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Abstract:  8 

 9 

The development of low-carbon binders has been recognized as a means of reducing the carbon 10 

footprint of the Portland cement industry, in response to growing global concerns over CO2 11 

emissions from the construction sector. This paper reviews recent progress in the three most 12 

attractive low-carbon binders: alkali-activated, carbonate, and belite-ye’elimite-based binders. 13 

Alkali-activated binders/materials were reviewed at the past two ICCC congresses, so this paper 14 

focuses on some key developments of alkali-activated binders/materials since the last keynote 15 

paper was published in 2015. Recent progress on carbonate and belite-ye’elimite-based binders 16 

are also reviewed and discussed, as they are attracting more and more attention as essential 17 

alternative low-carbon cementitious materials. These classes of binders have a clear role to play 18 

in providing a sustainable future for global construction, as part of the available toolkit of cements. 19 

 20 
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1. Introduction  26 

Growing concerns over the greenhouse emissions profile of the Portland cement and concrete 27 

industry have led to a very high level of recent interest in the development of low-carbon binders 28 

as alternatives to Portland-based cements. This paper reviews recent progress in the three most 29 

prominent classes of low-carbon binders: alkali-activated or geopolymer, carbonate, and belite-30 

ye’elimite-based binders. Alkali-activated binders/materials were reviewed at the past two (13th 31 

and 14th) International Congresses on the Chemistry of Cement (ICCC) [1, 2], and in discussing 32 

these materials, this paper focuses on some of their key developments since the last keynote paper 33 

was published in 2015 [2]. These include rheological properties, setting behavior, structural 34 

characterization, dimensional stability, durability, and their applications. However, this paper does 35 

not aim to provide a detailed overview with respect to all existing insights into these materials, 36 

which can be obtained in other references including [3-5], but rather focuses on the most important 37 

new information that has been obtained in the past 4 years. Recent progress on carbonate and 38 

belite-ye’elimite-based binders will also be reviewed and discussed in detail, as these are 39 

attracting more and more attention as essential parts of the ‘toolkit’ of alternative low-carbon 40 

cementitious materials.  41 

 42 

2. Alkali-Activated Binders 43 

2.1. Raw materials 44 

2.1.1 Activators 45 

As numerous workers have promoted alkali-activated binders as a potentially low-carbon 46 

cementing system during the past decades (see Section 2.11 for more detailed discussion of 47 

advances in the environmental assessment of these materials), increased scrutiny has fallen on the 48 

selection of the activator for use in these binders. This also has cost implications: the activator is 49 

usually the most expensive component of an alkali-activated binder, particularly if it has been 50 

produced at high purity for use in other industry sectors (which is the case for most commercial 51 



3 

alkali silicate solutions), where such high purity may be less important to its use in alkali-52 

activation. So, alternative routes to alkali-activation that do not require the use of large volumes 53 

of commercial sodium silicate solutions have received serious recent attention. The production of 54 

silicate activators from olivine [6] or from waste glass [7-10], and the use of biomass ashes as an 55 

alkaline activator [11], have been established with some success.  56 

 57 

The use of near-neutral salts as activators has also seen considerable advances in recent years. 58 

This appears to be a pathway that is particularly attractive for production of cements based on 59 

ground granulated blast furnace slag, which can be made to react and harden in a useful timeframe 60 

by the addition of alkali carbonates or sulfates [12, 13]. In some cases, significant benefits can be 61 

gained by using a calcined layered double hydroxide as a carbonate-binding mineral additive [14, 62 

