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ABSTRACT

The solar convection zone is a turbulent plasma interacting with a magnetic field. Its magnetic field is often
described as fibrillar since it consists of slender flux tubes occupying a small fraction of the total volume. It is
well known that plasma flow will exert a force on these magnetic fibrils, but few models have accounted for
the back-reaction of the fibrils on the flow.We present a model in which the back-reaction of the fibrils on the
flow is manifest as viscoelastic properties. On short timescales the fibrils react elastically with a shear modulus
proportional to their overall magnetic energy density. On longer timescales they produce an effective viscosity
resulting from collective aerodynamic drag. The viscosity due to flux tubes in the solar convection zone can
be comparable to that attributed to turbulence there. These forces might have observable effects on the
convection zone flows.

Subject headings: convection — magnetic fields — MHD — Sun: interior — Sun: magnetic fields —
turbulence

1. INTRODUCTION

The interaction between a turbulent plasma and a mag-
netic field is a long-standing problem in astrophysics. A
kinematic treatment of this problem studies the evolution of
the magnetic field in the presence of a prescribed plasma
flow. A well-known result of such an approach is the �-
effect, whereby kinetic helicity in a turbulent flow leads to
amplification of the magnetic field; the system is a magnetic
dynamo. A typical derivation invokes mean field electro-
dynamics in which the magnetic field is decomposed into a
dominant smooth component plus small-scale, small-
amplitude fluctuations (Moffatt 1978; Krause & Rädler
1981) representing turbulence. Averaging the magnetic
induction equation over the rapidly fluctuating velocity
yields the �-effect.

Were the �-effect to persist, it is believed that the ampli-
fied magnetic field would become strong enough to affect
the fluid flow, violating the kinematic assumption. This
hypothetical ‘‘ back-reaction ’’ on the flow by the magnetic
field has been the subject of several investigations, some of
which predict significant back-reaction even by very weak
fields (Vainshtein & Cattaneo 1992; Kulsrud & Anderson
1992; Bhattacharjee & Yuan 1995). If the back-reaction has
the effect of quenching the dynamo action before it can gen-
erate a significant field, then these results cast serious doubt
on the viability of either the �-effect or mean field electro-
dynamics, when confronted with the observed existence of
relatively strong dynamo-generated magnetic fields.

The solar convection zone (CZ) is undoubtedly the best
known and most thoroughly studied astrophysical example

of a turbulent plasma with a magnetic field. Where it is most
easily measured, at the solar surface, the magnetic field is
highly intermittent and seems poorly approximated by
mean field electrodynamics. It is perhaps more accurate to
describe the photosphere as a fibril field, in light of its con-
centration into features ranging from active regions on the
largest scale down to �1017 Mx flux elements (Stenflo 1973)
at the smallest scales yet resolved. Many properties of sun-
spots and active regions have been successfully interpreted
by describing these surface phenomena as the manifesta-
tions of strands of magnetic flux, called ‘‘ flux tubes,’’
extending through all or most of the CZ (Parker 1955).

In its idealized form a fibril field is one where all magnetic
field occurs in such discrete flux tubes, each separated by a
sharp interface from a surrounding field-free plasma
(Parker 1955; Roberts & Webb 1978; Spruit 1981). This
assumed field structure stands in contrast to continuum
models, such as mean field electrodynamics or full magneto-
hydrodynamics (MHD), where BðxÞ is a smooth function,
vanishing only at isolated points or in small regions.
Theoretical arguments predict that high Reynolds number
turbulence will concentrate the magnetic field into fibrils
with relatively small filling factor (Weiss 1966; Parker 1984).
Numerical solutions of nonlinear MHD equations, at the
highest Reynolds numbers practical, have confirmed this
tendency for concentration, but not to the extent that flux
tubes become truly isolated (Nordlund et al. 1992;
Matthews, Hughes, & Proctor 1995; Brummell, Cline, &
Cattaneo 2002). Moreover, very sensitive measurements
show that the regions surrounding photospheric flux tubes
are not truly field-free (Lin & Rimmele 1999). Thus, the
fibril state appears to be an idealization that is not likely to
occur in reality. Nevertheless, its highly intermittent nature
suggests that the solar magnetic field might be more

1 Institute for Theoretical Physics, University of California at Santa
Barbara, Santa Barbara, CA 93106.

The Astrophysical Journal, 599:661–674, 2003 December 10

# 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

661



reasonably approximated as a fibril field than as a field
whose small-scale fluctuations are perturbations on a
smooth component.

Dynamical equations for a single flux tube follow from
ideal MHD applied to the plasma inside the tube (Roberts &
Webb 1978; Spruit 1981). The results are a set of equations,
called the ‘‘ thin flux tube model,’’ describing the dynamics
of a one-dimensional space curve (the tube’s axis), which are
formally similar to the equations of motion for a buoyant
elastic string. Versions of the thin flux tube equations typi-
cally applied to the solar CZ include the effects of gravity
(i.e., buoyancy), magnetic tension, and the Coriolis force.
The external medium couples across the tube’s interface
through an aerodynamic drag force (Parker 1979; Choudhuri
& Gilman 1987), much as it would to a string at high
Reynolds number. In a stationary atmosphere this drag
counteracts the buoyancy so an active region flux tube rises
to the solar surface at its terminal velocity. Solutions of this
case have shown remarkable agreement with the observed
properties of active regions and sunspot groups (D’Silva &
Choudhuri 1993; Fan, Fisher, & DeLuca 1993; D’Silva &
Howard 1993; Fan, Fisher, & McClymont 1994; Caligari,
Moreno-Insertis, & Schüssler 1995). Rising through a
medium with turbulent velocity, a tube’s axis develops per-
turbations that match the statistical scatter present in the
same observations (Longcope & Fisher 1996; Longcope,
Fisher, & Pevtsov 1998; Longcope &Choudhuri 2002).

To date, fibril fields have been studied primarily in the
kinematic regime where they are affected by the unmagne-
tized background but exert no back-reaction on it. It seems
unlikely that a single flux tube would significantly alter flows
in the CZ, making the kinematic limit a reasonable one. The
combined forces of all the flux tubes in the CZ might,
however, be enough to affect the CZ flow. Unfortunately,
no formalism yet exists by which such a back-reaction might
be quantified.

The back-reaction of a fibril field will take a form very
different from that of a continuum field. To see this, con-
sider their differing reactions to a simple prescribed shear
flow v ¼ v0 sinðkyÞx̂x. A continuum field transverse to this
flow has no equilibrium under the ideal induction equation,

B ¼ B0ŷyþ B0v0kt cosðkyÞx̂x : ð1Þ

This field produces an opposing Lorentz force proportional
to the growing fluid displacement Fx � �vxt, a reaction
analogous to an elastic restoring force. It is clear from this
fact alone that even a field that is initially very weak can
eventually produce enough back-reaction to stop any flow.

In contrast to a continuum field, a flux tube transverse to
the flow will reach an equilibrium state. In this equilibrium,
magnetic tension force balances the aerodynamic drag from
the flow. The unmagnetized medium flows around the flux
tube so the Lorentz force does not grow indefinitely.
Instead, the flux tube will produce a steady back-reaction
opposing the shear flow. When summed over a local ensem-
ble of tubes, this back-reaction will constitute a stress on the
fluid and thereby produce an effective viscosity. Further-
more, rather than a simple Newtonian viscosity, the effective
back-reaction is more accurately described as a viscoelastic-
ity, since cessation of the driving flow v will not result in the
immediate collapse of the shear stress arising frommagnetic
tension. Instead, the stress will relax in a finite time,
depending on the flux and drag on the fibrils.

The form of the back-reaction offered by a fibril field can
be anticipated by an analogy to the physics of polymer solu-
tions. Fluids permeated with microscopic polymers have
been studied by a variety of investigators (Doi & Edwards
1986; Bird, Armstrong, & Hassager 1987) over many years.
Each polymer strand is buffeted by the thermal fluctuations
of the fluid, much as magnetic flux tubes are buffeted by
plasma turbulence. The back-reactions of the polymers
appear as viscoelastic effects in the dynamics of the fluid.
Over short timescales the polymers exert an elastic restoring
force, while after longer times the force becomes viscous.
Thus, a steady shear flow is possible in a polymer solution.
The coefficients dictating this viscoelastic behavior can be
derived from the basic physics of the polymers and their
coupling to the fluid (Doi & Edwards 1986). In the present
work we apply this technique to thin flux tubes permeating
a turbulent plasma, in order to derive viscoelastic
coefficients describing a fibril field’s back-reaction.

