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Abstract—To improve photovoltaic (PV) hosting capacity of distribution networks (DN), this paper proposes a novel 10 

optimal static VAR compensator (SVC) planning model which is formulated as a two-stage stochastic programming 11 

problem. Specifically, the first stage of our model determines the SVC planning decisions and the corresponding PV hosting 12 

capacity. In the second stage, the feasibility of the first stage results is evaluated under different uncertainty scenarios of 13 

load demand and PV output to ensure no constraint violations, especially no voltage violations. In addition, we 14 

simultaneously consider the minimization of SVC planning cost and the maximization of PV hosting capacity by 15 

formulating a multi-objective function. To improve the computational efficiency, a solution method based on Benders 16 

decomposition is developed by decomposing the two-stage problem into a master problem and multiple subproblems. 17 

Finally, the effectiveness of the proposed model and solution method is validated on modified IEEE 37-node and 123-node 18 

distribution systems. 19 
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Nomenclature   

Sets and Indices PV
mE  PV hosting capacity allocated to node m . 

/i N  Index/set of distribution nodes. /its itss s  Slack variable for upper/lower bound of voltage 
magnitude at node i  in period t  and scenario s . 

m  Index of nodes with PV generation installation.  Parameters 

( )PVN i  
Set of child nodes of the node i  with PV generation 
units. 

PVw  Weighting factor of the PV hosting capacity. 

/t T  Index/set of time periods. SVCw  
Weighting factor of the SVC planning cost, including 
SVC investment cost and SVC operation cost. 

/s S  Index/set of scenarios. SVC
FC  

Objective function coefficient associated to the fixed 
investment cost of SVC ($). 

Variables SVC
VC  

Objective function coefficient associated to the varying 
operation cost of SVC ($/h). 

/its itsP Q  
Active/Reactive power flow through the branch 
between node 1i   and node i  in period t  and 
scenario s (kW/kVAR). 

PenaltyC  
Objective function coefficient associated to the penalty 
cost for voltage violation ($/p.u.). 

itsV  Node voltage at node i  in period t  and scenario s . sp  Probability of scenario s  occurrence. 

SVC
ia  

Binary decision variable flagging SVC installation at 
node i  or not. 

SVC
invN  Maximum allowed total SVC installation number. 

SVC
iQ  SVC installation capacity at node i (kVAR). PV

ts  
PV output factor (ratio of PV hosting capacity) in 
period t  and scenario s , [0,1]PV

ts   

SVC
itsq  

Reactive power support of SVC at node i  in period t  
and scenario s . 

PV
mtsp  PV output of unit m  in period t  and scenario s  (kW). 

27 

1. Introduction 28 

The proliferation of renewable distributed generation (RDG), especially photovoltaic (PV) generation, is a promising strategy 29 

to address the worldwide energy and environmental concerns. The widespread use of PV generation technologies has a lot of 30 

benefits such as reducing energy cost and emission, deferring upgrade of transmission network, and relieving reliance on fossil 31 

fuels [1, 2]. On the other hand, the overuse of PV generation may disrupt normal power system operating conditions, like overload 32 

of distribution lines and voltage constraints, due to the lack of advanced control schemes [3, 4]. To maintain the reliable and secure 33 

operation of power systems, a large amount of PV curtailment has been observed across the world [5], particularly in China [6]. 34 

Therefore, it is critically import to improve the PV hosting capacity of power systems, especially the distribution networks (DNs). 35 

PV hosting capacity is defined as the maximum total PV capacity that a DN can accommodate without violating operational 36 

constraints, especially node voltage constraints. Various factors could impact PV hosting capacity like PV type, DN characteristics, 37 

and limiting criteria defined by the DN operators [7-9]. Consequently, it is challenging to assess the PV hosting capacity of a DN. 38 

The simulation-based approach is mostly used to evaluate the PV hosting capacity [10-13]. For example, Monte Carlo simulation 39 
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based stochastic analysis is employed to estimate PV hosting capacity in [13]. There are also some works focusing on the 40 

improvement of PV hosting capacity. Ref. [14] investigates the  potential of battery energy storage systems to improve the PV 41 

penetration level. Ref. [15] develops a reactive power control method using RDG units to enhance the integration of renewable 42 

energy. Ref. [16] explores how the RDG hosting capacity can be improved by means of static and dynamic network reconfiguration. 43 