15], to accelerate the reaction of some slags with a modest magnesia content which would 63 

otherwise not react sufficiently rapidly with near-neutral salt activators. The combination of 64 

calcium hydroxide and potassium carbonate has also been shown to give very good performance 65 

as an activator for kaolinite [16], offering a potentially very low-carbon emissions route to the 66 

production of affordable binders without needing a clay calcination step.  67 

 68 

2.1.2 Precursors 69 

The selection of precursors available for use in alkali-activation has also broadened significantly 70 

in recent years, with particular emphasis being placed upon the use of materials for which there 71 

is not strong competition in demand from utilization in blends with Portland cement. For example, 72 

calcined non-kaolinitic clays [17-20], palm oil fuel ash [21, 22] or other minerals [23-26], have 73 

been shown to yield alkali-activated binder systems with technical properties that are attractive in 74 

given applications. Various industrial by-products or wastes without current large-scale utilization 75 

as supplementary cementitious materials have been tested and validated for use in alkali-activated 76 

binders, including red mud [27-29] and various glassy wastes including slags, some of which can 77 

benefit from thermal re-processing or modification to improve their reactivity before use [10, 30-78 

35]. Detailed work is also ongoing to better understand the reactivity of fly ashes under alkali-79 
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activation conditions [36-39], and to valorize kaolinitic clay resources which are not of sufficient 80 

purity for use in other applications such as ceramic whitewares or coatings [40-42]. Common to 81 

many of these types of materials, the role of iron in alkali-activation precursors (and in the 82 

resulting binders) is beginning to be understood to some degree [19, 43, 44]. However, a detailed 83 

description of its reactivity and the structural implications of its inclusion in the binding gel still 84 

remain very much elusive. This is an area in which further advances are expected – and needed – 85 

in the coming years. 86 

 87 

Some of the potential precursors described here and in the broader literature are only available in 88 

commercially viable quantities in limited locations - but in the locations where they are available, 89 

utilization in alkali-activated binders can be extremely attractive as a local solution to the needs 90 

of the construction industry. This ability to achieve local specificity in materials design and 91 

specification highlights one of the key strengths of alkali-activation, which is its ability to make 92 

use of a wide (and ever-growing) range of materials as precursors. However, it also raises 93 

challenges in standardization and specification, as it is almost impossible to write a prescriptive 94 

recipe-based standard that covers such a broad set of potential material chemistries. This 95 

highlights the need for performance-based specification of alkali-activated binders rather than 96 

relying on a prescriptive approach; discussion will return to this point in Section 2.10 in 97 

consideration of durability. 98 

 99 

2.2. Rheology 100 

An understanding of the rheological properties of alkali-activated cement pastes, mortars and 101 

concretes is essential to ascertaining their consistency and workability, and consequently their 102 

ease of casting or placement. In addition, the rheological properties of alkali-activated cement-103 

based materials have a strong influence on their microstructure, mechanical properties, and 104 

durability. The identification and modeling of rheological characteristics of alkali-activated 105 

materials (pastes, mortars and concretes) have been intensively studied since the last ICCC, as 106 
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this has been identified as an area with major practical importance (and challenges) for the field 107 

application of these materials.  108 

  109 

The rheological behavior of alkali-activated slag (AAS) pastes, activated with NaOH alone or in 110 

combination with Na2CO3, was similar to the rheology observed in Portland cement pastes and 111 

could be fitted by the Bingham model. Conversely, the AAS pastes activated with waterglass 112 

(AAS-Wg) required description by the Herschel-Bulkley model, as shown in Fig. 1 [45]. Moreover, 113 

their rheology depends on both the SiO2/Na2O ratio of waterglass and the Na2O concentration of 114 

the activator. The early-age formation of a C-S-H type gel in silicate-activated AAS due to the 115 

reaction between silicate species in waterglass and Ca2+ as it dissolves from slag particles, and the 116 

effect of this gel formation on the paste rheology, has been confirmed in several publications [3, 117 

4].  118 

 119 

 120 
Figure 1. Shear stress versus shear rate curves showing paste hysteresis cycles: (A) NaOH-activated 121 
paste (AASN); (B) waterglass-activated paste (SiO2/Na2O=1.2 in the activator; AAS-Wg). 122 
Reproduced from [45]. 123 