Magnetohydrodynamic viscoelastic effects were recently
proposed in a model of magnetized accretion disks (Ogilvie
2001). The proposed model uses a continuum magnetic
field, similar to mean field electrodynamics, from which the
back-reaction is the Lorentz force. To recover a viscous
regime, the author hypothesizes magnetic reconnection with
a short relaxation time, similar in effect to a large resistivity.
Our approach will be fundamentally different since we
assume a fibril field and make no specific assumption about
magnetic reconnection.

The next section derives dynamical equations for an iso-
lated magnetic flux tube immersed in a turbulent plasma. The
turbulent buffeting drives the flux tube into a statistical
equilibrium state in which its magnetic tension is capable of
balancing the drag. In x 3 we present the results of nonlinear
numerical solutions of the thin flux tube equations under the
same conditions. These solutions corroborate the theoretical
methods and fix unknown coefficients. In x 4 we derive vis-
coelastic coefficients for a collection of individual flux tubes
in statistical steady state. In x 5 we estimate the viscosity for
steady state flows in the solar CZ. Under certain assumptions
we find that the flux tubes may produce a viscosity compara-
ble to the well-known turbulent viscosity, which most
theoretical models already account for. In the final section we
speculate on how the viscoelastic forces may affect flows in
the CZ, including the differential rotation.

2. THE MODEL

2.1. The Dynamics of a Thin Flux Tube

Nonlinear, dynamical equations for the evolution of a
thin flux tube were proposed by Spruit (1981) and have been
refined and extended by subsequent authors (Choudhuri
1990; Cheng 1992; Moreno-Insertis & Emonet 1996). These
models are most frequently used to study the buoyant rise
of an active region flux tube through the solar CZ (see, e.g.,
Fisher et al. 2000 and references therein). To simplify our
analysis, we consider a nonbuoyant flux tube immersed in
an unstratified turbulent plasma. Without gravitation or
rotation the tube experiences only the force of aerodynamic
drag, Fd , and its own magnetic tension (DeLuca, Fisher, &
Patten 1993). The forces cause an element of tube to
accelerate at

dv

dt
¼ B2

4��

@2r

@s2
þ 1

8��

@B2

@s

@r

@s
þ ad ; ð2Þ
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where B(s) is the magnetic field strength and ad � Fd=� is
the local acceleration due to drag.

A cylindrical tube segment moving at velocity v, through
an external flow with velocity vðeÞ, feels a drag force per unit
volume

Fd ¼ � CD�
ffiffiffiffiffiffiffiffiffiffiffiffi

��=B
p jv? � v

ðeÞ
? jðv? � v

ðeÞ
? Þ ; ð3Þ

where v? and v
ðeÞ
? are the components of v and vðeÞ perpen-

dicular to the local tangent vector of the tube’s axis
ŝs � @r=@s. Although the form of equation (3) renders the
dynamics nonlinear in the general case, a good linear
approximation can be made in the case in which the time-
scales of fibril dynamics greatly exceed those of the
turbulence.

The external fluid velocity vðeÞðx; tÞ will be replaced here
by a random function whose statistics represent those of the
turbulence.We will make the approximations that vðeÞ is iso-
tropic and has negligibly small correlation time �c compared
with the dynamical times of the flux tube (i.e., it is white
noise). Under these assumptions the drag term can be
replaced by a general expression of the Langevin type

ad ’ f ?ðs; tÞ � �v? ; ð4Þ

where averages over the turbulent fluctuations give
hf ?i ¼ 0 and h�i ¼ �. The specific drag � is found by
averaging the definition given by equation (4),

� � � ad x v?

v?j j2

* +

¼
ffiffiffiffiffiffiffi

B

��

r �

v? x ðv? � v
ðeÞ
? Þjv? � v

ðeÞ
? j
�

v?j j2
; ð5Þ

where we have taken CD ¼ 1, the high Reynolds number
limit (Batchelor 1967).

One limit that can be treated analytically is that of a small
tube velocity, jvðeÞ? j4 v?j j, in which the drag is proportional
to the average turbulent velocity and independent of
the velocity v?. The expansion of equation (5) in powers of
jv?j=jvðeÞ? j yields two leading-order terms whose sum is

� ’ 3�

8

ffiffiffiffiffiffiffi

B

��

r

�

vðeÞ
�

�

�

�

�

; ð6Þ

where isotropy has been used to express hjvðeÞ? ji ¼
ð�=4Þ vðeÞj jh i. In any case, ��1 is the timescale on which
coherent motions relax by virtue of the random driving.

The general two-point statistics of the stochastic forcing
f ? are complicated since they depend on v?ðsÞ and v?ðs0Þ, as
well as the tangent vectors ŝs and ŝs0. Fortunately, we will have
need for only the scalar correlation, which we write as

f ?ðs; tÞ x f ? s0; t0ð Þh i ¼ �C s� s0ð Þ�c� t� t0ð Þ : ð7Þ

We have introduced the correlation functionC(Ds), which is
unity at Ds � s� s0 ¼ 0 and decreases with increasing sepa-
ration. Its decrease is due to decorrelation of the turbulent
velocity at increasing distances, as well as to the differences
in perpendicular direction between s and s0. We will assume
that C(Ds) has a single peak at Ds ¼ 0 with half-width �lt,
the turbulent correlation length.

The product �c�(t) in equation (7) is a shorthand for the
time correlation of the turbulence. By assumption the
turbulence has a very short correlation time; however, the
single-time correlation is still finite and enters appropriately
when integrating over the correlation of the noise.

The amplitude factor in equation (7) is set by the
single-point, single-time moment

� �
�

adj j2
�

� �2 v?j j2

¼ B

��

�

jv? � v
ðeÞ
? j4

�

�
�

v? x ðv? � v
ðeÞ
? Þ v? � v

ðeÞ
?

�

�

�

�

�

�

�2

v?j j2

2

4

3

5 :

ð8Þ

In the small tube velocity limit jv?j5 jvðeÞ? j the factor takes
the simple form

� ’ 8

15

B

��

�

jvðeÞj4i; ð9Þ

where isotropy has been used to express hjvðeÞ? j4i ¼
ð8=15ÞhjvðeÞj4i:

The tube’s inertia is negligible under many circumstances,
and the primary dynamics is that of turbulent advection
being opposed by magnetic tension. In this situation it is
possible to neglect the left-hand side of equation (2). We will
define a Lagrangian coordinate s0, which is the length coor-
dinate of the material point in some reference configuration.
The velocity of the tube may then be written as v ¼
@rðs0; tÞ=@t, and the tube’s equation of motion becomes

�
@r

@t

�

�

�

�

�

�

�

�

?
¼ B2

4��

@2r

@s2
þ 1

8��

@B2

@s

@r

@s
þ f ? : ð10Þ

2.2. TheMean Field Theory

Equation (10) describes the dynamics of a thin flux tube
buffeted by the turbulent medium in which it is immersed.
The random driving f ? will induce random distortions in
the axis rðs0; tÞ. It is the statistics of these distortions we wish
to analyze. We will perform this analysis in the mean field
limit, replacing the randomly fluctuating functions B(s) and
@s=@s0 by their average values. Assuming that the statistics
of the axis are homogeneous and isotropic, the mean field
equation reduces to

�
@r

@t
¼ U

@2r

@s20
þ f ? ; ð11Þ

where the tension coefficient

U � B2

4��

@s

@s0

� ��2

ð12Þ

is a constant that, like �, depends on the statistical proper-
ties of the solution. The right-hand side of equation (11)
is now perpendicular to ŝs, so the velocity v will be so
automatically.

Equation (11) is that of an elastic string driven by random
noise. Models of this type have been studied extensively in
the field of polymer physics. Because the equation is linear
in the unknown, we can propose a Fourier decomposition,

rðs0; tÞ ¼
X

q

rqðtÞeiqs0 ; ð13Þ

and solve immediately for its coefficients,

rqðtÞ ¼
Z t

�1
exp �Uq2

�
t� t0ð Þ

� �

f q t0ð Þ dt
0

�
: ð14Þ
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(For simplicity we assume that the flux tube is a closed curve
and thereby use discrete Fourier transforms.) Thus, the
distortions of the flux tube depend on the random driving
function f ? over all past times.