Ref. [17] uses active-management strategies (AMSs) to improve the RDG hosting capacity. However, most works focus on 44 

enhancing the PV hosting capacity based on the short-term operation strategies and overlook the impact of the long-term planning, 45 

which results in a very limited enhancing capability. Therefore, we endeavor to improve the PV hosting capacity from the 46 

perspective of long-term planning.  47 

The installation of SVC in the DN is envisioned to be an effective means to enhance the PV hosting capacity, since SVC is 48 

capable of voltage regulation by absorbing or releasing reactive power. Traditionally, capacity bank (CB) is utilized to compensate 49 

reactive power in DNs due to its relatively low installation cost and maintenance cost. However, CB can only release reactive 50 

power with discontinuous adjustment. Besides, overuse of CB will lead to the reduced lifetime. By contrast, SVC is capable of 51 

consuming and compensating reactive power continuously with fast reaction in response to the voltage variations. Thus, SVC can 52 

be employed to alleviate the overvoltage violations caused by the high PV generation. Hence, the placement of SVC has a 53 

considerable influence on the PV hosting capacity. However, classical SVC planning studies [18-21] overlook the potential of 54 

SVC planning for PV hosing capacity enhancement. For example, the SVC planning problem in [18] only focuses on addressing 55 

the challenge of increasing load demand by strengthening the voltage regulation capability. Instead of improving the voltage 56 

regulation performance, our work mainly focuses on maximizing the PV hosting capacity of the DN with optimal planning of 57 

SVC. 58 

There are various uncertainties in the DN, e.g. uncertain load demand and renewable energy output. Robust optimization (RO) 59 

[22] and stochastic programming [23] are two typical methods to tackle the uncertainties. Compared with the stochastic 60 

programming solutions, the solutions of RO are often considered to be over-conservative since RO gives too much emphasis on 61 

the worst-case scenario whose occurrence probability is relatively low. Generally, stochastic programming is adopted to model the 62 

power system planning problem by minimizing the expected cost over the multiple representative uncertainty scenarios subject to 63 

all practical constraints. Thus, stochastic programming is more robust than the deterministic optimization but less conservative 64 

than RO. We hence adopt stochastic programming to formulate our planning problem. 65 

In this paper, we propose a novel optimal SVC planning model based on stochastic programming aiming at maximizing the 66 

PV hosting capacity of the DN. In particular, the model is formulated as a two-stage problem, where the first stage is to determine 67 

the PV hosting capacity and the SVC planning decisions, and the second stage is to ensure that there is no operation constraints 68 

violation for any considered uncertainty scenarios given the predetermined first stage results. In addition, we develop an efficient 69 
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solution method based on the Benders decomposition to solve this two-stage stochastic problem. The effectiveness of the proposed 70 

model and the solution method is verified on the modified 33-node and 123-node distribution systems. The major contributions 71 

are summarized in threefold as below, 72 

1) This paper proposes an effective and efficient way to enhance PV hosting capacity, which plays an important role in 73 

identifying the capability of a DN to accommodate PV generations. Considering that SVC is widely used in power system, this 74 

work investigates the potential benefits of optimal SVC planning for improving PV hosting capacity by offsetting the voltage rise 75 

problems caused by PV integrations.  76 

2) PV hosting capacity is difficult to be evaluated. Empirically, it is assessed using Monte Carlo simulation based approaches 77 

like [13]. However, simulation-based approaches are time-consuming for the large systems and hardly applicable in studying PV 78 

hosting capacity enhancement. In contrast, we originally model the PV hosting capacity as a decision variable in the optimization 79 

context. Specially, we propose a novel two-stage SVC planning problem based on the stochastic programming and incorporate the 80 

PV hosting capacity into the objective function. Thus, we can achieve a tradeoff between PV hosting capacity maximization and 81 

the SVC planning cost minimization.  82 

3) This paper develops a Benders decomposition-based solution method to efficiently solve the proposed two-stage planning 83 

problem. To the best of the author’s acknowledge, this is the first study to employ Benders decomposition algorithm to solve the 84 

two-stage SVC planning problem for PV hosting capacity improvement by far. 85 

The rest of this paper is organized as follows. Section 2 gives the mathematical formulation of the stochastic programming 86 

based optimal SVC planning model. Section 3 describes the solution methodology based on Benders decomposition. Section 4 87 

describes the case studies to evaluate the effectiveness of the proposed planning model and solution approach. This is then followed 88 

by the detailed analyses and discussion of results. Finally, concluding remarks are included in Section 5. 89 