 124 

The high viscosity of alkali silicate-activated cements, sometimes also accompanied by a high 125 

yield stress, is one of the critical challenges that hinder their wide application. Favier et al. [46] 126 

identified that this high viscosity was intrinsically due to the use of a viscous alkaline silicate 127 

activating solution, not controlled by interparticle contacts. Yang et al. [47] focused on 128 

ameliorating the rheological performance of sodium silicate-activated fly ash/slag pastes using fly 129 
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ash microspheres as an inorganic dispersing agent. Rheology is also temperature-dependent; 130 

Mehdizadeh and Najafi Kani [48] determined an “apparent activation energy” parameter from the 131 

temperature dependence of the rheology of alkali-activated phosphorous slag (AAPS) paste, based 132 

on the Arrhenius viscosity model, and determined an activation energy of 42 (± 3) kJ/mol for the 133 

temperature range 10-40°C, which was of a similar magnitude to the equivalent parameter 134 

determined for Portland cement pastes.  135 

 136 

The nature of the mixing protocol has been identified to be a key determinant in AAS mortar and 137 

concrete rheology. In a series of studies, the Bingham model gave a good fit for all the PC and 138 

AAS mortars and concretes tested [49, 50]. A longer time of mixing had an adverse effect on 139 

rheology, but gave a slight improvement in hardened performance. In AAS-Wg concrete, the 140 

application of a longer mixing time can enhance the rheological behaviour and improve the 141 

mechanical properties, as the input of mixing energy can partially break down the early-stage 142 

microstructure to allow further reaction to continue. A longer mixing time raised the degree of 143 

thixotropy in PC and in NaOH-activated slag concretes, which can be attributed to the formation 144 

of fine particles induced by over-mixing, but decreased flocculation and lowered the degree of 145 

thixotropy in sodium silicate-activated slag concrete. 146 

 147 

Alkali-activated materials (AAMs) have also been proven as useful model systems for the testing 148 

and validation of mini-slump [51] and creeping sphere [52] rheological measurement methods. 149 

Each different approach to rheological testing, including but not limited to these methods, brings 150 

access to different shear rate regimes and different shear histories in the sample, which can enrich 151 

the understanding of time-dependent rheological processes in a complex fluid. Understanding the 152 

time-dependence of the rheology of alkali-activated pastes is not straightforward [53, 54], as these 153 

materials tend to be thixotropic in addition to the reversible non-Newtonian aspects of their 154 

behavior, but it is often challenging to distinguish true thixotropy from the gel structural evolution 155 

that is also taking place during the rheological measurements. 156 

 157 
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2.3. Chemical Admixtures 158 

Related to the challenges of rheology control in AAMs, it has been identified that it is critically 159 

important to improve the use and applicability of admixtures to improve rheology under alkali-160 

activation conditions. Due to the very significant differences in surface chemistry, zeta potential 161 

and dissolution mechanisms when comparing alkali-activation to Portland cement hydration [55, 162 

56], it is important to design organic molecular architectures that are specifically applicable in 163 

alkali-activated binders. Recent efforts [57, 58] have demonstrated important progress in this 164 

regard, including demonstration of an allyl ether-based PCE with short side chains that gave 165 

extremely effective plasticizing performance in an NaOH-activated slag paste at a dose as low as 166 

0.05 wt.% [57]. Keulen et al. [59] also showed that a proprietary PCE admixture could 167 

dramatically increase both the slump and the slump retention of alkali-activated fly ash-slag 168 

blended concretes, as shown in Fig. 2. 169 

 170 

  171 
Figure 2. Slump and slump retention of alkali-activated concretes (binder 73.7% fly ash, 25% BFS, 172 
1.3% Na2SiO3·5H2O powder; activator 3 M NaOH) as a function of PCE admixture dose. 173 
Reproduced from [59]. 174 

