impose mortality on tree seedlings in grasslands and thereby 

allow the grasslands to persist. In our study system however, the chronological sequence of 

these disturbances points to frost and freezing temperatures as the primary drivers of native 

tree seedling mortality in these grasslands. Germination at our site occurs during the south-

west monsoon (June -September) and tree seedlings die due to frost during the winter (Octo-

ber-February) that follows the monsoon. Fires, if  any, occur in the dry season and summer 

following the winter (February-May) by which time most seedlings have already perished 

from winter frost and freezing. Further, while frost occurs predictably during the winter 

months at this site, fires are both much rarer and less predictable. There were no fires in the 

grasslands at our study site for five years (2012-2016). Despite this, we found no established 

native tree seedlings in the grassland during this period, confirming that frost and freezing 

temperature are the primary limiting factors to native tree establishment in the grasslands of 

these shola-grassland mosaics. 

 

The sharp difference in minimum temperatures across the forest-grassland edge points to a 

significant role for temperature regimes in the abrupt transitions between forests and grass-

lands in this mosaic. Closed forest patches maintain higher interior temperatures such that 

frosts cannot penetrate, thereby allowing frost-sensitive seedlings to persist. The sharp drop 

in temperature away from the forest edge results in frost occurring immediately outside the 

edge, preventing trees from invading the open grassland. These positive feedbacks between 

closed-canopy forests and warmer temperatures and open grasslands and freezing tempera-

tures potentially maintain and reinforce the abrupt edge between forest and grassland states.  
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Not surprisingly, the role of frosts and low temperatures as drivers in sub-tropical and tem-

perate forest-grassland transitions and treelines, either by themselves but also in concert with 

grass competition, fire and herbivory has been well documented (Ball, Hodges & Laughlin 

1991; Cairns & Moen, 2004; Coop & Givnish, 2007, 2008; Moore & Williams, 1976; 

Wardle, 1971). In these systems which experience low and freezing temperatures regularly, 

trees do display some degree of cold tolerance, but tree seedling growth is nevertheless re-

tarded by low temperatures and frost damage, which then renders them susceptible to elimi-

nation by grass competition, fire and herbivory (Coop & Givnish, 2008). In contrast, although 

frosts and freezing temperatures do occur in many montane and semi-arid tropical ecosys-

tems, they have not received as much attention as drivers of ecosystem boundaries. For most 

tropical forest-grassland and forest-savanna mosaics, vegetation-disturbance feedbacks with 

fire and herbivory are widely thought to be the primary mechanisms generating and maintain-

ing the transitions between ecosystem states (Bond, Dickinson & Mark, 2004; Bond & Parr, 

2010; Dantas et al., 2013, Dantas, Hirota, Oliveira, Pausas, 2016; Hoffmann et al., 2012; 

Ratnam et al., 2011; Staver et al., 2011a,b). Where frost does occur, it can reinforce the limit-

ing effects of fire and herbivory on tree establishment (Chafota & Owen-Smith, 2009; Hoff-

mann et al., 2018; Holdo, 2006; Wakeling et al., 2012).  When rare frost events of adequate 

severity occur, they can reduce tree cover both by slowing tree growth such that trees remain 

longer within the fire trap, and because frost-damaged trees act as added fuel that intensifies 

subsequent fires (Hoffmann et al., 2018). In our study system, frosts were both frequent and 

relatively mild, but nevertheless were the primary driver of tree mortality in grasslands, sug-

gesting that native shola tree species in this ecosystem were highly frost intolerant. This is 

supported by evidence that most ligneous species in native shola assemblages are derived 

from tropical lineages, whereas non-native species that can survive in grasslands often show 

temperate affinities (Meher-Homji, 1967; Sakai & Larcher, 1987). It is apparent that for trop-
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ical ecosystems, the importance of frost as a driver of vegetation transitions will hinge on 

both the frequency and intensity of the frost regime and the frost tolerances of the local spe-

cies assemblages in question. We suggest that empirical studies examining the role of low 

temperature and frost across a diverse range of tropical ecosystems will yield a revised and 

synthetic view on the relative importance of frost as a driver of alternate vegetation states in 

these regions.  