Under the isotropic mean field approximation the general
correlation matrix of the stochastic driving is

f ? f ?h i ¼ 1
3�C s� s0ð Þ�c� t� t0ð ÞI : ð15Þ

Introducing the Fourier decomposition of f ? yields mode
correlation statistics

�

f qðtÞ f �q0 t0ð Þ
�

¼ 1
3�Cq�c� t� t0ð Þ�q;q0I ; ð16Þ

whereCq is the Fourier transform of the correlation function
C(Ds). The correlation function itself is defined in terms of
extensible coordinates s and s0, which are appropriate for
describing separations in the turbulent flow. Nevertheless, its
Fourier transform is performed with respect to Lagrangian
coordinates s0 and s00 in which the dynamical solutions are
cast. Care must be taken to transform between these
coordinates using the mean field extension factor @s=@s0.

Forming the general correlation matrix between axis
modes rq and using equation (16) gives

rqðtÞr�q0 t0ð Þ
� �

¼ 1

6

�Cq�c
�q2U

exp �Uq2

�
t� t0j j

� �

I�q;q0 : ð17Þ

Axis modes remain correlated over much longer times than
the noise that drives them. A mode with wavelength
� ¼ 2�ð@s=@s0Þ=q decorrelates over a time

�� ¼ �

Uq2
¼ �

4�2v2A
�2 ; ð18Þ

where vA ¼ B= 4��ð Þ1=2 is the local Alfvén speed.
It is now possible to calculate the coefficients in our mean

field equation in terms of the average properties of the axis
modes rq. Tube elements labeled by s0 and s00 are separated
by a vector

Dr � rðs0; tÞ � r s00; tð Þ : ð19Þ

The secondmoment of this displacement vector is

�

Drj j2
�

¼ 4��c
�U

X

q

Cq

sin2ðqDs0=2Þ
q2

; ð20Þ

where Ds0 � s0 � s00. If the two points are sufficiently
separated, Ds0j j4lt, then the sum becomes

X

q

Cq

sin2ðqDs0=2Þ
q2

’ 1

4
Ds0

Z 1

�1
CðsÞds0 ’

1

2
Ds0lt

@s

@s0

� ��1

;

ð21Þ

since Cq ’ C0 over the support of the factor
sin2ðqDs0=2Þ=q2 in this limit. The sum of the factor may be
replaced by an integral with respect to dq/Dq, where the
spacing between discrete Fourier modes Dq5 1=Ds0. In
this limit, the section of tube between s and s0 is a random
walk of uncorrelated steps lt. According to classical theory
of random walks, the total number of such steps is
N ¼ h Drj j2i=l2t . Thus, the total length of the tube segment is

Ds ¼ h Drj j2i
lt

’ 2��c
�U

@s

@s0

� ��1

Ds0 : ð22Þ

The mean field extension factor @s=@s0 can now be
equated to the extension Ds/Ds0 found from the randomly
deformed axis. Doing so and using equation (12) for U
yields a relationship

B2

4��
¼ 2��c

�
: ð23Þ

In the context of the polymer physics of Brownian motion,
this expression is a version of the fluctuation dissipation
theorem, linking drag and noise. In the present context,
however, it becomes the determining relation for the field
strength of the flux tubes at equilibrium.

The right-hand side of equation (23) depends on B
through C and �. Using the small flux tube velocity
( v?j j5 jvðeÞ? j) equations (6) and (9), it is possible to solve
explicitly for

B ¼ 3:454 ��c
h vðeÞj j4i
vðeÞj jh i

 !2=3

�
�1=3 : ð24Þ

If we admit tube velocities comparable to the typical turbu-
lent velocity vt, then the general expressions for � and C, i.e.,
equations (5) and (8), depend explicitly on B, as well as on
averages of the relative velocities. If each of the velocity
averages scales only as the appropriate power of vt and is
independent of B or �, then equation (23) gives the same
scaling

B ’ K 0 ��cv
3
t

	 
2=3
�

�1=3 ; ð25Þ

but with a factor K0 that depends on the rescaled velocity
averages.

Equation (25) gives the field strength achieved by the flux
tube under the action of turbulence. This represents a statis-
tical equilibrium, where the flux tube’s tension is strong
enough to balance the aerodynamic drag of the turbulence.
Remarkably, the field strength scales inversely with the
tube’s flux to the one-third power, so smaller flux tubes will
tend to be stronger. This is a natural consequence of the
inverse scaling of the drag force with cross-sectional area:
thinner tubes couple more effectively to the turbulence, and
they must be stronger before their tension can balance the
drag force.

DeLuca et al. (1993) found a scaling similar to equation
(25) for a closed ring of flux immersed in a steady cellular
flow pattern (an ABC flow). While the Eulerian correlation
time in such a flow is infinite, the tube sees a variation over
times �c � lt=v due to its own motion. Using this in equation
(25) gives a scaling identical to that found by DeLuca et al.
(1993).

3. NUMERICAL SIMULATIONS

To verify the foregoing analysis, we perform numerical
simulations of flux tube dynamics. The basic thin flux tube
model equation (2), including inertia, is solved subject to the
constraint that the magnetic tension coefficient B2/4�� is
uniform along the tube (i.e., that the second term in eq. [2]
vanishes); this same constraint follows from the mean field
approximation as discussed in x 2.2. This constraint also
follows if the pressure fluctuations within the tube are
assumed to be smoothed out much more quickly than the
tube configuration changes, which is expected when
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cs=vA ’ �1=241, where cs is the plasma’s sound speed. In
the simulations described in this paper, the timescale on
which pressure perturbations (sausage waves) within the
tube travel a length lt is much shorter than the turbulent
timescale � t, so this should be an excellent approximation.
The resulting equation involves only inertia, the magnetic
tension coefficient, the flux tube curvature vector, and the
aerodynamic drag force (eq. [3]) due to turbulent motions
acting to buffet the tube.

The primary agent driving evolution of the tube is then
the external velocity field vðeÞ appearing in equation (3). In
our formulation, the average properties of this flow field
depend on only two quantities: a characteristic velocity
amplitude vt and a characteristic eddy size (or correlation
length) lt. An eddy turnover time can then be defined as
�t ¼ lt=vt, which will turn out not to be equivalent to the cor-
relation time of the noise driving the tube. To be consistent
with our white-noise assumption, we will seek to keep � t
smaller than all other dynamical scales. At any given time,
vðeÞ is a function of the Lagrangian arc length s0, which can
be assumed without loss of generality to vary from 0 to 1.

At a fixed time, the velocity at a point s ¼ si ¼ ið�sÞ is
produced according to the recipe

v
ðeÞ
i ¼ vt

X

N

j¼1

wjA
�s

lt

� �

exp
�ði � jÞ2ð�s=NÞ2

2l2t

" #

; ð26Þ

where �s is the arc length separation between adjacent mesh
points (�s � N�1@s=@s0) and A(�s/lt) is a normalization
factor for the weighting. The velocity is endowed with ran-
domness through an uncorrelated white-noise vector wi.
Each 3-vector wi is a random variable with unit variance
and is completely uncorrelated with any other point:
hwiwji ¼ I�i;j. The velocities at points separated by Ds < lt
are correlated by virtue of common terms in their respective
sums, even though all terms themselves are mutually
uncorrelated.

The time correlation of v
ðeÞ
i follows from correlations of

the random vectors wi, which follow from an evolution
equation. The vector wi is updated in time according to the
prescription (Longcope & Fisher 1996)

wnew
i ¼ exp �Dt

�t

� �

wold
i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� exp � 2Dt

�t

� �

s

N i ; ð27Þ

where Dt is the time step and N i is a freshly generated
3-vector of normal deviates (i.e., zero mean and unit
variance). According to this prescription, wi will become
uncorrelated after a time�� t.