 175 

There has also been important work aimed at improving the open working time of alkali-activated 176 
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concretes and grouts, which is problematic in some applications due to the relatively rapid 177 

workability loss that is shown by some alkali-activated mixes (including in cases where 178 

workability can be lost even though setting is not unduly rapid). This will be discussed further in 179 

Section 2.4. Many chemical retarders for PC are not compatible with AAMs [60], but citric acid 180 

[61], d-gluconic acid [62], borate and phosphate [63] have all been described to give useful 181 

retardation in specific cases. However, the appropriate selection of a retarder depends critically 182 

on the role and content of calcium within the alkali-activation process; high-calcium mixes tend 183 

to be more effectively retarded by small organics that can complex Ca2+ as it is released from the 184 

solid precursor and thus delay the precipitation of C-A-S-H type gels, whereas low-calcium mixes 185 

appear to be more amenable to the use of inorganic retarders. Although care is required to select 186 

admixtures that can give retardation without loss of some percentage of the final strength 187 

development, it is not always straightforward. 188 

 189 

2.4. Setting time 190 

The setting time of an alkali-activated material (AAM) is a critical performance parameter that 191 

affects its practical application. The practical ability to control setting time of alkali-activated 192 

binders can determine the time window available for mixing, transportation, and casting of 193 

concrete. However, fast setting is a feature of AAS-Wg based materials; the setting time of this 194 

type of binder is often less than 30 min [64]. Setting behavior is affected by many factors, such as 195 

raw materials, specimen preparation and process conditions, as well as the use of additives as 196 

discussed in section 2.3. Lower-calcium alkali-activated binders have been identified to set 197 

through a gel percolation process [65], distinct from the localized precipitation of C-A-S-H type 198 

gels that characterizes the early stages of slag alkali-activation. This distinction brings important 199 

new abilities to understand and manipulate the setting processes of each binder type. 200 

 201 

Li et al. [66, 67] found that the setting times of alkali-activated slag-fly ash and alkali-activated 202 

slag-metakaolin pastes were prolonged with increased fly ash or metakaolin contents. Li et al. [64] 203 
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summarized the setting times of slag-based AAMs designed in the SiO2-Al2O3-CaO system with 204 

a single activator (sodium silicate of modulus 1.4), as shown in Fig. 3. They found a general trend 205 

that the setting time decreased with increasing CaO content in the SiO2-Al2O3-CaO system. The 206 

role of Ca (and correspondingly also Mg) as a network modifier in the slag glass leads to more 207 

rapid dissolution of these precursors, whereas fly ash does not show the same degree of reactivity 208 

as it is a more chemically durable glass. However, when comparing blast furnace slags of different 209 

chemistry, the ability to use a single indexing parameter to predict reaction kinetics (as measured 210 

by isothermal calorimetry) remains elusive [68, 69], as it is becoming clear that many parameters 211 

beyond simple glass chemistry play important roles in determining the rate of slag reaction under 212 

alkali-activation. An indexing approach that also includes particle size distribution parameters has 213 

been proposed for fly ash activation [37], but this will also require further development before it 214 

could be considered in any way broadly applicable. 215 

 216 

 217 

Figure 3 Setting times of AAMs (color scale, in minutes) in the SiO2-Al2O3-CaO solid precursor 218 

system [64] 219 

 220 

Careful selection and/or combination of activators is another way to manipulate the setting times 221 

of AAMs. Shi & Day [70] and Bernal et al. [13, 71] have illustrated that a prolonged induction 222 

period, which can take up to 3-5 days in some slag-based AAM systems, can be obtained when 223 

sodium carbonate is used as the activator. They showed that the Na2CO3 promotes the formation 224 
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of calcite and mixed sodium-calcium carbonates prior to C-(A)-S-H; and that the fairly modest 225 

pH (between 11 and 12) generated from this activator gives a low rate of initial dissolution of the 226 

slag [70]. However, high-magnesia blast furnace slags do react relatively rapidly with Na2CO3 as 227 