2. Problem Formulation 90 

2.1. Two-stage Stochastic Framework 91 

Fig. 1 depicts the two-stage stochastic framework of the proposed SVC planning problem in this paper. Practically, the first 92 

stage decision variables are determined before the actual realization of the uncertain load demand and PV output, including the 93 

sitting and sizing of SVC as well as evaluating the PV hosting capacity. On the other hand, the second stage decision variables 94 

represent the operation decisions and thus depend on the uncertain realization. Therefore, we model the SVC planning problem as 95 

a two-stage stochastic programming problem, where the first-stage variables are named as here-and-now decisions and the second-96 

stage variables are called wait-and-see decisions.  97 
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 98 

Fig. 1.  Two-stage stochastic decision framework of the proposed SVC planning problem. 99 

There are various uncertainties in the DN, e.g. uncertain load demand and renewable energy output. In this work, uncertainties 100 

of PV output and load demand are taken into consideration. These uncertainties are represented as the form of scenarios based on 101 

the historical data obtained from [24]. Specifically, we use about 3500 daily scenarios of PV output and load demand in Nordic 102 

countries over the past ten years, respectively. The original numerous scenarios need to be reduced to representative scenarios as 103 

the inputs of the stochastic planning process. The derived numerical scenarios should be reduced to a set of representatives to 104 

facilitate the stochastic programming. Here, a backward-reduction algorithm based on Kantorovich Distance (KD) [25] is 105 

employed due to its capability of generating the associated weights (probabilities) of the selected scenarios, which can distinguish 106 

the significance of the inputs of the subsequent stochastic planning stage. The procedure of this scenario reduction method is 107 

interpreted in [25]. 108 

2.2. DistFlow Model 109 

Consider a distribution system with 1n  nodes indexed by 0,1,2,...,i n  as shown in Fig. 2. The power flow equations can 110 

be described using DistFlow model [26, 27] as follows, 111 

2 2

1 2
= ,i i

i+ i i i
i

P Q
P P r p i N

V


     (1a) 

2 2

1 2
= ,i i

i+ i i i
i

P Q
Q Q x q i N

V


   

 
(1b) 

2 2
2 2 2 2 1 1

1 1 1 1 1 1 1 2
= 2( ) ( ) ,i i

i i i i i i i i
i

P Q
V V r P x Q r x i N

V
 

      


     

 
(1c) 

= ,d g
i i ip p p i N    (1d) 

= ,d g
i i iq q q i N    (1e) 

where equations (1a) and (1b) describe the active and reactive power balance at each node, respectively; Equation (1c) describes 112 

the voltage relationship between two adjacent nodes. In order to reduce the complexity, the linearized DistFlow equations are 113 

proposed by neglecting the high-order terms in (1a)-(1c). The effectiveness of this approximated model is verified in [26, 28]. 114 

s=1 s=2 s=S-1 s=SĂ

First stage

Second stage
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Specifically, the linearized DistFlow equations are formulated as follows, 115 

1= ,i+ i iP P p i N    (2a) 

1= ,i+ i iQ Q q i N    (2b) 

1 1 1 1
1

0

= ,i i i i
i i

r P x Q
V V i N

V
   




  

 
(2c) 

= ,d g
i i ip p p i N    (2d) 

= ,d g
i i iq q q i N    (2e) 

 

Fig. 2  Diagram of a radial distribution system. 

 

2.3. PV Hosting Capacity Enhancement via Optimal SVC Planning   116 

According to the linearized DistFlow equations (2a)-(2e), the voltage magnitude of node 1i   can be expressed as (2c). Thus, 117 

the voltage increment V  between can be formulated as 1 1 1 1
1

0

= i i i i
i i

r P x Q
V V V

V
   




   . With the PV power penetration 118 

increase in the node i , the inverse active power flow 1iP   increases. Therefore, voltage increment V  increases, which may 119 

cause an overvoltage problem. However, SVC has the capability of offsetting the voltage rise via reactive power consumption. 120 

