
This is a repository copy of A 65nm CMOS lossless bio-signal compression circuit with 
250 femtoJoule performance per bit..

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/150164/

Version: Accepted Version

Article:

Crispin-Bailey, Christopher orcid.org/0000-0003-0613-9698, Dai, Chengliang and Austin, 
James orcid.org/0000-0001-5762-8614 (2019) A 65nm CMOS lossless bio-signal 
compression circuit with 250 femtoJoule performance per bit. IEEE Transactions on 
Biomedical Circuits and Systems. pp. 1087-1100. ISSN 1932-4545 

https://doi.org/10.1109/TBCAS.2019.2938672

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



IEEE BIOMEDICAL CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, MONTH XX, 2019; UNCORRECTED PREPRINT 1

A 65nm CMOS lossless bio-signal compression

circuit with 250 femtoJoule performance per bit
Chris Bailey,Chenglaing Dai,Jim Austin

Abstract—A 65nm CMOS integrated circuit implementation
of a bio-physiological signal compression device is presented,
reporting exceptionally low power, and extremely low silicon
area cost, relative to state-of-the-art. A novel ‘xor-log2-sub-
band’ data compression scheme is evaluated, achieving modest
compression, but with very low resource cost. With the intent to
design the ‘simplest useful compression algorithm’, the outcome
is demonstrated to be very favourable where power must be
saved by trading off compression effort against data storage
capacity, or data transmission power, even where more complex
algorithms can deliver higher compression ratios. A VLSI design
and fabricated Integrated Circuit implementation are presented,
and estimated performance gains and efficiency measures for
various bio-medical use-cases are given. Power costs as low as
1.2 pJ per sample-bit are suggested for a 10kSa/s data-rate, whilst
utilizing a power-gating scenario, and dropping to 250fJ/bit at
continuous conversion data-rates of 5MSa/sec. This is achieved
with a diminutive circuit area of 155 um2. Both power and area
appear to be state-of-the-art in terms of compression versus
resource cost, and this yields benefit for system optimization.

Index Terms—Lossless Data Compression, VLSI Design, EEG,
ECG, Wearable Sensors, Power Efficiency

I. INTRODUCTION

DATA acquisition systems, in the domain of continuous

time-varying signals, are increasingly operated under

highly constrained resource limitations. This is especially so in

the field of wearable devices, remote and self-powered sensors,

Internet of Things (IOT), body-sensor networks, and in bio-

medical applications. In such systems, power constraints may

well demand reductions in data transfer and temporary local

storage capacity, not the least because this can be a critical

factor in extending battery-limited operating times. [1]–[3].

It is important to make a distinction between temporary

local storage (in a non-volatile recording device memory, for

instance), as compared to offline storage (for example, after

transfer of data to some processing center or base station). In

the case of offline storage, one may require data compression

for reasons of practicality of data volume, and power is not

necessarily a primary concern. But, where transmission re-

quires a wired or wireless link, and/or data requires temporary

storage in a device such as flash-memory, every bit of data has

an associated power cost, and every bit that can be eliminated

via compression will potentially save power, given appropriate

conditions.

Therefore, where a power reduction can be gained, by virtue

of compression of the data to be stored or transmitted, this can
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Fig. 1. The ‘NOMAD’ 84-pin CFPGA Test Chip. The IC was fabricated
via IMEC/Europractice using UMCTM 65nm CMOS process, and FaradayTM

Standard-Cell Libraries.

extend operating times, improve data-rates, and make possible

systems that would otherwise not meet power targets. This is

where data compression can offer significant opportunity: In

principle, if a data compression element consumes less power

than that saved by the reduction in storage or transmission

power otherwise consumed, then there is potential to realize

useful power optimizations for the overall system. This trade-

off is therefore a function of compression ratio (CR) and power

cost. Whilst it may seem counter-intuitive, it can be shown

that the system with the highest CR is not necessarily the best

overall solution: a point well-demonstrated by this paper.

Although chip area appears to be an ever increasing resource

in standard integrated circuit (IC) design, the silicon area

cost of such a design, and therefore any sub-component such

as a data-compressor, is still of significant concern. Where

techniques such as printed organic semiconductor circuits are

concerned, the area-cost constraint is even more demanding

[4], [5], and such technologies will surely become more

evident in wearable device implementations in the future.

Either way, saving circuit area for other useful functionality

is always desirable.

Whereas state-of-the-art design philosophy in this field often

leads down the path of achieving maximum possible com-

pression rates, with or without information loss, this typically

comes at a high cost in terms of hardware area and power. The

best compression ratio is not necessarily the best compression

outcome as a function of area or power consumption, and this

means that there is an interest also in very simple circuits that

achieve modestly desirable compression ratios. Such circuits

may even be near-optimal in terms of compression of sample

bits per picoJoule, even if they are not superior in raw com-

pression ratio terms. Being able to measure these factors using
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suitable figures of merit (FOM) would also be a very useful

tool of convenience with which to compare such candidate

systems and their competitors.

This paper presents a compression circuit meeting those

expectations of very low power and area cost. This circuit

was fabricated as a 65nm CMOS test IC1, a sample of which

is shown in a packaged prototype glass-lid format, in Figure 1.

Using a novel algorithm, ‘Log2-Sub-Band’ Encoding (L2SB),

the authors are able to achieve modest compression ratios with

meagre transistor counts, and ultra-low power per bit.

After briefly considering some common approaches to com-

pression in this field of application, this paper will intro-

duce ‘Log2 Sub-band encoding’, and describe it’s fabrication

on a 65nm CMOS test-chip, subsequent bench testing, and

consideration of the implications for compression efficiency

using this design. Following this, a performance comparison is

made between some alternative compression algorithms, with

suitable data-sets, including EEG, ECG, and MEG data-sets.

Power savings and area trade-offs are estimated for each case,

based on the core power and area data obtained from the initial

evaluations presented. The authors introduce several FOM

measures to support this comparison process. It is concluded

that the power efficiency of the presented circuit is highly com-

petitive for pJ/bit and area cost, both of which are extremely

low. Projections are made for storage and transmission power

trade-offs achievable by using various compression scenarios.

In spite of the presented circuit’s inherent simplicity, it is

concluded that L2SB could be a favourable choice for future

system designs.

II. A BRIEF OVERVIEW OF COMPRESSION OPTIONS

Compression algorithms in the domain of acquisition of

continuous time-varying signals, particularly those associated

with bio-physiological monitoring, seek to exploit the fact

that most signal content consists of long-term low frequency

variations and shorter term and smaller scale fluctuations

on a more local scale. These signal transitions are rarely

extreme in nature. Consequently, adjacent samples are often

numerically close together with respect to the full scale signal

range possible from one sample to the next. Whereas a signal

range might occupy 12 bits, the typical state-change between

samples may typically only cover a few of the least-significant

bits for any two successive samples. To achieve some form of

compression of this information, the simplest possible option

might be to simply encode the difference between adjacent

samples, also known as DPCM, or Differential Pulse Code

Modulation, a technique which has already been in effective

use for a very considerable time [6]. If some method is then

employed to transmit only the necessary bits representative of

the change, then compression would be achieved. There are a

variety of ways in which this might be obtained.

In some systems, it is acceptable to use lossy compres-

sion to reduce real information content by approximating

features of the signal of interest [7]–[9], or to utilize complex

hardware to deliver highly domain-specific compression rates

1The NOMAD IC was fabricated as part of the NOMAD project, funded
by UK Gov. Innovate-UK Grant REF 26172- 182148.

[10], [11]. In some cases, techniques exploit relationships

between channels in multi-channel recording tasks [12], and

any of these methods may be targeted specifically at real-

time mobile data acquisition scenarios [13]. However, lossless

compression is often an essential requirement, especially in

safety-critical and bio-medical domains. Again, approaches

vary in complexity. Simple Huffman code-table approaches are

widely used, whereas some other techniques employ predictive

techniques to reduce the data needing to be transferred whilst

retaining lossless characteristics [14], [15]. This leaves the

question of complexity to deal with - a complex circuit may

well reduce data transmission power significantly, but if it

consumes a lot of power in doing so, then this may optimize

data volume more than power. In particular, where low data-

rates are used, of the order of thousands of samples per second,

and indeed sometimes hundreds of samples per second, it may

well be observed that the dynamic power of the compressor is

rather low, but in contrast, the static power (per sample) could

become significant. Small, simple compression circuits, could

in theory deliver very low static and dynamic power in these

scenarios, and offer valuable gains, even without achieving

state-of-the-art compression ratios in themselves.