an activator [14], and can under some conditions give higher early strength with this activator 228 

than with sodium silicate, when using a sufficiently high-MgO slag [72].  229 

 230 

Li et al. [66, 67] further investigated the setting time of alkali-activated slags, and found that the 231 

setting time was prolonged with an increase in the dose of Na2CO3 as activator, especially when 232 

considering the final setting time and a slag of moderate MgO content, as shown in Fig. 4. The 233 

initial setting time of Na2CO3-AAS in that study was more than 300 min, while the final setting 234 

time was about 6 days. A wide range of setting time results were also shown in the work of 235 

Fernández-Jiménez & Puertas [73] (mortar setting time above 3 d), Kovtun et al. [74] (concrete 236 

setting time about 8 h), and Atiş et al. [75] (paste setting time about 3 h). However, a well-balanced 237 

mixture of Na2CO3, Na2O∙rSiO2∙nH2O, and/or NaOH can take advantage of the influence of each 238 

of the respective anion groups present, leading to the abilty to control and tailor setting time, 239 

workability and mechanical properties [71, 76]. 240 

 241 

 242 

Figure 4. Contours of setting time (min) of alkali-activated slag with Na2CO3-NaOH-Na2SiO3 243 
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activators: (a) Initial setting time, (b) Final setting time [66, 67] 244 

 245 

Garg and White [77] investigated how nano-ZnO retards the setting of alkali-activated materials, 246 

by pair distribution function (PDF) analysis and isothermal calorimetry. Fig. 5 illustrates the 247 

reaction between tetrahydroxozincate ions (Zn(OH)4
2-) and calcium ions (Ca2+) in the retardation 248 

stage, that can affect the nucleation/growth of the C-(A)-S-H type gel because Ca2+ is bound into 249 

a calcium zincate phase. In the other hand, nano-ZnO does not significantly influence the alkali-250 

activation reaction of metakaolin-based binders [77], as interactions involving calcium play a 251 

pivotal role in dictating the effectiveness of nano-ZnO in retardation of AAMs.   252 

 253 

 254 

Figure 5. A schematic outline of the retardation process caused by adding nano-ZnO to alkali-255 

activation of slag, sketched based on the discussions in Reference [77] 256 

 257 

2.5. Structural characterization  258 

2.5.1 Experimental approaches 259 

In alkali-activated binder systems, as in Portland-based cements, the disordered, complex and 260 

multiphase nature of the reaction products that contribute to the main strength gain means that it 261 

is difficult to gain a full understanding of the binder characteristics from any small subset of 262 
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common materials science techniques [2]. Therefore, cementitious materials (and AAMs in 263 

particular) provide fertile ground for the development and implementation of new approaches to 264 

the experimental characterization of complex materials, and the continued structural 265 

characterization of alkali-activated materials is still a key field of investigation. The C-S-H type 266 

gel (often represented as C-(N)-A-S-H) and layered double hydroxide (LDH) secondary phases 267 

that dominate higher-calcium AAMs, and the alkali-aluminosilicate (N-A-S-H) gel formed in 268 

lower-calcium AAMs, are all highly complex in chemistry, but are becoming better understood 269 

through the application of both conventional and advanced experimental analytical tools. The use 270 

of new analytical techniques as well as novel research routes during the past years has provided 271 

valuable insight into the structure of alkali-activated binders, and there is no evidence to suggest 272 

that major advances in this area are likely to end any time soon.   273 

 274 

There has been much recent focus on the factors affecting aluminum and alkali uptake into the C-275 

S-H structure by analysis of synthetic gels. The full details of this work are beyond the scope of 276 

the current review, and an excellent overview was provided in a paper presented at the 2015 ICCC 277 

[78]. A low Ca/Si ratio favors the incorporation of Al(IV) into C-S-H gel, whereas a high Ca/Si 278 

ratio results in more octahedrally coordinated Al(VI) [79, 80] that is predominately present in 279 