Specifically, SVC can absorb the reactive power to increase the reactive power flow 1iQ  , hence, the voltage increment V  121 

decreases. Therefore, SVC is helpful in enhancing the PV hosting capacity. 122 

2.4. Mathematical Formulation of SVC Planning Problem   123 

Definition: PV hosting capacity is defined as the maximum total PV capacity that a DN can accommodate without violating 124 

operational constraints, especially node voltage constraints. 125 

In this subsection, a novel stochastic planning of SVC is proposed to maximize PV hosting capacity of the DN. In particular, 126 

a two-stage stochastic programming model is formulated considering the uncertainties of load demand and PV output. The detailed 127 

planning model are described as follows: 128 

2.4.1. Objective Function 129 

We consider two objectives in our formulation. One is to maximize the PV hosting capacity as shown by Eq. (3a), and the 130 
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other is to minimize SVC planning cost consisting of investment cost and operation cost as shown by Eq. (3b). 131 

Max PV
m

m

E
 

(3a) 

Min SVC SVC SVC SVC SVC
F i s V i its

i s t i

C a p C a q     (3b) 

where 
(1 )

365[(1 ) 1]

y

y

ir ir

ir



  represents the daily recovery factor, ir is the interest rate of SVC device, and y  is the planning 132 

horizon. 133 

To deal with the above two objectives simultaneously, we construct a multi-objective function by formulating a weighted sum 134 

function as below, 135 

1 2,
Min  + ( )+ ( )PV PV SVC SVC SVC SVC SVC SVC Penalty

m F i s V i its s its its
m i s t i s t i

w E w C a p C a q C p s s
 

         (4) 

where PVw  and SVCw  are weighting factors, and + =1PV SVCw w . Different weighting factors will result in different tradeoff 136 

between the PV hosting capacity (the first part) and SVC planning cost (the second part). In practice, these factors are adjustable 137 

depending on the preference of distribution system planners; :SVC SVC
its itsq q ; 1 ,{ },SVC SVC PV

i i ma Q E   and 2 , ,{ , }SVC
its its its itsP Q V q   138 

denote the collection of the first-stage variables and the collection of the second-stage variables, respectively. Note that the third 139 

part of objective function (4) represents the penalty cost, which is imposed to avoid the occurrence of voltage violations. 140 

Specifically, we introduce two non-negative slack variables itss  and itss  to represent the overvoltage and undervoltage violations 141 

in the second stage, respectively. If these two variables turn out to be positive, it means that PV
mE  obtained from the first stage 142 

does not truly evaluate the PV hosting capacity. Hence, it will be revised until the slack variables itss  and itss  both converge to 143 

zero. 144 

2.4.2. Constraints 145 

The constraints are classified into first-stage constraints and second-stage constraints, where the first-stage constraints are 146 

given as, 147 

a) PV Hosting Capacity Limit 148 

0, ( )PV PV
mE m N i    (5a) 

where (5a) represents that the PV hosting capacity is non-negative. 149 

b) SVC Installation Limit 150 

0 SVC SVC
i iQ Q i N   ˈ  (5b) 
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,SVC SVC
i inv

i

a N i N  
 

(5c) 

where (5b) denotes the SVC installation capacity limit in which the upper bound represents the maximum available installation 151 

capacity of SVC in practical application. (5c) describes that the total SVC installation number cannot exceed a predefined number 152 

considering the limit of the total capital cost. 153 

The second-stage constraints are given as, 154 

a) Power Flow Constraints 155 

1 = , , ( ), ,PV d PV
i+ ts its mts itsP P p p i N m N i t T s S           (6a) 

where =PV PV PV
mts ts mp E   

1 = , , ,SVC d
i+ ts its its itsQ Q q q i N t T s S         (6b) 

1 1 1 1
1

0

= , , ,i i ts i i ts
i ts its

r P x Q
V V i N t T s S

V
   




      

 
(6c) 

1 , , ,i+ ts iP P i N t T s S        (6d) 

1 , , ,i+ ts iQ Q i N t T s S        (6e) 

where (6a)-(6c) represent linearized DistFlow equations. Specially, (6a) and (6b) describes the active power flow and reactive 156 

power flow. To capture the uncertainty of PV output, we define the PV output factor [0,1]PV
ts   so that PV power PV

mtsp  generated 157 

by distributed PV generator allocated to node m  at time t  in scenario s  is PV PV
ts mE . (6c) describes the voltage transmit along the 158 

branch. (6d) and (6c) give the active and reactive power flow limits, respectively. 159 

b) Voltage Magnitude Constraints 160 

, , ,i its its i itsV s V V s i N t T s S           (6f) 

0, 0, , ,its itss s i N t T s S         (6g) 

where (6f) shows the relaxed voltage constraints with two slack variables itss  and itss , and (6g) shows that these slack variables 161 

are non-negative. 162 

c) SVC Operation Constraints 163 

, , ,SVC SVC SVC SVC SVC
i i its i ia Q q a Q i N t T s S          (6h) 