III. LOG2 SUBBAND ENCODING

A. Design motivations.

The motivation of the authors in developing Log2-SubBand

Encoding (L2SB), was to derive an effective, and configurable,

compression algorithm for bio-physiological signals with a

minimal hardware footprint. A further consideration was that

the compression algorithm should be lossless, ruling out a

number of algorithms which are capable of high compression

ratios (which deliver CR of the order of 5-fold to 20-fold). In

any case, such algorithms often require fairly demanding and

complex mathematical approaches which immediately create

questions in terms of hardware constraints, especially in low-

power and real-time scenarios.

In terms of hardware footprint, the authors have three spe-

cific concerns: area, static power, and dynamic power. These

factors are all considered in the design of L2SB encoding

scheme, and this means that the compression ratio, in isolation,

is not an overriding performance metric. Rather, the goal

is to have moderate compression with minimal cost, and in

doing so, demonstrate that a desirable gain in overall system

power should be obtainable. Two Figure-of-Merit (FOM)

performance metrics are also defined, which will be utilized

later in the paper:

• Data Reduction per pJ (DR/pJ) which measures the

reduction in data bits transmissible after compression,

versus the pico-Joule cost of achieving that degree of

compression.

• Data Reduction per um2 (DR/um2), which measures

the average circuit area utilized to achieve the reported

data reduction in a given channel of interest.

Data reduction per pJ is calculated as the percentage of data

bits saved by compression, divided by the energy consumed

by each compression operation. Similarly, data reduction per
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um2 is calculated as the percentage reduction in data bits

saved by compression, divided by the area cost attributed to

the compression operation. Note the term ‘attributed’ is used

carefully here: where a single circuit can serve multiple data

channels, then the area attributable per compression operation

is divided by the number of channels supported. If a circuit

supports eight channels successfully at a chosen data-rate, and

latency, then one eighth of its area is equitably attributable to

each channel in terms of compression versus area efficiency.

B. Important points to note.

It is important to note that data-rate, typically in units of

kSa/sec, is not always equivalent to clock-rate, typically in

the kHz range here. This is because some (though not all)

implementations require multiple clock cycles per sample con-

version. Also, whilst continuous operation can be envisaged

for sample conversion at a given clock rate, a higher clock

rate can allow interleaved periods of idle time. For example,

a duty-cycle ratio of 10:1 would imply that the circuit spends

90% of its time idle (potentially in a sleep mode) and 10% of

its time actively compressing sample words.

C. Log2 Amplitude Sub-Band Compression (L2SB).

The basic principle of L2SB is founded upon the idea

of defining amplitude sub-bands, and then comparing the

current sample word with the preceding sample, to detect

changes between them. In theory, only the changes between

samples need to be transmitted in order to convey the original

information content, without loss of accuracy. However, in

practice this is not easily achieved on a bit by bit basis.

Instead, the L2SB encoder sub-divides a given sample word

into multiple regions or ‘sub-bands’, each of which represents

a part of the whole sample word. If changes are detected in

one of these bands, it will imply that the new state of that

particular band must be transmitted.

There are a large number of band permutations that are

possible (as will be discussed later). The number of valid com-

binations increases as a function of sample bit width. In this

paper, and for the case chosen for fabrication of the prototype

integrated circuit, we choose a relatively straightforward case

based upon a 12-bit sample word. This case is illustrated in

Figure 2, where it can be seen that a 12-bit sample word is

decomposed into three four-bit bands. In this case there is

also a notional zero-width band, which represents the case

where no bits change anywhere in the sample word. This

results in four prefix-code and data-payload combinations,

which are also shown, along with the total number of bits

to be transmitted in each case.

Based on the relative frequencies of each band combination

being utilized to encode data, one can see that compression

ratio (CR) can vary from 0.85 to 6.00. Consider an example

CR estimation as given in Table I. Here, the average contri-

bution of bits per band combination sums to 8.4 bits in total,

meaning that the CR in this case is 1.43 (12÷ 8.4), or a data

reduction (DR) of approximately 30% of total bits representing

successive samples in the original sample words.

TABLE I
COMPRESSION RATIO ESTIMATION EXAMPLE

Prefix code Bits Frequency Effective Bits

00 2 10% 0.2

01 6 40% 2.4

10 10 30% 3.0

11 14 20% 2.8

Total Bits 8.4

CR (12.0/8.4) 1.43

12	Bit	Sample	Word	

Bits	0-3	Bits	4-7	Bits	8-11	

Bits	0-3	

Bits	0-3	Bits	4-7	

Bits	0-3	Bits	4-7	Bits	8-11	

00	

01	

10	

11	

(		2	bits)	

(		6	bits)	

(10	bits)	

(14	bits)	

Word	decomposed	

into	sub-bands,	

config:	{4,4,4,0}.	

Sub-band	prefix	combinations,	

config:	{4,4,4,0}.	

Fig. 2. Log2 Sub-Band Encoding example format (4,4,4,0) encoding.

An important point needs to be noted about how bands may

be combined. This is not an arbitrary combination, but utilizes

progressive aggregation of bands, such that it is assumed that

if a band ‘n’ has changed, then band ‘n-1’ is also highly

likely to have changed. Less significant bands are always

transmitted when a more significant band is transmitted. This

means that the actual band combinations that need to be

transmitted are fewer, and the prefix code is kept short.

Typically the prefix code might be a two-bit code. However

where band frequencies make it advantageous, it is possible

to have an alternative prefix code such as ‘0’,‘10’,‘110’,‘111’,

where the shortest code is assigned to the most frequent band

combination. In an extreme case, a zero-width band could be

encoded with a single prefix bit, allowing a CR of 12.0 to

be achieved, though this is unlikely to be observed happening

over sustained periods in realistic data streams.

In this case we chose to make the fourth band a zero-

width band, and use a simple two-bit prefix code. Using

the author’s proposed notation this can be represented as a

{4,4,4,0} configuration. However we could easily have chosen

four three-bit bands with a configuration of {3,3,3,3}, or

indeed any combination of band widths that accumulate to

12 source-bits in total.

Having explored the compression format itself, the next

thing to observe is to note what it is that is actually being sub-

divided. Taking the raw sample data is one option. Here, if any

band is non-zero, then it is treated as requiring transmission.

However it is known that this approach is overly sensitive

to signal level drift due to low frequency and near-dc signal

components in the source signal creating bias toward sam-
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ple values with more significant bits being set persistently.

To overcome this problem, a common solution is to apply

DPCM pre-processing, and thus derive a normalized signal

consisting of differences between samples, rather than absolute

values. Accumulated differences at the receiver allow the

original signal content to be restored. It might be noted

however that this introduces more susceptibility to bit-errors,

an area that is worthy of more investigation, but outside the

scope of this paper. However, an equally effective, but often

overlooked difference method, is to use XOR operation to

determine locally significant changes. This has the advantage

of a significantly simpler circuit design and no cascading of

arithmetic stages, therefore potentially much faster. Consider

that an arithmetic-differential DPCM circuit requires one full-

subtractor circuit per bit, each consisting of 2 XOR-gates, 2

AND-gates, and two inverters, and one OR-gate. Meanwhile,

the XOR differential method requires only one XOR gate per

bit, a very substantial reduction in gate cost and area when

a simple compression system is being designed (less so if

the system is of greater complexity). This is an excellent

optimization, since the encoder only needs to know that one

or more bits have changed in each sample word band, rather

than their numeric differences. With either method, the final

step is to OR together all of the changed bits within each band

to create a band indicator signal to determine if that band has

any active changes. Such a scheme is presented in Figure 3,

where the same {4,4,4,0} scheme is implemented, using a

serial-in-serial-out (SISO) arrangement.