“third aluminate hydrate” (TAH) and in AFm phases [81]. High Al and alkali content, as in the 280 

case of many AAS binders, leads to co-existence of C-A-S-H and N-A-S-H type products, 281 

although these two gels can be very difficult to distinguish and isolate from each other unless 282 

detailed structural models are applied to aid in the interpretation of spectroscopic data [82]. Cross-283 

linking within the C-A-S-H type structure has also been identified as playing a key role in the 284 

structural description and understanding of the binding phases formed in high-Ca AAMs [82-84] 285 

 286 

Nuclear magnetic resonance (NMR) spectroscopy is now well known as a key technique to track 287 

the information on the local bonding environments of silicon and aluminum atoms. The structure 288 

of C-(N)-A-S-H gel has been described by various groups [83, 85-88]. However, NMR has a 289 

limited capacity to assess medium range ordering. X-ray and neutron pair distribution function 290 
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(PDF) analysis are now well established as techniques for understanding the gel structure formed 291 

in alkali-activated binders, due to the ability of the PDF technique to probe the local atomic 292 

structure of disordered materials [89], although the analysis of multi-phase materials by this 293 

technique remains very challenging. Gong & White [90] used X-ray total scatting and PDF 294 

analysis to study the impact of chemical variability on phase formation in alkali-activated 295 

granulated blast-furnace slag (GGBS). The primary reaction product after alkali-activation was 296 

C-(N)-A-S-H gel with a highly disordered structure, and PDF analysis revealed that atomic 297 

arrangements, as shown in Fig. 6 for the short-range ordering < 5 Å, in the C-(N)-A-S-H gel 298 

differed depending on the chemical composition, especially the calcium content, of the raw 299 

material. The gel connectivity of C-(N)-A-S-H gel increased with decreased calcium content, as 300 

shown in Fig. 6, represented to a first approximation by the intensity of the peak just above 3 Å 301 

assigned to Si-Si/Al and Mg-Al correlations. Magnesium in alkali-activated GGBS pastes is 302 

primarily incorporated in the secondary reaction product, which is a hydrotalcite-like phase, as 303 

will be discussed in more detail below. In-situ X-ray total scattering measurements and PDF 304 

analysis are also starting to be widely used in the study of alkali-activated binders, as one of few 305 

techniques that can give time-resolved information about gel local structure during setting and 306 

hardening [91-93]. 307 

 308 



14 

 309 

Figure 6. X-ray PDFs of pastes produced from hydroxide-activated granulated blast-furnace slags 310 

(slags from different sources as noted in the legend), showing the short-range ordering (< 5 Å ) [90].  311 

 312 

A method to investigate the chemistry of aluminosilicate-based cementitious binders by alkali-313 

activation of high-purity synthetic amorphous aluminosilicate powder has been proposed by 314 

Walkley et al. [94]. The phase evolution and nanostructure development of these materials have 315 

been examined after activation [95, 96]. Using this information, a new structural model of alkali 316 

aluminosilicate gel (N-A-S-H) gel frameworks has been proposed based on data from solid-state 317 

nuclear magnetic resonance spectroscopy (17O, 23Na, and 27Al) [97]. Fig. 7 shows part of the 318 

proposed conceptual model for this gel structure, with charge-balancing of the partial negative 319 

charges on bridging oxygen associated with tetrahedral Al provided by sodium and by extra-320 

framework Al (AlEF). The alkali aluminosilicate gel predominantly comprises fully coordinated 321 

(Q4 or q4) Si and Al units. A considerable proportion of Al3+ in tetrahedral coordination exists in 322 
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sites of lower symmetry, where some of the charge-balancing capacity in the gel is provided by 323 

extra-framework Al species which have not previously been observed in these materials. Greiser 324 

et al. [98] conducted advanced multi-dimensional NMR analysis of N-A-S-H gels derived from 325 

various amorphous silica sources and also identified extra-framework Al sites, although 326 

contended that their results were consistent with tetrahedral AlEF sites, as also noted by Brus et al. 327 