, , ,SVC SVC
its itsq q i N t T s S        (6i) 

, , ,SVC SVC
its itsq q i N t T s S         (6j) 

where (6h) imposes limit on the reactive power support of SVC. (6i) and (6j) are used to convert the term SVC
itsq  to SVC

itsq . Note 164 
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that there is a bilinear term SVC SVC
i ia Q  in constraint (6e), which renders the problem nonconvex. Hence, we introduce an auxiliary 165 

variable SVC
iz  to replace SVC SVC

i ia Q  with four additional linear inequalities as shown by (7a)-(7b). 166 

0,SVC SVC SVC
i i ia Q z i N      (7a) 

0,SVC SVC SVC
i i ia Q z i N   

 
(7b) 

,SVC SVC SVC SVC SVC
i i i i ia Q z Q Q i N       (7c) 

,SVC SVC SVC SVC SVC
i i i i ia Q z Q Q i N       (7d) 

By doing so, the nonlinearity is eliminated. Thus, (6e) is equivalently rewritten as (8). 167 

, , ,SVC SVC SVC
i its iz q z i N t T s S          (8) 

3. Solution to the optimization problem 168 

In this section, we propose a solution method based on Benders decomposition to solve the proposed two-stage stochastic 169 

planning problem. Usually, the proposed stochastic planning problem is intractable because of numerous scenarios and time 170 

coupling objective. Thus, this problem cannot be directly solved by the commercial solvers, which is further demonstrated in the 171 

case studies. In this respect, we develop a solution method based on Benders decomposition to solve this planning problem. 172 

Generally, Benders decomposition is used to reduce the problem complexity by decomposing the original problem into a master 173 

problem and a subproblem. In addition, Benders cuts are generated and added to the master problem to build a link between the 174 

master problem and the subproblem. As aforementioned, our proposed problem is a two-stage problem and thus it is logical to 175 

apply Benders decomposition to solve it. The first stage of our problem corresponds to the master problem and the second stage 176 

problem corresponds to the subproblem. Moreover, we can decouple the coupled constraints and objective across the time horizon 177 

and uncertainty scenarios by further decomposing the second stage problem into multiple subproblems. Each subproblem is only 178 

associated with one time period and one scenario. Therefore, our proposed method can significantly improve the computational 179 

efficiency. 180 

3.1. Subproblem 181 

The subproblem for each scenario s  and each time period t  is given as, 182 

( ) ( ) ( ) ( ) ( ): Min  + ( )
sp

sub v SVC SVC SVC v SVC v Penalty v v
ts V i its its its

i i

Z w C a q C s s


  
 

(9a) 

s.t. (6a)-(6d), (6f)-(6i), (8)  (9b) 

( ) , ( ): , ( )PV v PV fix PV v PV
m m mtsE E m N i    (9c) 
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( ) , ( ): ,SVC v SVC fix SVC v
i i itsz z i N    (9d) 

where v  denotes the iteration index of Benders decomposition. ( )sub v
tsZ  denotes the optimal value of subproblem (9). 183 

The decision variables of (9) is given by 184 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,{ }, , , , , , ,sub v PV v SVC v v v SVC v SVC v SVC v SVC v v v v PV v SVC v
ts m i its its i i its its its its its mts

s
its

p Z E z P Q Q a q q V s s    185 

The objective function (9a) consists of SVC operation cost and penalty cost for voltage violations. (9b) summarizes the second-186 

stage constraints. ( )PV v
mE  and ( )SVC v

iz are fixed in this subproblem as shown by (9c) and (9d), where ,PV fix
mE  and  ,SVC fix

iz  are first 187 

stage decision variables obtained from the master problem. After solving all the subproblems, we can obtain an upper bound ( )v
upperZ  188 

to the optimal value of the original problem (4)-(8) as follows, 189 

( ) ( ) , ,v sub v PV PV fix SVC SVC SVC fix
upper s ts m F i

s t m i

Z p Z w E w C a     
 

(10) 

Dual variables ( )PV v
mts  and ( )SVC v

its of first-stage variables are used to calculate the sensitivities for generating Benders cuts. 190 

These sensitivities can be obtained as follows, 191 

( ) ( ) , ( ), ,PV v PV v pv
m s mts

s t

p m N i t T s S        
 

(11a) 