The algorithm is described as follows:-

• Let S0 represent the previous sample, and S1 represent

the current Sample.

• Let X1,Y1 and Z1 represent three n-bit sub bands of S1

and X0,Y0 and Z0 represent three correspondingly sized

sub-bands of S0.

• Let a, b, and c represent the True-False or 0-1 result of

detecting a difference between corresponding bands, such

that a compares X1 and X0, b compares Y1 and Y0, and

c compares Z1 and Z0

• A prefix code is now generated via a look-up table/circuit

as illustrated in Figure 3, where {H1,H0} = f{a,b,c}.

• The prefix is transmitted along with no-data, band

Z1, band Y1,Z1, or Bands X1,Y1,Z1, according to the

first,second, third, or fourth prefix code being selected.

• Untransmitted bands can be optionally set/cleared, de-

pending upon circuit design needs. For example, in a

serial implementation one can simply not shift-out the

unused bits.

• Once the comparison process for a,b,and c is completed,

the current Sample S1 may be used to overwrite the

previous sample S0, and this becomes the new previous

sample ready for the next encoding cycle.

Circuit functionality is as follows: After the input word is

clocked into the input register, it is fed through the XOR

array to generate band indicators. Then WE2 is enabled,

capturing the output word (bottom left of diagram), which is

formed from the active bands, and the relevant header. Inactive

bands are forced to logic ‘1’ in this implementation as this

Fig. 3. Serial-In Serial-Out (SISO) L2SB block diagram 4,4,4,0 encoding.

Original	Data	 XOR	 TRANSMITTED	 Received	

0000	1111	0000	 1111	1111	1111	 0000	1111	0000	[11]	 0000	1111	0000	

0000	1111	0001	 0000	0000	0001	 0001	[01]	 0000	1111	0001	

0000	1100	0001	 0000	0011	0000	 1100	0001	[10]		 0000	1100	0001	

0000	1100	1000	 0000	0000	1001	 1000	[01]	 0000	1100	1000	

Fig. 4. L2SB 4,4,4,0 Coder-Decoder Example.

automatically pads the serial output line high after the valid

encoded bits have been shifted out. Finally, the circuit retains

the current input word, by loading it into the relevant register

(top right of diagram) when WE1 is enabled, and which then

becomes the ‘previous’ word for the next compression cycle.

The output word is prepended by a header prefix code, in

this case a two-bit code H[1-0], generated from a very simple

logic function, almost identical to a standard 4:2 priority

encoder. The timing circuit is based upon a simple binary

counter.

Figure 4 illustrates the coding-decoding mechanism with a

simple example, to demonstrate that this coding method works

correctly. As one can observe, the received data is identical to

the original data. The XOR column represents the bit changes

between the current sample and the preceding one. The first

sample in the sequence (typically after reset) is always treated

as if all bits have changed, since a full sample word is

required at the start to establish the reference point. If this

reference point is refreshed at regular intervals, as a frame start

value, it becomes possible to detect transmission errors within

frames of chosen length, since progressive reconstruction of

erroneous data will eventually be found to disagree with the

full-word value at these points. Indeed, full-range values are

often incidentally transmitted within a frame too, thus allowing

for potential earlier detection. This is a topic worthy of further

investigation, but outside the scope of this paper. In the given

example, 36 bits are used to convey four 12-bit samples, giving

a CR of 1.33 (48/33).
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D. L2SB Encoder Implementation and Verification

Now that the basic functionality of the Log2 Sub-Band

Encoder has been established, and described, we turn attention

to it’s implementation. The authors were fortunate to have the

opportunity to include an L2SB encoder test circuit on a more

complex IC fabrication project, utilizing spare pins and chip

area. The low pin-count available meant that a serial-in-serial-

out (SISO) implementation was chosen for the fabrication

and verification. This design had the advantage of being

pipelined, such that new data words can be shifted inward

to the compression stage, whilst the previous compressed bit

pattern is shifted outward.

The circuit was modelled in VHDL, and then synthesized

to a gate-level description. Cadence design tools were used

throughout this phase of development. The 65nm FaradayTM

standard cell library was used for HDL synthesis, and the

design was then targeted at a 65nm CMOS fabrication tech-

nology: UMCTM 65N Logic/Mixed-Mode/RF CMOS process,

with core and I/O voltages of 1.2v and 1.8v respectively.

Automatic clock gating was enabled at the synthesis stage, and

this resulted in approximately 2/3rds of flip-flops being gated,

with 70% reduction in dynamic transitions. Figure 5 shows a

trial layout for the synthesized circuit, where the dimensions

of the module are 13um by 14um, giving a maximum circuit

area of 182 um2, if one ignores the unused space at top right,

or around 162um2 otherwise. For this particular tapeout, the

layout relied upon standard cell abutment, but if a full custom

layout methodology was used, with transistor folding and other

layout optimizations, then this area cost could no-doubt be

further reduced. Maximum frequency was 714MHz, giving a

minimum input-output latency of 22ns for a raw sample to be

compressed to an encoded state.

A PIPO implementation was also designed and tested at

the layout level(but not fabricated) in order to give area cost,

power data, etc, with identical compression behaviour. This

design had an area cost of 5% less than the SISO model

(approximately 155um2), and used 38 flip-flops compared to

43 for SISO as a result of eliminating the cycle-state counter

needed for the SISO model. This design is very similar to

the design shown for the SISO model, but the input sample

word and output sample word are written to and read from

(respectively) in a bit-parallel fashion, rather than bit-serial as

is the case for SISO.

The L2SB circuit was incorporated into the larger project

chip layout, and fabricated via the European Europractice

service to academia, via the IMEC centre. The chips were

then packaged with an 84-pin CFPGA package, with some

also supplied as glass-lid samples for display (one of which

is shown earlier in Figure 1).

Validation of the fabricated L2SB encoder was performed

with bench-test equipment, comprising of a ZynqTM FPGA

board to generate test signals, and measurements taken on a

LeCroyTM WaveSurfer-440 digital oscilloscope. Oscilloscope

screen-shots, from the operational bench tests, are shown in

Figure 6. Screen-colors are inverted for clarity in print. This

shows three test cases, covering the single, double and triple

band encoding cases. This implementation includes a start-bit

Fig. 5. L2SB 4,4,4,0 Coder-Decoder Example Layout, 65nm UMC CMOS.

(logic-low) and end-bit (logic-high) feature, shown in blue in

the figure, which allowed data items to be framed for testing.

More comprehensive tests were performed using automated

test-pattern stimulus. The L2SB encoder passed all validation

tests, and the fabricated data compressor module was fully

operational. One limitation of incorporating the SISO L2SB

test circuit into a more complex system design was that

taking isolated power measurements from the chip was not

possible. In this paper we use a data-driven post-synthesis

power estimation methodology as described in the following

section. This also means that SISO and PIPO can be compared

on equal measures.

IV. L2SB PERFORMANCE: EVALUATION TEST CASES

In order to evaluate L2SB encoder performance, test cases

that relate to real-world application scenarios were chosen,

hardware implementations of suitable L2SB compressor cir-

cuits were implemented, and power measurements were ob-

tained from synthesis tools using Value Change Dump (VCD)

stimulus files generated from simulations of each compression

test-case using actual data streams. Two L2SB models were

tested, the SISO (Serial In Serial Out) implementation as

fabricated on the test chip, and an additional PIPO (Parallel in

Parallel Out) model, whereby whole data words are clocked in

on each successive clock cycle, with compressed data clocked

out one cycle later.

A. Initial Power Analysis

For initial power tests, the Bonn University EEG Epilepsy

data-set was utilized [22]. This data-set contains the following

EEG test data-sets (Referred to by the originators as File-Sets

O, F, and S, respectively).