 

Paleoecological studies have established that the shola-grassland mosaics of southern India 

are Pleistocene relics that have been in existence for more than 20,000 years (Sukumar et al., 

1993; Sukumar, Suresh, & Ramesh, 1995). The relative extents of shola and grassland within 

these mosaics have naturally contracted and expanded with past climatic changes, with grass-

lands expanding during periods of lower temperature, precipitation and CO2 levels (Meher-

Homji, 1967; Sukumar et al., 1993, 1995). Here we add to this body of evidence, experi-

mental data on the role of frost and low temperatures in driving the balance between forests 

and grasslands in this tropical forest-grassland mosaic in the present day.  In this context, the 

introduction of non-native A. mearnsii into this ecosystem, a species drawn from temperate 

origins in south-eastern Australia and New Zealand (Courteau, 2011), has changed the bal-

ance between frost and tree recruitment in this ecosystem. With both higher seed germination 

potential and higher frost tolerance of its seedlings, as demonstrated in our experiments, A. 

mearnsii has successfully recruited and spread into the grasslands, with the result that the 

grasslands in these mosaics are today severely diminished relative to their extent in the eight-

eenth century (Joshi et al., 2018). A similar example of invasion by frost resistant Pinus 

elliottii in frost sensitive species assemblages has been reported from the Brazilian savannah 

biome (Abreu & Durigan, 2011). Furthermore, the enhanced survival of both native and alien 

Acacia tree seedlings with elevated night temperatures in our experiment suggests that the 
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grasslands in these mosaics will further contract with future climate warming. Unfortunately, 

the relatively higher survival of non-native Acacias relative to native tree seedlings at elevat-

ed temperature indicates that the ongoing Acacia invasion of grasslands will be further exac-

erbated as the climate warms.  
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Table and figure titles 

Main Manuscript 

Figure 1: a) The distribution of montane forest-grassland mosaics along the upper elevations 

of the Western Ghats, India, with the study area, the Nilgiri Plateau encircled (Reproduced 

with modification from Das, Nagendra, Anand & Bunyan, 2015). b) An image of an undis-

turbed mosaic landscape of stunted shola forests alternating with grasslands, with abrupt tran-

sitions between the two vegetation states (Credit: Prasenjeet Yadav). 
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Figure 2: Germination rates of a) native shola tree species Syzygium grande and b) alien inva-

sive Acacia mearnsii in different soil types and micro-climates (N = 14 sites). Germination of 

both species was significantly higher in grasslands than shola forests (P < 0.001) but  did not 

differ between soil types ( P > 0.05). However, in all cases, germination rates of A.mearnsii 

were significantly higher than S.grande (P<0.001). 

 

Figure 3:  Kaplan Meier survival curves of a) native tree Syzygium grande and b) alien inva-

sive Acacia mearnsii in forest and grassland micro-climates (Dotted lines denote 95% CI).  

S.grande incurred severe winter mortality in grasslands relative to forests (log rank test: 

P<0.001), and relative to A. mearnsii which incurred lower winter mortality in grasslands 

(log rank test: P<0.001). 

 

Figure 4: (a) Minimum night-time temperatures in control and experimentally warmed plots 

during the monitoring period. Freezing temperatures occurred on as many as 15 nights in 

control plots, whereas experimental warming treatments only experienced freezing on 2 

nights when thermal blankets were absent. (b) Minimum night-time temperatures in forest 

interiors, forest edges and in grasslands across the study period. Temperatures never dropped 

below freezing in forests and forest edges, whereas grasslands repeatedly experienced freez-

ing temperatures in the coldest month of January. 

 

Figure 5:  Kaplan Meier survival curves of a) all native species and b) alien invasive Acacia 

mearnsii (dotted lines denote 95% CI) in control and experimentally warmed plots through 

the tropical winter (3 December 2015 – 2 February 2016). Experimental warming significant-
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ly increased seedling survival of all native species relative to their survival in control plots, 

but this effect was even greater for invasive A. mearnsii which achieved nearly 100% surviv-

al in warmed plots. The responses of individual native species are detailed in Supplementary 

Figure S2.  

 

Supplementary Material  

Table S1: Soil properties of grasslands and shola forests at the study site. Shola soils were 

more moist, had higher total C and N, were less compact and more clayey than grassland 

soils.   

Table S2: Temperature regimes at hill-top, mid-slope and valley locations in the grassland 

across the duration of the warming experiment. Mean minimum temperatures were higher 

and the number of nights with freezing temperatures fewer at hill-top relative to mid-slope 

and valley locations. 

 

Figure S1: Kaplan Meier survival curves of four native species seedlings a) Cinnamomum 

wightii b) Glochidion neilgherrense c) Syzygium calophyllifolium d) Syzygium densiflorum 

(dotted lines denote 95% CI) in control and experimentally warmed plots. Warming signifi-

cantly increased seedling survival relative to control plots for all four species. A fifth native 

species, S.grande, showed the same trend but is not shown here due to the limited number of 

replicates.  

Figure S2:  Kaplan Meier survival curves of seedlings at hill-top, slope and valley locations 

in the a) Control and b) experimental warming treatments (dotted lines denote 95% CI).  
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