( ) ( ) , , ,SVC v SVC v
i s its

s t

p i N t T s S        
 

(11b) 

3.2. Master Problem 192 

The formulation of Benders master problem is given as, 193 

( ) ( ) ( ) ( ): Min  
mp

v v PV PV v SVC SVC SVC v
lower m F i

m i

Z w E w C a


    
 

(12a) 

s.t. (5a)-(5c), (7a)-(7b)  (12b) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1,2,...,) 1( ( )v Sub k PV k PV v PV k SVC k SVC v SVC k
s ts m m m i i i

s t m i

p Z E k vE z z          ǂ  (12c) 

( )v down   (12d) 

( ) ( ) ( )v PV PV v SVC SVC SVC v opt
m F i

m i

w E w C a Z    
 

(12e) 

The decision variables of (12) is given by  194 

( ) ( ) ( ) ( ) ( ) ( ),{ , , , , }v PV v SVC v SVC v SVC v v
lower m i

m
i

p
iZ E z Q a    195 

The master problem (12) is a mixed-integer linear problem. ( )v
lowerZ  is a lower bound of the original problem (4)-(8) since master 196 

problem (12) relaxes the second-stage constraints. (12b) summarizes first-stage constraints. (12c) describes the Benders cut, 197 

linking the master problem and the subproblem. (12d) introduces a lower bound down  for Benders cut ( )v  to accelerate the 198 
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convergence. (12e) guarantees that the objective value ( )v
lowerZ  is lower or equal to the minimum upper bound optZ  obtained from 199 

the subproblems. 200 

3.3 Benders Decomposition Algorithm Procedure 201 

The proposed bilevel Benders decomposition algorithm for solving the proposed two-stage stochastic SVC planning model is 202 

shown as Algorithm1. The convergence is guaranteed until the upper bound meets the lower bound according to [29]. 203 

Algorithm 1 Benders Decomposition Algorithm 

Step 1. Initialization: Set the iteration index 1v  . Set the initial upper bound ( )v
upperZ    and lower bound ( )v

lowerZ   . Set the 

convergence tolerance  . Initialize the first-stage variables, (0)PV
mE  and (0)SVC

iz . Set , (0)PV fix PV
m mE E and , (0)SVC fix SVC

i iz z . 

Step 2. Iteration: Solve the subproblem (9) for each time period and each uncertainty scenario. Obtain the upper bound ( )v
upperZ  according to 

(10). 

Step 3. Minimum upper bound update: If ( )v opt
upperZ Z , update the global solution  ( )opt v

upperZ Z . 

Step 4. Convergence check: If ( ) ( )| |v v
upper lowerZ Z   , then terminate with the optimal solution. Otherwise, calculate the sensitivities by 

equations (11a) and (11b) to build the next Benders cut. Then, set 1v v  . 

Step 5. Solve master problem: Solve the master problem (12), calculate ( )v
lowerZ  and update the values of ,PV fix

mE  and ,SVC fix
iz . Then go back 

to the step 2 and continue. 

4. Case Studies 204 

4.1 Implementation on IEEE 37-node Distribution System 205 

0

1

23

4

5 6 7

8

9

10

11

12

13

14

15

16171819

20
21

22

23

242526

27

2829

30

31

33 34

35

3632

Candidate location for PV installation   206 
Fig. 3.  Modified IEEE 37-node test distribution system. 207 

 208 

Fig. 3 shows the IEEE 37-node test distribution system. We assume that there are six suitable locations for the PV installation, 209 

namely nodes 3, 8, 11, 23, 29 and 33. Details about the test system can be found in [30]. Per-unit value is used in case studies. The 210 

base values of power and voltage are set as 1 MVA and 12.66 kV, respectively. We consider a 10-year planning horizon. One 211 

hundred representative scenarios are generated to characterize the uncertainties. In this paper, as an example, one combination of 212 

weighting factor is selected to show the performance of our proposed model and algorithm, i.e. 0.5PVw   and 0.5SVCw  . 213 

4.1.1. Convergence Performance 214 
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Fig. 4 shows the convergence of the proposed Benders decomposition-based algorithm. Table 1 compares the computational 215 

efficiency of two approaches. One is to directly solve the original problem (4)-(8) using a commercial solver GUROBI [31] on 216 

the platform of CVX [32], denoted as CVX-GUROBI. The other is to solve the original problem (4)-(8) using our proposed 217 