• EEG1: Healthy subject [O.zip]

• EEG2: Epileptic subject, no seizure [F.zip]
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• EEG3: Epileptic subject, with seizures [S.zip]

Each file set consisted of 100 segments of about 24 sec-

onds of EEG data (more exactly, 4096 samples captured at

173.6Hz). These were mapped to a 12-bit positively ranged

binary scale and compressed using L2SB VHDL implementa-

tions. Logic-level simulations of the compressors were used to

generate value-change-dump (.vcd) files which were then used

in the RTL synthesis tool to generate power estimates. The re-

sulting data, normalized to a 1kHz continuous conversion rate,

is summarized in Table II, where CR is tabulated alongside

static and dynamic power estimates for both SISO and PIPO

implementations, with maxima, minima, mean, and standard

deviation to 95% limits. The scatter-graph of compression

ratios is also given for the three data subsets within the whole

data-set, as given in Figure 7, where it can be seen that CR

is noticeably banded according to the three test cases. It can

also be seen that compression ratios are significantly higher in

the seizure patients during non-seizure EEG monitoring cases.

This may well relate to the reported differences in EEG power

spectra components for patients under similar conditions [16],

which could account for reduced inter-sample differences and

thus the higher compression rates.

It can be seen that CR is, on average, around 1.56 +/-

16% at 95% limit, with CR as high as 2.05. This translates

into an average data reduction (DR) of over 35%. However,

this figure uses an equally weighted average. In practice,

a patient may have seizures infrequently (one would hope

that even a 100:1 ratio of seizure versus non-seizure data is

pessimistic), or a system may record only the seizure events

(with assistance of a detection algorithm), though data volume

in this case is relatively small anyway. This means that there

are actually multiple CR scenarios to consider, some of which

are postulated in Table III.

Examining the power data from post-synthesis simulations,

with actual data-set stimulus, static power (at a 1kSa/sec con-

tinuous conversion mode) is found to be almost constant for

both implementations, and significantly larger than dynamic

power at this data-rate. Dynamic power is relatively small

by comparison, and shows small variance of a few percent.

It can be concluded that at these sample compression rates,

power is highly consistent across a fairly significant range of

signal behaviour. At 1kSa/sec data-rate, overall power con-

sumption averages 234nW for PIPO. For easier comparison,

it is potentially more convenient to measure power per-bit for

each compression event. This measure equates to 19.6pJ/bit

for PIPO, at this data-rate.

B. Further Optimization

At low device clock-rates, such that sample compression is a

continuous back-to-back operation for successive samples, the

device remains powered up 100% of the time. Alternatively,

power-gating, with an on/off duty cycle, allows conversions

to happen at higher clock-rates, with intervening power-down

‘sleep’ phases. Although we have not implemented a power-

gated L2SB design in silicon, our initial evaluation suggests

that static power could be reduced by 50% to 75% using

simple on/off power gating, since almost all of the logic has

Fig. 6. LS2B 65nm CMOS ASIC Test Waveforms. (Images show Lecroy
Wavesurfer 440 Screen-shots, colors inverted for print clarity.)

TABLE II
INITIAL POWER AND CR ESTIMATES FOR 1KSA/SEC CONTINUOUS

SAMPLE-WORD COMPRESSION, AND EEG DATA-SET

Compression Ratio (CR)

healthy SF Seizure ALL

CR min 1.45 1.1 1.57 1.38
CR max 1.62 1.57 2.05 1.75
CR ave 1.58 1.29 1.8 1.56
Std Dev 2 6% 25% 17% 16%

PIPO Power Consumption

healthy SF Seizure ALL

Ps min nW 228.52 230.7 228.89 229.37
Ps max nW 234.57 233.01 232.79 233.46
Ps ave nW) 231.02 232.01 230.56 231.2
Std Dev 2 1% 1% 1% 1%

healthy SF Seizure ALL

Pd min nW 3 3.1 2.62 2.91
Pd max nW 3.19 3.21 2.78 3.06
Pd ave nW 3.12 3.14 2.71 2.99
Std Dev 2 4% 2% 5% 4%

SISO Power Consumption

healthy SF Seizure ALL

Ps min nW 147.17 147.2 147.24 147.17
Ps max nW 147.31 147.68 147.4 147.68
Ps ave nW) 147.23 147.29 147.29 147.27
Std Dev 2 0% 0% 0% 0%

healthy SF Seizure ALL

Pd min nW 12.79 12.61 13.3 12.61
Pd max nW 13 12.74 13.62 13.62
Pd ave nW 12.91 12.68 13.37 12.99
Std Dev 2 1% 1% 10% 4%

TABLE III
HYPOTHETICAL EEG MONITORING SCENARIOS AND ESTIMATED

COMPRESSION RATIOS

Mode CR estimate data reduction

Selective Seizure Recording 1.801 44%
Continuous Monitoring (1% seizure) 1.29 22%

Pre-diagnostic Healthy/Epileptic 1.29-1.58 22-35%

1compression for recorded portions. Actual data volume would be reduced much more,

due to recording only the seizure events.
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TABLE IV
ENERGY ESTIMATES, BONN EEG DATA-SET, SHOWING PJ/BIT

Continuous Operation

1kSa/s 10kSa/s 100kSa/s 1MSa/s
PIPO Ps, pW/bit 19.27 1.93 0.19 0.02
PIPO Pd pW/bit 0.25 0.25 0.25 0.25
PIPO tot. pJ/bit 19.52 2.18 0.44 0.27

SISO Ps pW/bit 12.27 1.23 0.12 0.01
SISO Pd pW/bit 1.08 1.08 1.08 1.08
SISO tot pJ/bit 13.35 2.31 1.21 1.09

Power Gated 100:1

1kSa/s 10kSa/s 100kSa/s 1MSa/s
PIPO Ps, pW/bit 9.73 0.97 0.1 0.01
PIPO Pd pW/bit 0.25 0.25 0.25 0.25
PIPO tot. pJ/bit 9.98 1.22 0.35 0.26

SISO Ps pW/bit 6.2 0.62 0.06 0
SISO Pd pW/bit 1.08 1.08 1.08 1.08
SISO tot pJ/bit 7.28 1.7 1.14 1.08

non-persistent data content. The principle here is a partial

power-gating strategy, to retain the previous sample in the rel-

evant data-latches without any power-gating, whilst applying

power-gating to most of the remaining circuitry, since only

the previous sample represents persistent state information

between successive sample encodings.

Evaluations are given of power consumption per bit in

Table IV. With a 100:1 duty cycle, a moderate 50% reduction

in leakage current by power-gating, and a 10kSa/sec data-

rate (heading toward the upper end of usual per-channel bio-

physiological signal sampling rates of 10’s of kHz), it is

estimated that the PIPO L2SB compression circuit would

consume only 1.22pJ per bit, and about 1.7pJ for this SISO

CMOS implementation at a 1.2v core voltage. It is also

noted that at higher frequencies, PIPO and SISO move closer

together for consumption per bit, regardless of power-gating

usage. Above 1MSa/Sec power consumption reaches as low as

250 femtoJoules per bit for PIPO implementation, and this is

roughly constant beyond this point, up to maximum operating

data-rates. This diminishing benefit of power gating, at high

frequencies, is due to static power becoming negligible with

respect to increasingly dominant dynamic power consumption.

It is clear that SISO implementation is outperformed by
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Fig. 8. Energy consumption Trade-off for PIPO vs SISO L2SB circuits.
Showing energy consumed per bit, per sample conversion event.

PIPO L2SB in terms of power consumption, particularly

for higher data-rates. For comparison, Figure 8, shows the

picoJoule-per-bit energy consumption of the four cases for

selected sample rates up to 20kSa, showing the comparative

performances with and without power-gating.

C. Broader compression evaluations

Evaluation of direct power cost is one factor of interest

for L2SB encoding. However, to gauge the overall benefit of

L2SB encoding in a complete system, it is also necessary to

evaluate its compression performance over a broader range

of data-sets. Furthermore, whilst one particular configuration

has been chosen for the implementation, there are many

possible configurations of L2SB encoding. For an n-bit sample

word, and an LS2b band configuration comprising of bands

‘a’,‘b’,‘c’, and ‘d’, every possible set of values of a,b,c and d,

that sum to a total of ‘n’, are potentially valid permutations. So

for example, a configuration {1,2,4,5} has a total of 12 bits, but

each band has its own unique width, and each permutation will

deliver a different compression ratio to the default {4,4,4,0}
configuration. If some validity constraints are applied, for

example, only allowing the least significant band to have the

option of zero width, then a 12-bit sample word has around

300 valid permutations, out of over 1300 candidates.