The numerical methods used to solve equation (2) are the
same as those used to solve for the flux tube evolution
described in DeLuca et al. (1993). Briefly, the first and sec-
ond partial derivatives with respect to Lagrangian arc
length are converted to a centered finite difference form with
N uniformly spaced mesh points in s0. Two additional ghost
points are added to each end of the tube with values deter-
mined by periodic boundary conditions, since the tube
forms a closed ring. The resulting finite difference equations
form a set of 6N coupled ordinary differential equations,
which are advanced in time via a standard fourth-order
Runge-Kutta technique. These equations result in a solu-
tion for the tube node locations and components of velocity
normal to the tube’s tangent vector.

We perform a set of runs in which �, vt, and lt are varied
around nominal values. The nominal values are initial field
strength B0 ¼ 105 G, correlation length lt ¼ 109 cm, turbu-
lent velocity vt ¼ 104 cm s�1, and magnetic flux � ¼ 1018

Mx. These parameters were chosen to resemble the flux and
field strength for a small ‘‘ elemental ’’ flux tube near the
base of the solar CZ, with values of vt and lt corresponding
roughly to those from mixing length CZ parameters. The
plasma density in these calculations was assumed to be
� ¼ 0:2 g cm�3, which is the value near the base of the CZ
(Böhm-Vitense 1958).

Because we assume that the flow inside the tube is incom-
pressible and we ignore sausage waves along the tube, an
auxiliary mass conservation equation must also be solved to
derive the velocity component parallel to the magnetic tube
direction. This is described in DeLuca et al. (1993).

Runs explore variations in �, the turbulent velocity vt,
and the correlation length lt, while all using the same initial
length, mass density, and initial field strength. All runs start
from an initially circular ring with length L0 ¼ 2�� 1010

cm, designed to sample a large number (�60) of correlation
lengths. The Alfvén transit time around the ring,
�A � L=vA, is an invariant due to incompressibility and is
�A ¼ 106 s for all runs.

A single simulation is run for a period of ð6 10Þ � 107 s,
or �60�A–100�A. For the nominal values of lt and vt this
corresponds to �600� t–1000� t. The amount of computing
resources necessary to carry out these simulations varied
widely, ranging from roughly 10 minutes on a laptop com-
puter to over a day on a high performance workstation,
depending on the required resolution and the assumed
values of vt, lt, or �. Resolution varied from 300 to 2500
mesh points, depending on the values of the above param-
eters. We encountered some numerical stability problems
for high values of vt or low values of lt.

The numerical simulations form three different series; in
each series a single parameter was varied, while all others
retained their nominal value. The series explore the effects
that changes in �, vt, and lt have on average global proper-
ties and on time evolution. In the first series of simulations,
the magnetic flux assumed the values � ¼ 1016, 1017, 1018,
and 1019 Mx. In the second series lt assumed values of
5� 108, 2� 109, and 4� 109 cm, in addition to its nominal
value 1� 109 cm. In the third series vt assumed values of
5� 103, 2� 104, and 4� 104 cm s�1, in addition to the
nominal value of 1� 104 cm s�1.

To facilitate discussion of the numerical results, we intro-
duce the abbreviated notation Pii-Ljj-Vkk to refer to a simu-
lation whose values of �, lt, and vt, are given by ii ¼ log10 �,
jj ¼ lt=108 cm, and kk ¼ vt=103 cm s�1. The simulation with
nominal values of all parameters is P18-L10-V10. Table 1
summarizes the parameters of each simulation.

Figure 1 displays a snapshot of a typical configuration
at a point of statistical steady state. This particular case
is run P18-L10-V40 at the end of the run, after roughly
60�A or �2400� t of elapsed time. Generally, flux tube
configurations with larger values of � or smaller values
of vt have a less complex looking configuration than the
one shown here.

Figure 2 shows the variation of field strength with time
for the four values of magnetic flux in the � series. The
evolution in all cases shows an initial transient behavior
(the ‘‘ blowup ’’ phase, which can result from either
an expansion or contraction from the initial length),
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TABLE 1

Summary of the Most Important Input and Derived Parameters from the Series of Flux Tube Simulations

Run Ng
a

tsim
b

(s)

�

(Mx)

lt
(cm)

vt
(cm s�1) Lh i=L0 ¼ Bh i=B0

c Var ðBÞ½ �1=2=B0
d

P16-L10-V10.............. 500 1� 108 1016 1� 109 1� 104 2.36 0.251

P17-L10-V10.............. 400 1� 108 1017 1� 109 1� 104 1.31 0.197

P18-L10-V10.............. 300 1� 108 1018 1� 109 1� 104 0.745 0.111

P19-L10-V10.............. 300 1� 108 1019 1� 109 1� 104 0.395 0.093

P18-L05-V10.............. 1500 6.8� 107 1018 5� 108 1� 104 0.483 0.091

P18-L10-V10.............. 300 1� 108 1018 1� 109 1� 104 0.745 0.111e

P18-L20-V10.............. 500 1� 108 1018 2� 109 1� 104 0.883 0.217

P18-L40-V10.............. 500 1� 108 1018 4� 109 1� 104 0.993 0.344

P18-L10-V05.............. 300 1� 108 1018 1� 109 5� 103 0.272 0.093

P18-L10-V10.............. 300 1� 108 1018 1� 109 1� 104 0.745 0.111e

P18-L10-V20.............. 500 1� 108 1018 1� 109 2� 104 1.53 0.216

P18-L10-V40.............. 2500 6.2� 107 1018 1� 109 4� 104 3.74 0.377

Notes.—The first four rows represent variations in �, the next four rows show variations in lt, and the last four rows show
variations in vt. The mass density �was 0.2 g cm�3 for all cases.

a Number of grid points along the tube in the simulation.
b Total simulated time.
c Lh i and Bh i represent the value of the loop length and field strength, respectively, averaged over the last half of the

simulation. L0 is the initial loop length, equal to 2�� 1010 cm in all cases. B0 is the initial field strength, equal to 105 G in all
cases.

d This column is the square root of the field strength variance about its average value Bh i divided by B0 during the last half
of each simulation. This is the rms fluctuation of the field strength about its average value, in units of B0. It is also the rms
fluctuation inL about its average, in units ofL0.

e This row is repeated from the third row of this table.

Fig. 1.—Snapshot from run P18-L10-V40



followed by attainment of an approximately steady value
with random fluctuations about that value. It is interest-
ing to note that a simulation attempted with � ¼ 1020

Mx did not result in such a behavior; instead, the mag-
netic tension force overpowered the stochastic driving by
the drag force and the flux tube collapsed with no statis-
tical steady state being achieved. This ‘‘ flux ring col-
lapse ’’ behavior was also seen in the simulations of
DeLuca et al. (1993). We also find flux ring collapse
using nominal values for � and vt and lt � 2:5� 108 cm.

The mean field strength, B, is found by averaging over the
last half of each simulation. Figure 3a shows the variation
in this average over the � series, P16-L10-V10, P17-L10-
V10, P18-L10-V10, and P19-L10-V10, which is well fitted
by the power law B � ��1=4. Figure 3b shows the variation
over the vt series P18-L10-V05, P18-L10-V10, P18-L10-
V20, and P18-L10-V40, The values are well fitted by the
power law B � v

5=4
t . Finally, B varies slightly with lt but not

enough to yield a convincing power law.
The numerical simulations reveal that magnetic field

strength B scales with magnetic flux � and turbulent
velocity vt. Using density � and turbulent length lt to recover

the correct dimensions gives a scaling

B ¼ K�5=8l
1=2
t v

5=4
t �

�1=4 ; ð28Þ

whereK ’ 2:0.
This empirically derived behavior can be reconciled with

the analytic expression given by equation (25) if the correla-
tion time of the drag force is the geometric mean between
the turbulent correlation time lt=vt and the Alfvén time
lt�

1/2/B. Substituting this time �c � �1=4ltv
�1=2
t B�1=2 into

equation (25) yields the observed scaling given by equation
(28). The hybrid nature of �c might arise from inertia, which
was neglected in the analysis of x 2 but is included in the
numerical simulation. A more detailed analysis, including
comparisons of the spatial and temporal spectra hjrqj2i,
would take us too far from our immediate objective of mod-
eling the back-reaction of the tubes. We henceforth adopt
equation (28) as the defining relationship between the turbu-
lence properties and the equilibriummagnetic field strength.