Benders decomposition-based algorithm via the same platform and solver, demoted as CVX_BD-GUROBI. Table I demonstrates 218 

that the original problem (4)-(8) cannot be directly solved by the commercial solver GUROBI due to great computational 219 

complexity. However, our proposed algorithm is efficient in solving the same problem. 220 

 221 

Fig. 4.  Convergence of the proposed Benders decomposition based algorithm. 222 

 223 

Table 1 224 

Comparison on the computation time of solving the proposed SVC planning problem (under 100 scenarios). 225 

CVX-GUROBI CVX_BD-GUROBI 

[sec.] [sec.] [iterations] 

NA 8211 16 

4.1.2. Optimal Results of PV Hosting Capacity and SVC Planning 226 

Table 2 lists PV hosting capacity for the selected sites. The total PV hosting capacity of the 37-node test distribution system is 227 

0.491 p.u. and the corresponding SVC planning decisions are shown in Table 3. 228 

4.1.3. Performance of SVC Planning Result on PV Hosting Capacity 229 

Fig. 5 depicts PV hosting capacity of two cases: 1) the base case without SVC installation; 2) the case with stochastic optimal 230 

SVC planning. It can be observed that the PV hosting capacity of case 2 is significantly higher than that of the case 1, which 231 

demonstrates the effectiveness of the stochastic optimal SVC planning in improving the PV hosting capacity. Fig. 6 shows the 232 

voltage profiles of node 13 at 1:00 pm under three cases: 1) base case (without installation of both PV and SVC), 2) case with PV 233 

installation as the result in Table 2 but without SVC installation, 3) case with PV installation as the result in Table II and SVC 234 

installation as the result in Table 3. It can be observed that voltage magnitudes of some nodes exceed the upper bound in case 2, 235 

but all overvoltage violations are alleviated after the optimal SVC planning as shown by the curve of case 3. 236 

Table 2 237 

Results of PV hosting capacity in 37-node test system. 238 
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Candidate location (Node) PV size (p.u.) Candidate location (Node) PV size (p.u.) 
3 0.121 23 0.109 
8 0.082 29 0.036 
11 0.062 33 0.081 

 239 

 240 

Table 3 241 

Results of SVC planning in 37-node test system. 242 

Location (Node) SVC size (p.u.) Location (Node) SVC size (p.u.) 

3 0.050 23 0.050 
4 0.032 24 0.050 
7 0.042 26 0.041 
8 0.050 29 0.050 
9 0.027 33 0.050 

10 0.022 34 0.031 
11 0.050 - - 

 243 

 244 

Fig. 5.  Comparison on PV hosting capacity. 245 

 246 

Fig. 6.  Comparison on voltage profiles. 247 

4.1.4 Compared with Deterministic Scheme 248 

The deterministic SVC planning scheme is used as benchmark here. The formulation of the deterministic optimal SVC 249 

planning problem is similar to (4)-(8) but with only one scenario. The sites under the deterministic SVC planning scheme are node  250 

6, 7, 8, 9, 10, 11, 23, 24, 26, 29, 33 and 34. The corresponding sizes are 0.02, 0.035, 0.05, 0.05, 0.019, 0.05, 0.05, 0.043, 0.05, 251 

0.05, 0.05 and 0.043 p.u., respectively. We also obtain the PV hosing capacity under the deterministic scheme, i.e. 0.1, 0.07, 0.04, 252 

0.1, 0.03 and 0.06 p.u. for nodes 3, 8, 11, 23, 29, and 33, respectively. We define the critical scenario as the scenario with the 253 

highest PV power output factor PV
ts  and lowest load demand level, and compare the performance of the stochastic result and the 254 
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deterministic result under this critical scenario. Fig. 7 (a) and (b) show the voltage profiles of the deterministic scheme and the 255 

stochastic scheme under the critical scenario, respectively. The overvoltage violations are observed in Fig. 7 (a), while there is no 256 

voltage violations in Fig. 7 (b). The reason is that stochastic scheme considers more scenarios and thus it is more comprehensive 257 

and robust in dealing with the uncertainties. 258 

 259 

(a) 260 

 261 

(b) 262 

Fig. 7.  Comparison result of (a) the deterministic scheme and (b) the stochastic scheme under the critical scenario. 263 