Taking these valid permutations, and applying each of

them in turn to a data-set, allows us to determine the best

permutation(s) for a given data behaviour. In effect, we can

tune the algorithm to suit the dynamics of the particular

kind of data being compressed. For example, applying L2SB

encoding, in XOR mode, to the whole Bonn EEG data-set

(file groups O,F, and S), the compression ratio for the 4,4,4,0

configuration is found to be 1.31 (a saving of 24% of total

sample data). However, when all valid band configurations are

considered, it is apparent that there were better choices that

could have been made. This can be seen in Figure 9, which

plots all 299 permutations in terms of CR achieved in each

case. Analysis of the individual results identifies configuration

{-,4,3,5} as the best choice, with a CR of 1.39 and a bit

storage/transmission saving of 28%. Further work may allow

this band-tuning concept to be derived from the distribution

of dynamic changes in the data (such as a Gaussian curve),
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Fig. 9. L2SB with XOR (Bonn EEG Dataset). Where CR is plotted for each
valid permutation 0 to 299. The pattern of variation results form the way the
band permutations are iterated.

this is an interesting idea, but providing a mathematical basis

and proof is beyond the scope of this paper.

A further observation may be made regarding band choices.

In a typical system, we envisage the band configuration

being static for a given application, or recording session,

and either fixed in software or hardware or reset at power-

on initialisation. No information about band settings need

to be transmitted. A more complex solution might employ

dynamically changing bands, and these might be indicated at

the start of each new frame, however we do not investigate

this idea here.

For the purposes of an initial ‘reality check’ comparison,

a Huffman code-book, optimistically trained on 100% of the

test data, and using DPCM precoding, delivers a CR of 1.98,

a 49% reduction in data bits. However there are significantly

higher costs associated with this compression approach, as will

be highlighted later, whilst it is also true that compression

rates may be lower if the Huffman code-book is trained using

a reference data set and then used with new ‘unseen’ signal

input. There is now a potential choice - save about 50% of

data storage and/or transmission with high hardware cost, or

save 30% with a much lower hardware footprint.

Proceeding with more comprehensive tests, Table V presents

a number of data-sets, evaluated for achievable compression

ratios. This tabulates the compression ratio achieved by the

best L2SB configuration in each case, alongside Huffman

code-book. In all cases the Huffman code-book is trained on

the whole data-set, and code-books are fully populated with

all possible input symbols. This latter point is essential: it is

possible to create a code-book that partially populates a 12-bit

symbol table (for example only 800 symbols out of a possible

4096 may be used by the training set), but this is not a valid

representation for a real system. Otherwise, what would the

hardware do when presented with a previously unseen symbol?

A valid Huffman code-book must assign a code-word to every

possible lookup value if it is used in a real-time compression

application. The data-sets have the following details:

• Bonn University EEG Database, 12-bit 173Hz, 300

traces, no rescaling required.

• MIT CHB EEG scalp electrode data, 256Hz [24], [26].

TABLE V
COMPRESSION RATIOS FOR SELECTED DATA-SETS

DATA-SET Type L2SB.std L2SB.best Huffman

a. BONN EEG EEG 1.31 1.39 1.98
173Hz,12bit (x-y) (x-y) (x-y)

b. MIT CHB EEG 1.87 1.94 2.02
256Hz,11bit (1.67-2.25) (1.72-2.28) (1.87-2.32)

c. MIT BIH ECG 1.57 1.63 2.6
360Hz,11bit (1.34-1.79) (1.41-1.83) (2.28-2.95)

d. YI MEG MEG 1.36 1.54 1.86
678Hz,12bit (1.12-1.39) (1.49-1.59) (1.70-1.94)

• MIT BIH ECG arrhythmia database, 360Hz, 11bit, re-

scaled to 12bit full scale. [25], [26].

• York Instruments nanoTesla MEG data, 24-bit 678 Hz,

re-scaled to occupy 2/3rds of 12 bit scale.

For the MIT BIH Arrhythmia ECG data-set, 48 separate

data files were analyzed. Each data file is relatively short

and contains differing aspects of ECG observation, therefore

variations are likely. In this case, the standard deviation at 95%

limits is 13%, centered around an average CR of 1.57.

For the MIT-CHB Scalp-electrode database, due to the size

of the complete database, fourteen files were analyzed, each

containing twenty-eight channels of data (40Mbyte each file),

four of which contained seizures within the data. Although

this data is stated as being acquired as 16-bit, all of the files

used were able to map onto a 12-bit range such that, on

average, sample range covers 90% or more of the full signal

range without rescaling. L2SB Compression performs well

in this data-set, achieving results quite close to the Huffman

compression model, where CR is found to be 2.02 for Huffman

vs 1.94 for the optimal L2SB band configuration. This is much

better than the Bonn EEG dataset, perhaps due to the higher

sample rate.

For the MEG data-set, provided by York Instruments ltd

(UK), the data was analyzed as a whole, yielding a CR of 1.36

for the default choice of configuration {4,4,4,0}. However the

best case configuration, {-,5,2,5} with three bands and prefix

codes ‘0’,‘10’ and ‘11’, achieved a CR of 1.54, highlighting

the importance of identifying the best band configuration for

a given data behaviour. Note that these permutation analyses

included every possible variation of 1,2,3 and 4 band encoding,

with all possible prefix options. Further comparisons, with

other work in the field with the same or broadly comparable

data sets, are given in Table-VI.

D. Performance Comparisons

To assess the usefulness of any compression method, and

implementation, there are three major concerns. The first

relates to the compression ratio achieved, since this determines

how much data transmission or storage effort is saved. The

second concern is the power consumed whilst achieving the

reduction in data needing to be managed. The third consider-

ation is circuit area, since large circuits may be unwelcome

additions to an SOC or FPGA design.
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TABLE VI
CR COMPARISONS WITH SELECTED REPORTED COMPARISON CASES

REF TEST CASE CR L2SB DPCM-HUF Data Sets (12bit)

[32] ECG1 2.53 1.63 2.6 MIT-BIH (c)

[21] ECG2 2.38 1.63 2.6 MIT-BIH (c)

[34] ECG3 2.67 1.63 2.6 MIT-BIH (c)

[36] ECG4 3.07 1.63 2.6 MIT-BIH (c)

[21] EEG5 1.37 1.67 2.0 EEG (a,b)

[9] EEG6 2.51 1.67 2.0 EEG (a,b)

[33] EEG7 2.77 1.67 2.0 EEG (a,b)

[33] EEG8 1.34 1.67 2.0 EEG (a,b)

[33] EEG9 1.97 1.67 2.0 EEG (a,b)

note-1: 12-bit ECG, Adaptive predictor, 2-stage Huffman encoder , note-2:

10-bit ECG, 256 Sa/s, DPCM plus Golumb-Rice encoding , note-3:

Adaptive Linear Predictor, MIT-BIH Dataset , note-4: 12-bit ECG, Template

matching, subset of MIT-BIH data set. . note-5: 10-bit EEG, 128 Sa/s,

DPCM plus Golumb-Rice encoding note-6: 12-bit EEG, FLO/FIX2

Multichannel predictor, Golumb-Rice Encoding note-7: 16-bit EEG,

DPCM+Karhunen-Loeve-transform+Temporal-Decorreleation, Huffman

Encoder note-8: 16-bit EEG, GZIP note-9: 16-bit , jpeg2000

A good starting point, for the basis of comparative per-

formance analysis, is Huffman Encoding, since this is very

well defined, and widely used by researchers to measure

their own compression algorithms against. It is effectively a

‘standard measurement’ and allows those novel techniques

to be compared with those proposed here, using Huffman

performance as a common reference point.

Techniques that employ code-books, such as variations of

Huffman encoding, can potentially imply rather large circuit

area cost, due to the need for look-up ROMs or RAMs with

thousands of locations and tens of bits per location. However,

one advantage of a code-book is that it can be accessed

multiple times per sample epoch to permit one code-book to

generate compressed encodings for multiple simultaneously

acquired channels. Thus, in the case of ECG, where there

are only a handful of channels, a code-book may be quite

costly in terms of circuit area, whilst in a 300-channel MEG

system, it might potentially be more desirable. In contrast, for

the simple implementations of L2SB discussed in this paper, a

multi-channel system would typically require a separate circuit

for each channel, albeit each being an instance of a very small

circuit.