The equipartition field strength, Beq � 4�ð Þ1=2�1=2vt, is
defined to yield an energy density equal to the average
kinetic energy density of the turbulence. The equilibrium
magnetic field (eq. [28]) can be written as

B ¼ K
ffiffiffiffiffiffi

4�
p Beq

�

�t

� ��1=4

;

where �t � �1=2l2t vt is the characteristic flux set by the turbu-
lence. Any flux tube with � < 0:1�t will attain field strength
in excess of the equipartition strength as a result of the turbu-
lence. It seems paradoxical, on its face, that turbulence can
amplify a magnetic field above the equipartition strength.
Upon reflection, however, the aerodynamic drag allows the
flux tube to couple to flows outside itself, so local densities
are not the appropriate quantities to compare.

4. THE VISCOELASTIC PROPERTIES

Up to this point the turbulent fluid has been modeled as a
(randomly) prescribed velocity field. This kind of passive driv-
ing, where the fluid affects the flux tubes but is not affected in
return, is standard in flux tube models. The Lorentz force is
present in the flux tube equation, but it acts only on the fluid

Fig. 2.—Variation ofB over time for each of the runs in the� series

Fig. 3a Fig. 3b

Fig. 3.—Variation inBwith (a)� and (b) vt. The results of the numerical runs are shown as diamonds. The power-law fits are dashed lines.
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within the tube. Here we derive the force exerted by an
ensembleofflux tubeson theunmagnetizedfluid.

We will assume that fluid is permeated with magnetic flux
tubes, each maintained in statistical steady state by turbu-
lence. The fractional volume occupied by tubes with fluxes
in the range ð�;�þ d�Þ will be denoted f(�)d�. Because of
the assumption of incompressibility, these flux tubes will
maintain the same fractional volume even as they evolve, so
f(�) will remain constant over time.

All aspects of the back-reaction will depend on the
distribution function f(�), about which we can make only a
few conjectures. The fraction of volume, or filling factor,
occupied by all flux tubes is

f� ¼
Z

f ð�Þd� � 1 : ð29Þ

In order for the dynamical equations of an isolated tube to
apply to each flux tube, we should assume that f�5 1. The
magnetic energy density within a tube is B2/8�, where the
field strength is maintained by the turbulence at its
equilibrium value B(�), given by equation (28). Thus, the
magnetic energy density of the entire fibril fields is

	M ¼ 1

8�

Z

B2f ð�Þd� ¼ K2

8�
�5=4ltv

5=2
t h��1=2i

�
f� ; ð30Þ

where hi
�
is a volume-weighted average over flux tubes only;

it is the integral with respect to f(�)d�/f�. Comparing this
to the kinetic energy density of the turbulence yields the
inverse of the turbulent plasma �,

��1
t � 2	M

�v2t
¼ K2

4�
�

1=2
t h��1=2i

�
�

�1=2f� ; ð31Þ

which is expected to be less than 1.

4.1. ShearModulus

The fluid exerts a force on the magnetic flux tube through
aerodynamic drag. According to Newton’s third law, the
flux tube must exert an equal and opposite force back on the
fluid. In models with only a single flux tube this back-
reaction is usually ignored. In a fluid permeated with flux
tubes the back-reaction must be taken into account. By
assumption, the aerodynamic drag in each tube is balanced
by magnetic tension. Thus, the force felt by the fluid is
exactly that of the magnetic tension forces within the collec-
tion of flux tubes. The fluid will feel a force equal to the sum
of all the tension forces from the ensemble of flux tubes.

The magnetic tension in a thin flux tube is a manifestation
of the Lorentz force, which can be written as the divergence
ofMaxwell stress tensor. TheMaxwell stress tensor includes
an isotropic piece �B2�ij/8�, which gives rise to a magnetic
pressure gradient. Each flux tube is assumed to be in pres-
sure balance with the unmagnetized fluid, so the magnetic
pressure gradient is always offset by a gradient in plasma
pressure. Thus, we need only consider the anisotropic part
of the remaining piece of theMaxwell stress tensor,

T ¼ B2

4�
ŝsŝs ; ð32Þ

where the magnetic field has been taken to be parallel to the
tube’s axis.

Summing the contributions of all flux tubes within a given
element of volume gives a net stress tensor2

r ¼
Z

Tf ð�Þd� ¼ 2	M ŝsŝsh i
�
; ð33Þ

where we have assumed that the directions, ŝs, are distributed
independently of the fluxes. For an isotropic distribution of
ŝs the stress tensor becomes that of a negative pressure
2
3 	M�ij. Evidently the collected tensions of the isotropic
ensemble of flux tubes cancel two-thirds of the magnetic
pressure. As a result of the very high �, it is likely that the
response to this would be a slight compression of the plasma
to compensate.

The plasma pressure cannot compensate any anisotropic
contribution to r that may arise as a result of an anisotropic
distribution of ŝs. We began by assuming that the flux tube
was buffeted by isotropic turbulence driving it to an
isotropic steady state. If there were a shear flow in addition
to the turbulence’s, the flux tubes would develop an
anisotropy.

Consider the stress at the z ¼ 0 plane when the fluid is
instantaneously sheared horizontally. Prior to the shearing
the flux tubes are in equilibrium with the isotropic turbu-
lence, and so ŝs ¼ ŝs0 is isotropically distributed. An instanta-
neous shearing, x ! xþ 
z, will distort all flux tubes. After
the shearing the directions will have an additional
horizontal component

ŝs ’ ŝs0 þ 
x̂xðẑz x ŝs0Þ :

Averaging a product of these directions and using the fact
that ŝs0 is isotropic provides an off-diagonal shear stress

r ¼ 2
3 
	Mðx̂xẑzþ ẑzx̂xÞ : ð34Þ

This stress creates a horizontal force r x ẑz ¼ 2x̂x
	M=3 on the
horizontal plane.

Expressing the example above in terms of the symmetric
strain tensor e ¼ 
ðx̂xẑzþ ẑzx̂xÞ=2 gives

r ¼ 4
3 	Me : ð35Þ

The coefficient in such a stress-strain relation is the elastic
shear modulus G ¼ 4=3ð Þ	M . Thus, the magnetic flux tubes
endow the turbulent fluid with elastic properties, at least on
very short timescales.

4.2. Shear Viscosity

We summarize here a well-known argument in polymer
physics for the emergence of viscoelastic contributions to
the viscosity. The instantaneous shear considered above
perturbs the isotropic equilibria of the flux tubes. The iso-
tropic turbulence will then buffet the flux tubes, causing
them to relax back to their isotropic equilibrium distribu-
tion, and its contribution to the stress will vanish. Each flux

2 This definition is consistent with ‘‘ stress tensors ’’ in electrodynamics
(Jackson 1975), elasticity (Landau & Lifshitz 1986), and Newtonian fluid
mechanics (Batchelor 1967), whereby the force density is given by +

D

x r.
The force on a volume element includes contributions n̂n x r over its closed
surface, where n̂n is the outward normal. Since hydrodynamic pressure acts
inward, it will contribute �p�ij to �ij. In a few instances the term ‘‘ stress
tensor ’’ is defined with the opposite sign, making it synonymous with the
momentum flux tensorPij (Bird et al. 1987).
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tube will relax on a timescale �G as each of the Fourier
modes in its perturbation relaxes. The stress tensor r will
thus decay similarly. To recover a Newtonian viscosity, we
consider the mean decay time for all modes of the tube.

The limit opposite to the impulsive shear is one in which
the fluid is continuously sheared. This will lead to a persis-
tent anisotropy in which the rate of strain _ee is balanced by
the relaxation

hŝsŝsi ¼ 1
3 I þ �G _ee ; ð36Þ

where the average here is over the axes of a given kind of flux
tube. Placing this in equation (33) and retaining only the
anisotropic terms gives a linear relation r ¼ l _ee, where
the coefficient

l ¼ 1

4�

Z

f ð�ÞB2�Gd� ð37Þ

is the dynamic shear viscosity.3

The timescale �G describes the relaxation of a given flux
tube to its statistical equilibrium. This will depend on how
the flux tubes within the tangle interact with one another.
The dynamical interaction between high-� flux tubes,
including full and partial reconnection, is still being actively
studied (Linton, Dahlburg, & Antiochos 2001) and cannot
yet be easily incorporated into a model like ours. Neverthe-
less, it is possible to proceed under two different assump-
tions, which conceptually bracket all foreseeable cases. The
Rouse limit obtains when flux tubes can reconnect so readily
that they pass through one another effortlessly. The
entangled limit obtains when flux tubes can never reconnect
and bounce off each other instead. We expect the visco-
elastic parameters found in these two limiting cases to
bound those in cases in which flux tubes reconnect in more
complicated ways.