4.1.5. Optimal Tradeoff Curve 264 

Fig. 8 shows the optimal tradeoff curve between the PV hosting capacity and SVC planning cost. We can see that the PV 265 

hosting capacity increases linearly with the raise of the SVC planning cost until the cost reaches $7,500. Then the increasing rate 266 

decreases gradually to zero, which means the PV hosting capacity becomes insensitive to the additional planning cost when the 267 

total cost exceeds $1,7500. 268 

4.1.6. Sensitivity Analysis 269 

In order to investigate the impact of SVC installation capacity and number on the PV hosting capacity, two sensitivity  270 
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 271 

Fig. 8.  Optimal tradeoff curve between the PV hosting capacity and SVC planning cost. 272 

analyses are conducted. Fig. 9 (a) illustrates the impact of SVC installation capacity on the PV hosting capacity with the SVC 273 

installation number fixed at 10. Fig. 9 (b) illustrates the impact of SVC installation number on the PV hosting capacity with the 274 

installation capacity of each SVC being 0.05 per unit. It can be observed from Fig. 9 that the PV hosting capacity improves almost 275 

linearly with the increase of SVC installation capacity/number until the installation capacity reaches 0.045 p.u. and the installation 276 

number reaches 9. Then the PV hosing capacity becomes less sensitive and eventually insensitive to the increase of SVC 277 

installation capacity/number. This is because larger PV power penetration may lead to the DN line overload. Under such 278 

circumstance, DN line capacity expansion planning can be suggested if the PV hosting capacity is too small to be accepted by DN 279 

planners. 280 

 281 

(a) 282 

 283 

(b) 284 

Fig. 9.  Impact of (a) SVC installation capacity (with same installation number;10) and (b) SVC installation number (with same installation capacity: 285 

0.05p.u.) on PV hosting capacity under the expected scenario. 286 
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4.2. Implementation on IEEE 123-node Distribution system 287 

The proposed model is also tested on the modified IEEE 123-node distribution system as shown in Fig. 10. The detailed 288 

parameters can be found in [30]. In this case, base values of power and voltage, uncertainty scenarios and weighting factors are 289 

same as those in the 37-bus case. Twelve candidate locations are selected for the PV installation, i.e. nodes 5, 23, 31, 34, 45, 58, 290 

62, 77, 84, 93, 109 and 118. Results of PV hosting capacity and SVC planning are listed in Table IV and Table V, respectively. 291 

The total PV hosting capacity of the 123-node test distribution system is 2.459 per unit. The daily voltage magnitudes of the 292 

modified 123-node distribution system under the critical scenario are shown in Fig. 11. Similar to the 37-bus case, the voltage 293 

magnitudes are ensured within the allowable ranges. 294 
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 295 

Fig. 10.  The modified IEEE 123-node test distribution system. 296 

Table 4 297 

Results of PV hosting capacity in 123-node system. 298 

Candidate location (Node) PV size (p.u.) Candidate location (Node) PV size (p.u.) 

5 0.209 62 0.093 
23 0.224 77 0.102 
31 0.214 84 0.315 
34 0.181 93 0.243 
45 0.212 109 0.102 
58 0.339 118 0.225 

 299 

Table 5 300 

Results of SVC planning in 123-node system. 301 

Location (Node) SVC size (p.u.) Location (Node) SVC size (p.u.) Location (Node) SVC size (p.u.) 

5 0.050 37 0.009 84 0.050 
6 0.034 45 0.050 85 0.036 

22 0.015 47 0.040 93 0.050 
23 0.050 57 0.043 94 0.048 
25 0.003 58 0.050 109 0.050 
30 0.043 59 0.050 117 0.008 
31 0.050 62 0.050 118 0.050 
33 0.044 77 0.050 119 0.028 
34 0.050 83 0.050 - - 

 302 
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 303 

Fig. 11.  The daily voltage magnitudes of the modified 123-node distribution system under the critical scenario. 304 

6. Conclusion 305 

This paper presents a novel two-stage stochastic SVC planning model to enhance PV hosting capacity considering uncertainties 306 

of load demand and PV output. In the first stage, the SVC planning decisions and the corresponding PV hosting capacity are 307 

determined. In the second stage, the feasibility of the first stage decisions is evaluated under multiple uncertainty scenarios to 308 

ensure no voltage violations. To improve the computational efficiency, an efficient solution method based on Benders 309 

decomposition is developed to solve this two-stage problem. Numerical results on modified IEEE 37-node and 123-node 310 

distribution systems verify the effectiveness of the proposed model and solution method. 311 
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