1) A Basis for Huffman Power Estimation.: In order to eval-

uate Huffman compression circuitry, suitable reported 65nm

CMOS memory costs have been considered [27]–[29], from

which it was established that 200pw for static power per bit

and 3.3 um2 area cost per bit-cell is a reasonable assumption.

Huffman code-book area and static power cost can thus easily

be estimated. For example, a 4 Kword by 39 bit code-book

has a total of 159,744 bits, total leakage power of 31.9uW,

and an area cost of 527,155 um2. This area cost is highly

significant even for a low-nm silicon CMOS design, but even

more so for emerging technologies such as thin-film organic

semiconductor sensor circuits. An important point to note here

is that the Huffman circuit methodology is a ‘plain’ Huffman

baseline approach. Whilst techniques exist to truncate and

augment Huffman code books to reduce hardware cost [32],

these are often intimately interlinked with particular predictor

algorithms, and are therefore not easy to generalise. There are

also many potential ways to condense a Huffman code book,

and it therefore makes sense here to use a single well-defined

case as a baseline.

Dynamic read-power per code-book symbol look-up can

also be estimated. Based upon work in the field, a typical

value was found to be 5pW/bit per read. Implying 195pW for

a 39-bit read. Finally, therefore, at 1kSa/Sec, total power is

32.15uW, power per sample is 32.15nw, and energy per bit

is 2.7nJ per bit. Huffman coding is more power efficient per-

sample at higher data rates, which may include interleaving

multiple channels. For example, supporting 10 channels at

10kSa/sec gives a code-book throughput of 100kSa/Sec and

power consumption of 428pJ per sample bit.

2) Huffman Power and Area Projections: Taking relevant

scenarios implemented using L2SB and the described Huffman

code-books, a comparison is presented in Table VII, where

data is provided for power and area cost for Huffman and

L2SB compression circuits operating at a 1KSa/sec data

throughput. Power and area calculations are given for systems

with 1, 4, and 8 channels. For L2SB compression, the power

and area per channel is constant, whilst total power and total

area increase proportional to channel count. For Huffman

compression, total power rises as a function of channel count,

but power cost per channel reduces, since a single circuit with

associated leakage is serving, 1, 4, 8, or more channels.

Note that the Huffman code-book size is calculated as

follows: suppose a 12-bit sample word is compressed by

Huffman encoding and the maximum resulting code-word size

in the code-book element width is 18 bits. Now, although the

code-word ‘w’ occupies 18 bits, an associated code-word size

indicator ‘s’ is also needed to inform the next stage of the

system as to the code-word size being provided in the current

compression cycle. Since ‘s’ must be a binary number, it must

be 5 bits in this case, since 25 = 32, which is greater than or

equal to 18, whilst 24 = 16, which is too small. Therefore, the

total code-book is the binary lengths of ‘w’ and ‘s’ combined

(in this example case 23 bits).

Examining again Table VII, it can be seen, then, that a

single channel Huffman compression circuit might consume

around 32.2nW (2.69pW per bit) at 1kSa/Sec. A PIPO L2SB

encoder using a 100:1 duty cycle to support power gating,

and assuming a 50% static power saving in sleep mode,

would consume around 120pW (10pW/bit), representing an

approximate 270:1 power advantage for L2SB. However, the

L2SB circuit (in its simplest embodiment) must be duplicated

in area for each additional channel concurrently supported,

whereas the single Huffman code-book can be interleaved

between channels, effectively sharing the static power burden.

It is seen that for eight channels, Huffman consumes only

350pw/bit, a much improved figure, but still a 35:1 ratio of

power consumption per channel compared to L2SB. If a wide

range of channel counts are considered, as given in Table VIII,

a single-stage huffman-DPCM model tends eventually toward

a figure of around 16pw/bit for very high channel counts (of

the order of 1000’s). However, few bio-physiological sensing

applications have such demands.

For circuit area overhead, L2SB and Huffman are also

compared in Table VII. Here it is possible to see that for a

single channel, Huffman is vastly larger than L2SB in terms
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of circuit area, averaging 529.14um2 for one-channel DPCM-

Huffman, versus 155um2 for L2SB. For multiple channels,

L2SB area cost is a linear product of channel count, whereas

it is a fixed cost for Huffman. Consequently, area cost per

channel is always 155um2 for L2SB, but reduces for Huffman

as channel counts increase.

3) Figure of Merit (FOM) measurements: The power and

area data, quoted in the preceding section, is a raw power

and area cost estimate, and does not take into account the

differing compression ratios delivered by each case. Yet,

compression ratio is an important element. Therefore, a further

perspective on relative performance can be obtained by taking

the calculated power and area data for the L2SB/Huffman

comparisons, and utilizing these to generate figures of merit.

There are two figures of merit used here, as introduced earlier:

Data Reduction per pJ (DR/pJ), and Data Reduction per um2

(DR/um2).

This FOM data is also calculated in Table VII, and it can

be seen that the relative efficiency of L2SB and Huffman

algorithms in achieving a given compression goal can be

evaluated using these measures. In power terms, Huffman is

almost 27 times less power efficient per bit of data reduction

achieved through compression than L2SB, for an 8-channel

system, and 192 times less efficient for a single-channel mode.

For area efficiency, L2SB is several thousand times more

efficient in delivering data bit reduction via compression for a

once-channel system, and still over 300 times better for eight

channels, compared to Huffman. A further area comparison

(albeit less precise) can be made with other work in the field,

provided that area-costs are scaled to the same process node

(65nm). Such a comparison is given in Table X, where a

variety of loss-less compression schemes are reported. For

these cases, it can be observed that L2SB delivers considerably

more data compression per um2 of silicon than the cited cases.

Additional area comparisons are given in Table X, where

a variety of reported compression scheme VLSI implementa-

tions are compared for estimated area cost at 65nm, with data

scaled from process nodes, as reported, where necessary.

It is important to remember, here, that these figures relate to

data compression as a function of power or area, not absolute

compression ratio. L2SB is not compressing data volume 30

times more than Huffman, indeed Huffman delivers better

absolute compression than L2SB. What the data shows is that

L2SB achieves 30 times more compression per pico-Joule.

Huffman consumes disproportionately more power and area

to achieve its superiority, whilst L2SB is moderately inferior

in compression ratio, but with much lower resource cost. At

this point, a question must arise - is more compression at much

higher cost better than less compression at extremely low cost?

This can be answered when the goal of compression is finally

dropped into place - we wish to reduce one or more sys-

tem overheads, and primarily memory storage requirements,

memory storage power, and data transmission power. This is

examined in the next section.

V. SYSTEM LEVEL PERFORMANCE TRADE-OFFS

At the system level, there are two major areas of concern in

the context of this study. The first concern relates to systems

TABLE VII
HUFFMAN VS. L2SB FIGURE OF MERIT ESTIMATIONS

HUFFMAN Compression Versus Power (1ksa/s)

Ch CR CWL Ps/Sa Pd/Sa pW/Sa /ch DR/pJ

(bits) (pW) (pW) (pW) (1 x 10-4)

MIT.CHB 1 2.02 42 34286 210 34496 0.6

MIT.BIH 1 2.6 34 27755 170 27925 0.9

YIMEG 1 1.86 44 35919 220 36139 0.5

BONN 1 1.98 37 30204 185 30389 0.7

AVE.1 1 2.12 39 32041 196 32237 0.7

AVE.4 4 2.12 39 32041 785 8207 2.6

AVE.8 8 2.12 39 32041 1570 4201 5

PIPO L2SB Compression Versus Power (1kSa/s, 100:1 Duty Cycle)

Ch CR CWL Ps/Sa Pd/Sa pW/Sa /ch DR/pJ

(bits) (pW) (pW) (pW) (1 x 10-4)