4.2.1. The RouseModel

Since flux tubes in the Rouse limit do not interact with
one another, each obeys the dynamical equations of a single
tube. An impulsive shear introduces perturbations rq at all
wavelengths up to one extending over the tube’s entire
length � ¼ L. A mode of wavelength � will relax over a time
�� given by equation (18). We will define this as
�� ¼ �LðqL=qÞ2, where the wavenumber q ¼ ð@s=@s0Þ2�=�,
qL is the wavenumber for a mode covering the whole tube,
and �L is its relaxation time. The net effect of the dynamics
of all these modes on the effective time-dependent decay of
the shear modulus takes the form

GðtÞ ¼ Gð0Þ qL
qt

X

qt=qL

p¼1

exp � 2t

�L=p2

� �

; ð38Þ

where qt is the wavenumber corresponding to the lt, the
smallest perturbation. The relaxation time for the entire
tube is that which characterizes the decay of the shear
modulus (Doi & Edwards 1986),

�G ¼
Z 1

0

GðtÞ
Gð0Þ dt ’

lt

L

�L
2

X

1

p¼1

1

p2
¼ �Llt

48v2A
; ð39Þ

using equation (18) for �L ¼ ��ðLÞ. This quantity depends
on total flux�, as well as on the total length of the tube L.

For concreteness we take our flux tubes to be a set of
closed curves with a distribution of total lengthsL. The total
length is not a constant of the motion for a thin flux tube,
but under the assumption of incompressibility, the total vol-
ume V is. Thus, our population of flux tubes will be
described by their distribution of fluxes� and volumesV.

A more convenient constant of the motion to describe the
flux tube population is the volume per flux

� � V

�
¼ L

B
: ð40Þ

The distribution of flux tubes may have arisen through
processes of fragmentation, self-reconnection, and their
inverses (see Fig. 4). None of these processes are described
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Y

Y

21
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Fig. 4.—Processes of fragmentation and self-reconnection by which a single closed flux tube may break into two. Under fragmentation (left) a tube of flux
�0 breaks into tubes with �1 þ �2 ¼ �0, and the volume per flux �0 is preserved. Under self-reconnection (right) a tube with volume per flux �0 breaks into
tubes such that�1 þ�2 ¼ �0, and the flux�0 is preserved.

3 It is customary in MHD to denote the dynamic shear viscosity by l in
order to reserve � for the magnetic diffusivity. We follow this custom here
even though we will always assume a perfectly conducting plasma. Nor will
this cause confusion with the elastic shear modulus, which we denoteG.
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by equation (2), nor do they preserve flux or volume. A
closed tube fragments when its cross section breaks into two
pieces, giving rise to two closed flux rings of equal length.
The resulting tubes have fluxes that sum to the flux of the
original tube, but � in each tube is the same as in the origi-
nal; � is preserved by fragmentation. A closed tube can
break into two shorter tubes by crossing itself and recon-
necting at the crossing point. The �-values of the resulting
tubes sum to that of the original, but the flux � is pre-
served in each piece. After many fragmentations, self-
reconnections, and inverses the set of tubes will have a
distribution of�- and�-values. If the rates of the individual
processes were independent of the conserved quantity, then
� and � would be uncorrelated, and the fractional volume
would be a product

f ð�;�Þ ¼ f ð�Þpð�Þ ; ð41Þ

where f(�) is as before and p(�) is the distribution of volume
per mass among individual flux tubes.

Using the relaxation time given by equations (39) and
(37) and averaging over both� and� yields a viscosity

lR ¼ K3=2
ffiffiffi

�
p

128
�3=2v2t�

7=8
t f� �h i

�
h��7=8i

�
; ð42Þ

where the equilibrium magnetic field strength, equation
(28), has been used. In order to obtain quantitative esti-
mates, we use the small-velocity limit of �, equation (6), here
and in later expression. It is not clear that this approxima-
tion describes every Fourier mode in a general flux tube, but
the full set of numerical simulations required to derive the
scaling of � is beyond the scope of this paper. The small-
velocity limit does apply to the longest wavelengths of a
tube, and we thus adopt it to facilitate the calculation of
viscoelastic properties.

When a shear flow is initiated, the strain e will increase
linearly in time. As it does the elastic stress Ge increases as
well. After a time

���r ¼
lR

G
¼ 3�3=2

64K1=2
�

3=8
t h��7=8i

�
h��1=2i0

�
�1=2 �h i

�
; ð43Þ

the stress will approach the viscous stress, to which it will
ultimately asymptote. This is the average relaxation rate for
all of the flux tubes. If the distribution contains an accumu-
lation of vanishingly small flux tubes so that ��7=8h i

�

diverges, then this asymptote will never occur. Smaller flux
tubes have greater aerodynamic drag and couple more effec-
tively to the fluid, and it appears that when their density is
sufficiently great this strong coupling prevents the kind of
yielding that typifies individual thin flux tubes. This state of
affairs is similar to the case of continuumMHD, which con-
tains a purely elastic back-reaction force in the form of the
Lorentz force. Moreover, an infinite relaxation time ���r
implies that the stress tensor increases without bound and
any flow will eventually be quenched by the elastic stresses
of the flux tubes. Conversely, when there are few enough of
these arbitrarily small flux tubes that ��7=8h i

�
remains

bounded, the stress will cease its elastic growth after finite
time����r.

4.2.2. The EntangledModel

Opposite to the Rouse limit, where flux tubes can pass
effortlessly through one another, is the entangled limit,

where the flux tubes form mutually impenetrable barriers.
The resulting gas of entangled, flexible chains is far more
difficult to analyze than the noninteracting Rouse system. A
single flux tube finds itself confined within an ever evolving
tangled mesh composed of all other tubes. The starting
point for analysis is the length density

�L ¼
Z

f ð�ÞB
�
d� ¼ Kf�

l2t

h��5=4i
�

�
�5=4
t

; ð44Þ

characterizing the ensemble of tubes. The length density is
the length of tubes (regardless of flux) per unit volume of
permeated fluid. A plane segment of area A will be pierced
an average ofA�L times by tubes of different fluxes.

The tubes offer severe mutual constraints on dynamics,
termed ‘‘ entanglements ’’ in polymer physics. Of signifi-
cance for this work, the presence of the entanglement con-
straints greatly increases relaxation times and thus the
effective fluid viscosity. Tubes undergoing interacting
(entangled) dynamics will endow the fluid with higher vis-
cosity than tubes with an identical distribution of � and �

undergoing noninteracting (Rouse) dynamics.
Surprisingly, the presence of these topological entangle-

ment constraints introduces a new length scale called the
entanglement length, le. Tube segments smaller than le will
be almost unaffected by the entanglement constraints, while
longer segments experience strong constraints on their
dynamics. The entanglement length scale is much longer
than the typical distance between tubes because the motion
of a ‘‘ test tube ’’ must couple to several others in order to
‘‘ feel ’’ a strong topological constraint. Therefore, even in a
dense melt of entangled polymer chains, segments that just
span a single entanglement length le can consist of up to 102

monomer units.
In spite of its importance, a quantitative theory for the

entanglement length le is still an unsolved problem in pol-
ymer physics. Recent contributions of scaling theory
(Colby & Rubinstein 1990), simulations (Everaers 1998),
and careful empirical deductions from systematic data
(Fetters et al. 1999) have led to the following current
view: (i) When the chains are dense, the entanglement
length is a near universal O(10) multiple of the ‘‘ packing
length ’’ of the monomer units (in our case this is the tur-
bulent correlation length lt). (ii) When the chains are not
dense, the entanglement length scales as a power of the
length density le � �Ll2tð Þ��

with the exponent � taking
values close to 1, depending on the exact physics of the
interactions (candidate models have suggested values of
exactly 1 and 4/3; McLeish 2003). Combining these two
criteria provides an estimate of the entanglement length
for our problem,

le ’ 10l
�5=3
t �

�4=3
L ¼ 10K�4=3lt f

�4=3
�

�
�5=3
t h��5=4i�4=3

�
: ð45Þ

Since the total filling factor f�5 1, the entanglement
length will be many times lt.