MIT.CHB 1 1.39 n/a 117 3 120 116.1

MIT.BIH 1 1.94 n/a 117 3 120 162

YIMEG 1 1.63 n/a 117 3 120 136.1

BONN 1 1.54 n/a 117 3 120 128.6

AVE.1 1 1.63 n/a 117 3 120 135.7

AVE.4 4 1.63 n/a 467 12 120 135.7

AVE.8 8 1.63 n/a 934 24 120 135.7

HUFFMAN Area Versus Compression

Ch CR CWL Total Area Area/Ch DR/um2

(bits) (um2) (um2) (1x10-6)

MIT.CHB 1 2.02 42 566,503 566,500 0.9

MIT.BIH 1 2.60 34 458,598 458,600 1.3

YIMEG 1 1.86 44 593,480 593,480 0.8

BONN 1 1.98 37 499,062 499,060 1

AVE.1 1 2.12 39 529,411 529,410 1

AVE.4 4 2.12 39 529,411 132,353 4

AVE.8 8 2.12 39 529,411 66,176 8

PIPO L2SB Area Versus Compression (1kSa/s, 100:1 Duty Cycle)

Ch CR CWL Total Area Area/Ch DR/um2

(bits) (um2) (um2) (1x10-6)

MIT.CHB 1 1.39 n/a 155 155 1810

MIT.BIH 1 1.94 n/a 155 155 3126

YIMEG 1 1.63 n/a 155 155 2494

BONN 1 1.54 n/a 155 155 2262

AVE.1 1 1.63 n/a 155 155 2481

AVE.4 4 1.63 n/a 620 155 2481

AVE.8 8 1.63 n/a 1240 155 2481

Where CR = Compression Ratio, CWL= Huffman Code Word Length, Data Reduction

per pJ (DR/pJ) for Power, Data Reduction per um2 (DR/um2) for Area.

TABLE VIII
POWER AND AREA COSTS: HUFFMAN VS L2SB (MULTI-CHANNEL).

HUFFMAN AT 1kSa/s

Channels 1 4 16 256 512
Pd nW 195 780 3120 49920 99840
Ps nW 31,949 31,949 31,949 31,949 31,949
Tot nW 32,144 32,729 35,069 81,869 131,789
PJ/Ch/Sa/bit 2679 682 183 27 21

Tot area (um2) 529,410 529,410 529,410 529,410 529,410

PIPO L2SB at 1kSa/s, 100:1 duty cycle

Channels 1 4 16 256 512
Pd nW 3.0 12.0 47.9 765.9 1,531.7
o Ps nW 116.8 467.0 1,868.1 29,889.4 59,778.7
Tot nW 119.7 479.0 1,916.0 30,655.2 61,310.4
PJ/Ch/Sa/bit 10.0 10.0 10.0 10.0 10.0

Tot area (um2) 155.0 620.0 2,480.0 39,680.0 79,360.0

RELATIVE COST (LS2B=1)

Huff Power 268.4 68.3 18.3 2.7 2.1
Huff Area 3,415.5 853.9 213.5 13.3 6.7
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TABLE IX
SYSTEM POWER TRADEOFF - FLASH POWER VERSUS COMPRESSION.

HUFFMAN AT 1kSa/s

Channels 1 4 16 256 512
pJ/Ch/Sa/bit 2,679 682 183 27 21
Data Reduction 47 % 47 % 47 % 47 % 47 %
Write pW saved/ch 2.4 2.4 2.4 2.4 2.4
pW Saved/ch -2,676 -679 -180 -24 -19
Tot uW saved -2.7 -2.7 -2.9 -6.2 -9.8

PIPO L2SB at 1kSa/s, 100:1 duty cycle

Channels 1 4 16 256 512
pJ/Ch/Sa/bit 10.0 10.0 10.0 10.0 10
Data Reduction 38 % 38 % 38 % 38 % 38 %
Write pW saved/ch 1.9 1.9 1.9 1.9 1.9
pW Saved/ch -8.1 -8.1 -8.1 -8.1 -8.1
Tot uW saved -0.01 -0.03 -0.13 -2.07 -4.15

in which data is stored in non-volatile on-board memory, for

later access. This is typically achieved via an on-board flash

memory components, and often of the order of several gigabits

capacity. Examples of this use-case include wire-free miniature

data-recorders [17], [18]. Such systems are designed to operate

in a wearable ambulatory mode of operation, with neither a

wired (umbilical) connection to a master unit, or a wireless

(radio tethered) connection to a base-station. Here, the major

power costs associated with data are the storage costs in terms

of (a) storage capacity, and (b) data write power.

A. Compression-Storage Trade-offs

Considering non-volatile memory storage first, it is self

evident that reducing data by 30% via compression will

increase potential storage capacity of the system by the same

amount. There are no major insights here, other than to say

a higher compression rate is better if storage capacity is the

only concern. However, for power consumption, the picture

is somewhat different. Typical flash memory chips have a

write power consumption of around 3-4pW per bit [19], [20],

though write operations are typically performed in blocks after

accumulating enough bytes to fill a write page. It is often

overlooked that bytes must first be written to the flash page

buffer, before the actual write is completed internally, and this

consumes more power. Therefore, whilst the typical page write

time, averaged on a per-byte basis, may be of the order of 120-

150ns per byte, the data-transfer to internal buffer may require

an additional 20-40ns of time spent in active power mode per

byte written. On this basis, a figure of 5pW per bit appears to

be a reasonable benchmark for comparing flash write power

against data compression power, on a bit for bit basis.

Taking the figure of 5pW per bit for flash-memory write-

power, and employing this in a trade-off between compression-

power consumed, versus flash-memory write-power saved (by

reduced volume of writes), the analysis presented in Table IX

is derived. This analysis utilizes the same data-sets as those

used for Tables VII and VIII. For both Huffman code-book

compression, and L2SB, it is clear that there is no direct benefit

between compression ratios achieved versus flash storage

power cost. However, for a 16-channel system L2SB has

relatively small power cost to achieve worthwhile storage com-

pression, whilst Huffman has relatively high power penalty.

TABLE X
AREA COST FIGURE-OF-MERIT (FOM), L2SB VS. BROADER

COMPARISON SCHEMES.

REF Details CH Area est. um2 CR DR DR/um2

(65nm)

[21] ECG/EEG1 19 7563 1.875 0.47 1172

[35] ECG2 1 9910 2.38 0.58 59

[15] ECG3 1 5998 2.43 0.59 98

[32] ECG4 1 4486 2.53 0.6 135

[34] ECG5 1 3390 2.67 0.63 184

L2SB EEG/ECG.6 1 155 1.63 0.39 2494

note-1: 10-bit ECG+EEG, DPCM plus Golumb-Rice encoding, note-2: Slope

Predictor+Huffman, note-3: ECG Mit BIH Data-set, predictive coder, plus

2-stage Huffman, note-4: 12-bit ECG, Adaptive predictor, 2-stage Huffman

encoder, note-5: MIT BIH + Other Data-sets, Adaptive region-specific

preditcion, plus Modified Variable-Length Coding, note-6: MIT BIH, BONN

Data-set, XOR-Differential, PIPO Log2 Sub-band Variable Length Coding.

The message here is that L2SB can deliver useful data storage

capacity compression outcomes at minimal power cost in some

cases. However, neither of the algorithms examined can reduce

flash memory data-write power enough to compensate for the

additional cost of the associated data compression.

B. Compression-Transmission Trade-offs

A brief survey of data transmission approaches at data-rates

up to the order of 1Mb/sec, and used in relevant work in the

field, yields the data presented in Table XI, and showing a

wide range of power consumptions.

Power tradeoffs for compression versus transmission power

can be estimated on the following simplified basis: Given a

particular sample rate, such as 10kSa/sec, with perhaps 12 bits

per sample, then the minimum data-rate required to support the

data transmission without compression must be 120 kbits/sec

in this case. Assuming an average of 111nj/bit, then the data

transmission power cost must be at least 13,200,000nJ, contin-

uous power/energy cost. If compression reduces the bit rate by

30%, then the power consumption attributable to transmission

would reduce by 30% also. In this case, 3,996,000nJ would be

saved. If the compression cost was, for example, 1.3pJ per bit,

then total compression power cost is found to be 156,000pJ,

and the total power saving is actually 3,840,000pJ, or 3.8uW

continuous operating power reduction.

Clearly, the critical factors here are (a) the data reduc-

tion/compression ratio, (b) the power consumed per bit com-

pressed, and (c) the transmission power saved for each bit no

longer needing to be transmitted. Taking several compression

scenarios, including L2SB and Huffman, it is possible to

compare systems in terms of power saved.

For this comparison, we assume several test-case scenarios,

including those already introduced (notably DPCM-Huffman

and XOR-L2SB), but also including other reported work where

power data is readily interpreted for known data-rates and

repeatable configurations. To give representative transmission

cases, power figures are based upon literature in the field, and

several chosen aggregate cases, as defined in Table XI.

For the the primary comparison with the low-power lossless

encoder [21], separate static and dynamic power data is not
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TABLE XI
SYSTEM POWER TRADEOFF - TRANSMISSION POWER VERSUS

COMPRESSION.

Description Data-Rate nj/bit Ref

Zigbee CC340 0.25Mb/s 296 [21]
Bluetooth BlueCore2 0.72Mb/s 143 [21]
Bluetooth T1 I BRF6150 1.00 Mb/s 75 [30]
Nordic RF transciever GFSK 1.00 Mb/s 21 [30]
ZL70250 ISM 0.10 Mb/s 20 [30]

PicoRadio, ultralow Data rates 1-10 Hz typ 1.25 [31]

Average-1 (excl Picoradio) 111
Average-2 UWB/WIFI 21

reported, and so cannot easily be translated to a nominal

operating sample rate. However, this work reports a test case of

a 24MHz operating frequency, and 170uW power consumption

at an equivalent data-rate of 1226 x 12 bits and one channel.

It is possible, therefore to align L2SB and Huffman operating

conditions to this model. For this scenario, L2SB is configured

to operate as a single channel PIPO compressor, clocked at

24MHz, with a sample data-rate of 1226 Sa/sec, thus allowing

a power-gating duty cycle of approximately 19500:1 to be

assumed. Huffman encoding also operates in a 1226 sample

per second, single-channel look-up mode. This comparison

results in the data presented in Table XII

The best-case band configuration is chosen for L2SB, with

power as measured in the earlier described CMOS implemen-

tation.

Although Huffman produces a higher power saving for

both Bluetooth and Zigbee test cases, correlating to its higher

compression ratio, the L2SB model delivers power savings

very similar to chua’s low-power lossless compressor, in spite

of having a lower compression rate. A lower compression rate

acquired by much lower power cost, allows overall power

saving to be comparable to a system with higher CR. Even

Huffman encoding does not deliver a very substantial overall

power saving as compared to L2SB, and when area cost is

also considered, it is clear that L2SB offers a very desirable

combination of overall power saving versus area cost invested

at the chip layout level.

For more power-efficient transmission cases, L2SB becomes

even more attractive, apparently outperforming Chua, and

almost matching Huffman, and of course with much lower

chip area. This is particularly clear for the 21nj/bit transmis-

sion cost scenario, where Huffman starts to enter a region

where it begins to lose its power benefit, and the ‘Chua’ test

case actually results in a negative power optimization (i.e. it

consumes more power than it saves).

This last point is a very important observation: as trans-

mission power cost is gradually improved by better design

of transmitters, the proposed XOR-L2SB methodology has

significant advantages to offer here. If future improvements in

compression can be made, then L2SB may well be envisaged

as a preferred method of achieving valuable system power

gains in radio-linked systems.

TABLE XII
CHUA ET AL VS HUFFMAN AND L2SB, 24MHZ TEST CASE.

GENERAL DATA

Chua Huffman L2SB

Area um2 58000 529410 155
Compression Ratio 1.82 2.2 1.65

ZIGBEE 296 nj/bit

Raw TX power nj/bit 296.00 296 296.00
TX power With CR, nJ/bit 162.94 134.55 179.03
Compression Cost nJ/bit 12.00 2.22 0.0081
Total Power with CR, nj/bit 174.94 136.76 179.04
Saving 40.9% 53.8% 39.5%

BLUETOOTH 143 njJbit

Raw TX power nj/bit 143.00 143.00 143.00
TX power With CR, nJ/bit 78.72 65.00 86.49
Compression Cost nJ/bit 12.00 2.22 0.008
Total Power with CR, nJ/bit 90.72 67.22 86.50
Saving 36.6% 53.8% 39.5%

TxAVE-1, 110nJ/bit

Raw TX power nJ/bit 111.00 111.00 111.00
TX power With CR, nJ/bit 61.10 50.45 67.14
Compression Cost nJ/bit 12.00 2.22 0.0081
Total Power with CR, nJ/bit 73.10 52.67 67.15
Saving 34.1% 52.5% 39.5%

TxAVE-2, 20nj/bit

Raw TX power nj/bit 21.00 21.00 21.00
TX power With CR, nj/bit 11.56 9.55 12.70
Compression Cost nj/bit 12.00 2.22 0.0081
Total Power with CR, nj/bit 23.56 11.76 12.71
Saving -12.2% 44.0% 39.5%

VI. SUMMARY AND CONCLUSIONS

A 65nm CMOS circuit was designed, fabricated and vali-

dated, comprising of a novel bio-physiological signal compres-

sion circuit with state-of-the art power-per-bit and gate-area

cost. Employing an XOR bit-change detection scheme, and a

‘log2-subband’ data encoding scheme, allows an exceptionally

simple circuit design. The specific configuration of Log2-Sub-

band encoding is capable of being tuned to the characteristics

of the data stream in question, and thus able to maximize

available compression ratios under this algorithm. This paper

demonstrates that careful choice of configuration can boost CR

significantly for a given type of data-set. EEG and ECG, for

instance, are very different in their dynamic content. Designs

for dynamically configurable L2SB encoders have been envis-

aged, and could offer further compression improvements and

flexibility. For example, bi-modal compression configurations

might boost overall CR for an ECG where there are two

distinct signal behaviours, or where an EEG records both

seizure and non-seizure data. This would be achieved with

relatively small power and area penalty, especially given that

the design is already extremely lightweight in these terms.

Power comparisons with alternative schemes have been

presented, though this proves difficult to do comprehensively,

as most work in the field reports overall power rather than

static and dynamic power, or reports power with compression

as an indivisible part of a system. This makes extrapolation

to relevant sample rates and normalized operating conditions

difficult. Nonetheless, comparisons are made where possible,

and L2SB is found to have favourable capabilities.
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Where power-gating techniques are employed, it has been

demonstrated that power consumption per sample bit could be

of the order of pico-joules, with a 100:1 power-gating scheme

delivering 1.2pj per bit power consumption for a 10kSa/s data-

rate. Again, this is believed to be state-of-the art, and at the

extreme low-end of what is envisaged to be possible at 65nm,

or indeed where scaled to other process technologies. There

is every reason to believe that as lower process nodes are

targeted, data compression with sub-picojoule per-bit power

cost would be readily achievable for bio-physiological signal

measurement systems.

Using the proposed figure of merit (FOM) efficiency mea-

sures, comparisons can easily be made between L2SB and

other systems. A limited survey and comparison was indeed

provided in this paper (see Table X), and illustrates the value

of a technology-neutral figure of merit.

The authors consider the presented circuit to be potentially

one of the simplest possible encoders available, yet it delivers

useful compression ratios in the context of flash-memory stor-

age compression, and data transmission power drain. Although

L2SB delivers modest compression ratios compared to a wide

variety of other algorithms, those algorithms come at the

cost of higher complexity, large gate-area costs, and higher

power consumption. Because of this, their ability to trade-off

compression versus transmission power is hindered in spite

of their high CR values. Consequently, even though L2SB

is inferior in compression ratio, it can be shown to deliver

similar or superior performance for transmission power trade-

offs in conjunction with extremely small silicon area. Indeed,

in extreme resource-limited situations, such as printed organic

thin film semiconductors, L2SB may even enable compression

where other alternatives are simply not viable. This is a very

interesting conclusion, in this case the concept of ‘less is more’

appears to be well observed.
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