At present, the most successful model for entangled
dynamics considers the set of entanglements to form a
constraining ‘‘ tunnel ’’4 of radius le about each flexible
chain. This forces it into curvilinear motions along the

4 The polymer physics literature invariably uses the term ‘‘ tube ’’ here.
We have chosen to substitute the term ‘‘ tunnel ’’ since our fundamental
chain is also called a ‘‘ tube ’’ (i.e., of flux).
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constraining tunnel at scales of le and longer. The resulting
dynamics is characterized by a relaxation time of the full
chain that scales a power of le,

� ðeÞr ðLÞ ’ �RðleÞ
L

le

� �

¼ �RðLÞ
L

le

� ��2

: ð46Þ

Since the constrained relaxation cannot proceed faster than
the unconstrained (Rouse model) relaxation, we see from
the final expression that  � 2.

One well-studied example of constrained motion is the
simple curvilinear diffusion, termed ‘‘ reptation ’’ (Doi &
Edwards 1986), of linear chains (i.e., chains with two free
ends) for which  > 3 (Doi & Edwards 1986). It is not
clear whether magnetic flux tubes are better modeled as
linear chains (with free ends) or as closed rings. There
has been a considerable, although more restricted, investi-
gation in the polymer physics literature into the dynamics
of entangled ring polymers experimentally (Roovers
1988) and theoretically (Rubinstein 1986; Obhukov,
Rubinstein, & Duke 1994; Brown, Lenczycki, & Szamel
2001). If the rings are not mutually interlinked, then, in
the presence of an effective network of permanent con-
straints, they are thought to form self-similar structures
known from percolation theory as ‘‘ lattice animals ’’
(Cates & Deutsch 1986). These have the property that
their radius of gyration Rg � L1=4 rather than L1/2 for
linear chains. The diffusion of loops at all length scales
around the entangled rings endows the terminal relaxa-
tion time with a scaling intermediate between that of
unentangled chains and entangled linear chains, so
2 <  < 3 in equation (46).

The behavior of rings in a melt of other rings is consider-
ably more complex, as it involves a strong contribution of
cooperative effects from the finite lifetime of the entangle-
ment constraints. The scaling of the effective viscosity with
flux tube length L, however, is certainly bounded below by
the unentangled Rouse case and above by the entangled
linear polymer case. A single flux tube of length L will then
contribute to the viscosity

leðLÞ ¼ lRðleÞ
L

le

� �

; ð47Þ

where lRðleÞ � B2�GðleÞ=4� is the integrand of equation (37)
with L replaced by le. Guided by the results from polymer
physics, we hereafter adopt the value  ¼ 5=2 appropriate
for an ensemble of closed rings.

Summing up the contributions given by equation (47)
over the entire distribution of lengths, L ¼ B�, yields a
Newtonian viscosity

le¼
ffiffiffi

�
p

�vtltl
�3=2
e

128

Z

f ð�;�ÞB3
�

5=2
�

�1=2 d� d�

¼ K5
ffiffiffi

�
p

1280
ffiffiffiffiffi

10
p �9=4l

�3=2
t v

7=2
t f 3��

15=4
t h��5=4i3

�
h�5=2i

�
; ð48Þ

using the small-velocity limit equation (6) for � and equa-
tion (45) for the entanglement length le. It is noteworthy that
the viscosity can diverge in the entangled limit even if it
would not in the Rouse limit, since it is possible for ��7=8h i

�

to be bounded while ��5=4h i
�

is not. As predicted, the

entangled viscosity grows much faster with filling factor
than does the Rouse limit:�f 3

�
rather than�f�.

5. VISCOELASTICITY OF THE SOLAR
CONVECTION ZONE

The foregoing presented a general formalism for the
dynamics of a turbulent fluid permeated with flux tubes. It
assumed that each flux tube was in statistical equilibrium
with homogeneous, isotropic turbulence characterized by
length scale lt and velocity vt. The back-reaction of the entire
collection of flux tubes took the form of a viscoelastic
response characterized by an elastic shear modulus G and a
dynamic shear viscosity l. These quantities depended on the
turbulent fluid through lt, vt, and � and on the properties of
the flux tube distribution.

In order to estimate the possible significance of flux tubes
on the structure of the solar CZ, we compare their viscosity
to the traditional turbulent viscosity lt � �vtlt. Each viscos-
ity will depend on the local turbulence at a given depth, as
modeled by mixing length theory (Böhm-Vitense 1958). We
take the local values of lt and vt from the mixing length
model and apply these to the homogeneous, isotropic
calculation at that depth. Figure 5 shows the variation of
the mixing length lt along with the quantities �t � �1=2l2t vt
and Beq ¼ 4�ð Þ1=2�1=2vt over the CZ using the CZ model of
Spruit (1974).

Viscoelastic properties also depend on the distribution of
fluxes and volumes of the flux tubes, about which very little
is known. It might be possible to infer the flux distribution
from photospheric observation. Deep magnetograms of the
quiet Sun show surface flux distributions Nð�Þ �
expð��=���Þ, where ��� ’ 3� 1018 Mx (Schrijver et al. 1997).
Exponential distributions of this form can be explained the-
oretically as the result of continued fragmentation, merging,
and emergence of flux tubes (Schrijver et al. 1997). Any
plane passing through the hypothetical isotropic, homoge-
neous flux tube distribution would be pierced by tubes in the
range ð�;�þ d�Þwith a density

Nð�Þd� ¼ B

�
f ð�Þd� � �

�5=4f ð�Þd� ; ð49Þ

after using equation (28) for Bð�Þ � ��1=4. Regarding the
quiet-Sun photosphere to be just such a sampling plane
implies that f ð�Þ � �5=4 expð��=���Þ.

Fig. 5.—Mixing length lt and the quantities �t and Beq plotted against
the depth running vertically downward.
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Moments of the exponential distribution above all scale
with the mean flux ���,

�
ph i

�
¼ �ðpþ 9=4Þ

�ð9=4Þ
���
p ; ð50Þ

as long as p > �9=4. Other well-behaved distributions f(�)
will have similar scalings, but with different constants. For
concreteness we adopt the exponential form where ���

depends on depth, achieving its observed value
��� ¼ 3� 1018 Mx at the solar surface.
The average of the flux distribution, ���, is expected to vary

with depth, perhaps in a fashion similar to the characteristic
flux �t shown in Figure 5. At the solar surface, where ��� is
actually observed, �t ’ 4� 1017 Mx, so ���=�t � 10. Flux
tubes at the very base of the CZ are believed to be the source
of bipolar active regions. If observed active regions form a
representative sampling of this population, then we expect
��� � �t � 1022 Mx. It is entirely possible, even very likely,
that only the large end of the population satisfies the
requirements for emergence so ���=�t < 1 at the base of
the CZ.

The volumetric filling factor of the flux tubes in the solar
CZ, f�, is difficult to estimate since its definition depends on
the assumed dichotomy between field-free plasma and flux
tubes. We use equation (31) to replace f� with values of the
turbulent �, which has been estimated to be a few percent
(Parker 1984).

Of all the properties of the flux tube mixture, the distri-
bution of volume to flux, �, is least related to observable
quantities. To cast estimates in more intuitive terms, we
work in terms of the average of flux tube lengths

Lh i
�
¼ K�1=2vt�

1=4
t h��1=4i

�
�h i

�
; ð51Þ

found by performing the same flux tube–only average to
both sides of the expression L ¼ �B and assuming that �
and � are independently distributed, as we argued
previously they might be.

The largest flux tubes will be those toroidal tubes,
found at the base of the CZ, whose emergence produces
active regions. According to the Babcock dynamo pic-
ture, these tubes will be wound up by differential rota-
tion, achieving a total length of 10 circumferences after
one solar cycle. Using the mixing length, lt ¼ 60 Mm, at
the base of the CZ gives Lh i

�
� 500lt. Much less is known

about the lengths of flux tubes in the middle or top of
the CZ, so this is the best estimate we can offer. A flux
tube must span several eddies in order to be maintained
by turbulence against tension-induced self-collapse. Thus,
no single flux tube in the distribution can be shorter than
�10lt (having a diameter of 3lt), and the average of all
tubes could not be much smaller than twice this
minimum, Lh i

�
� 20lt.

In the Rouse limit the effective viscosity is given by equa-
tion (42). Dividing this by the local turbulent viscosity and
making the substitutions described above gives

lR

lt

¼ �3=2

32K3=2
�

1=8
t h��7=8i

�
h��1=2i

�
h��1=4i

�

Lh i
�

lt
��1
t

’ 0:067
���

�t

� ��1=8
Lh i

�

lt
��1
t ; ð52Þ

using K ¼ 2:0 found in the simulations. This shows that the
effectiveness of the flux tubes in redistributing momentum
depends on their length but very little on their fluxes. Adopt-
ing the values ��1

t ¼ 0:03 and Lh i
�
=lt ¼ 500, discussed

above, gives lR ’ lt. This demonstrates that even tubes that
do not interact with one another (i.e., the Rouse model) can
endow the fluid with an additional viscosity of the same
magnitude as the turbulent viscosity. The effectiveness of
flux tubes depends on their average length; a distribution of
the shortest plausible flux tubes, Lh i

�
� 20lt, would create

a viscosity only 4% of the turbulent viscosity, and their
effectiveness would increase above this minimum value.

The entangled limit obtains when flux tubes are mutually
impenetrable and extend over distances much greater than
the entanglement length le. The ratio of the average tube to
the entanglement length, equation (45), is

Lh i
�

le
’ ð4�Þ4=3

10K4=3
�t h��5=4i4=3

�
h��1=2i

�4=3

Lh i
�

lt
�
�4=3
t

¼ 1:3
���

�t

� �

Lh i
�

lt
�
�4=3
t : ð53Þ

For values ��1
t ¼ 0:03, ��� ¼ �t, and Lh i

�
=lt ¼ 500 this ratio

will be 6, on the verge of being much greater than unity.
Thus, we expect flux tubes at the base of the CZ to exist just
within the entangled limit. However, in the lower limit,
Lh i

�
� 20lt, the tubes are safely out of the entangled limit

and the Rouse limit viscosity given by equation (52) clearly
applies to such short distributions.

In the entangled limit, the flux tubes collide with one
another, permitting a more effective redistribution of
momentum. The importance of interaction means that the
effective viscosity scales as a higher power of the filling
factor and thus a higher power of ��1

t . The ratio of
viscosities is

le

lt

¼ �7=2

ffiffiffiffiffiffiffiffiffiffi

4000
p

K7=2
�

13=8
t h��5=4i3

�
h��5=8i

�
h��1=2i

�3

� L5=2h i
�

l
5=2
t

��3
t

¼ 0:125
���

�t

� ��13=8
L5=2h i

�

l
5=2
t

��3
t : ð54Þ

Like the Rouse limit viscosity, this expression scales with
tube lengths and inversely with turbulent � but also depends
significantly on the average flux, ���. The values used above
yield a viscosity far greater than the turbulent value
le ’ 19lt.

If the addition of such a substantial viscosity could
quench the dynamo action, then we might argue that the
mean field strength will be limited to that value at which
le ’ lt. Inverting equation (53) gives the restriction

��1
t � K7=640001=6

�7=6

��5=8h i1=3
�

��1=2h i
�

�
13=24
t ��5=4h i

�

l
5=6
t

L5=2h i1=3
�

¼ 2:0
���

�t

� �13=24
l
5=6
t

L5=2h i1=3
�

: ð55Þ

Taking ��� ¼ �t and L5=21=3h i
�
¼ ð500ltÞ5=6 gives a maximum

value for the inverse turbulent � of ��1
t ¼ 0:013.

672 LONGCOPE, McLEISH, & FISHER Vol. 599



6. DISCUSSION

We have formulated a theory for a turbulent fluid
permeated with fibril magnetic fields. The back-reaction of
the fields on the turbulence will be a viscoelastic one. Over
short timescales the field will resist deformation elastically,
just as it does in conventional MHD. Unlike a conventional
magnetofluid, a fibril field is not ‘‘ frozen ’’ to the fluid it per-
meates and will permit steady flow across its mean direction.
The coupling between the fluid and the field provides an
effective viscosity.

To demonstrate this claim, we developed a model of a col-
lection of flux tubes embedded in homogeneous, isotropic
turbulence. The turbulence drives each flux tube toward an
equilibrium magnetic field strength at which its tension can,
on average, balance the aerodynamic drag. Numerical simu-
lations verify this fact and show how the equilibrium field
strength scales with the tube’s flux and the properties of the
turbulence. In equilibrium, the fibril field will react with an
elastic modulus proportional to its energy density.

The effective viscosity of the fibril field depends on the
rate at which the mesh of flux tubes relaxes back to its statis-
tical equilibrium. If the mesh is even moderately dense, this
relaxation process will involve interaction among the tubes.
Thus, the effective viscosity depends on how colliding tubes
interact. We considered two extreme cases, which conceptu-
ally bracket any realistic interaction physics: noninteracting
tubes (the Rouse limit) or impenetrable tubes (the entangled
limit). Modeling the CZ turbulence with the mixing length
model, we found that the noninteracting limit (Rouse) pro-
duced a viscosity roughly equal to that due to turbulence.
The most restrictive interactions possible (entangled) pro-
duce significant viscosity even when the magnetic field has
1% of the energy. This viscosity may well be one of the
factors that limits the strength of dynamo-produced
magnetic fields.

Muchmore study will be necessary before we can say with
any confidence how the Sun’s fibril field affects the circula-
tion in the solar CZ. Our preliminary results do, however,
hold promise for some of the area’s more important ques-
tions. For example, observational evidence suggests that
magnetic field strengths in active region flux tubes exceed
that of equipartition with the turbulent energy density. This
observation is at odds with continuum MHD models that
face ‘‘ dynamo quenching ’’ for ��1

t eRm�1=2 � 10�6

(Vainshtein & Cattaneo 1992). Our results show that visco-
elastic response will affect the flow only for much larger
energy densities of ��1

t � 10�2. Thus, it seems quite likely

that a mean field dynamo operating on fibril fields can
produce flux tubes whose field strength locally exceeds
turbulence equipartition.

It is also possible that the fibril fields in the solar CZ pro-
duce an anisotropic viscoelastic medium. Since the present
work provides the first formulation of fibril-field interac-
tions, we opted to treat the simplest case. We therefore
assumed an isotropic distribution of flux tubes and ignored
buoyancy. The result was a simple viscous strain involving a
scalar coefficient of viscosity. Were the flux tubes aligned
with a preferred direction, they would produce more strain
in response to flows perpendicular to this: this viscous stress
would involve a tensor coefficient. Indeed, their intrinsic
buoyancy is likely to endow solar flux tubes with a radial
preference, and large-scale orientation (Hale’s polarity law)
will give them a toroidal preference. We expect that the
result will be for the fibril field to distribute momentum
most effectively along conical surfaces of constant latitude.
If this turns out to be the case, then it might play a signifi-
cant role in establishing the observed pattern of differential
rotations, in which conical surfaces corotate.

There is one other reason to expect strong anisotropy of
the field that arises from the viscoelastic nature of the fibril
medium. In viscoelastic fluid flow, another dimensionless
number, theWeissenberg number, arises from the product of
the shear rate and the characteristic relaxation time of the
stress. When _

�G is small, fibril structure is perturbed only
marginally from its equilibrium statistical average, so apart
from effects such as buoyancy, it will be nearly isotropic.
However, when this number is large, flux tubes are strongly
convected by the flow in a mean relaxation time and will
therefore be strongly anisotropic. In the entangled limit, the
values of �G that arise from our physical estimates would
indeed lead to large Weissenberg number flows at shear
rates characteristic of the CZ. This opens up the possibility
of other phenomena from nonlinear viscoelastic fluid
dynamics such as elastic instability and strong ‘‘ normal
stresses ’’ (Doi & Edwards 1986).
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helpful comments on the manuscript. This work was
performed at the Institute for Theoretical Physics, which is
supported by the National Science Foundation under grant
PHY 99-07949. This work was supported by the DoD/
AFOSRMURI grant ‘‘ UnderstandingMagnetic Eruptions
on the Sun and Their Interplanetary Consequences.’’
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