[99] rather than the octahedral AlEF identified by Walkley et al. [97]. There is evidently important 328 

further work required to unravel the nanostructural details of the N-A-S-H gel structure, and multi-329 

nuclear and multi-dimensional NMR techniques are expected to underpin and inform these efforts 330 

in coming years. 331 

 332 

 333 

 334 

Figure 7. 27Al and 23Na MAS and 3QMAS NMR analysis for the gel of alkali-activated synthetic 335 
precursor (Si/Al=2), and a 3D representation of a polymerized section of the N-A-S-H gel showing 336 
various constituent environments as marked, adapted with permission from [97]. Copyright 337 
American Chemical Society.  338 
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 339 

Scanning electron microscopy (SEM), together with energy-dispersive X-ray spectroscopy (EDX), 340 

has been widely used as a powerful tool by different scholars [91, 100, 101] to track 341 

microstructural evolution in alkali-activated binders, including some important work on model 342 

systems where “microreactors” were ion-milled into slag grains and the morphology of the 343 

reaction products formed by their reaction with different alkaline solutions monitored [102]. Fig. 344 

8 shows examples of the data that were obtained using this approach, where both the concentration 345 

and the nature of the alkaline solution led to remarkable differences in the appearance of the 346 

reaction products formed. The large platelets of hydrotalcite-like minerals and the globular C-S-347 

H type gel are particularly evident at the highest concentration of KOH tested, but there is a clear 348 

progress of the alkali-activation reaction under all conditions depicted. 349 

 350 

 351 

(c) 
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Figure 8 (a) A microreactor ion-milled into a GGBS grain; and microreactors exposed for 2 days to: 352 

(b) 0.1 M KOH; (c) 10 M KOH; (d) 1 M NaOH. Reproduced from [102] 353 

 354 

The use of SEM as an analytical technique is very well established in the field of cementitious 355 

materials, both for imaging and for determination of elemental compositions. Particularly 356 

important information has recently been obtained regarding the Mg-Al layered double hydroxide 357 

(hydrotalcite-like) phase in alkali-activated slags. Richardson & Li [103] used SEM-EDX to 358 

determine the Mg/Al ratio in KOH-activated blast furnace slag paste after 18 years of curing; a 359 

ratio of 2.6 was determined, in excellent agreement with calculations based on XRD data for that 360 

binder. Ke et al. determined Mg/Al ratios closer to 2.0 for the corresponding Mg-Al LDH phases 361 

in Na2CO3-activated slag binders [14] and in Na2SiO3-activated slag binders [104], also using 362 

SEM-EDX, and consistent with older literature including [105] and others. This phase is often 363 

described in the cements literature as being simply “hydrotalcite”, but in a mineralogical sense, 364 

true hydrotalcite has Mg/Al = 3.0 and contains carbonate in its interlayer [106], whereas the LDH 365 

phases formed in many alkali-activated binders will be carbonate-free. The carbonate-containing 366 

member of the hydrotalcite family with Mg/Al = 2 is correctly called meixnerite, whereas the 367 

carbonate-free “M4AH13” hydrotalcite-group composition, which is probably the most relevant to 368 

most alkali-activated binding systems, does not have a formal mineral name. So, the continued 369 

description of the Mg-Al LDH phase formed in alkali-activated binders as “hydrotalcite-like” 370 

seems satisfactory, but it does need to be clearly identified that this is not true hydrotalcite in the 371 

mineralogical sense. 372 

 373 

Transmission electron microscopy (TEM) has also been applied to the analysis of alkali-activated 374 

binders with some success [103], but sample preparation for this technique remains challenging 375 

and the samples are prone to beam damage. Helium ion microscopy (HIM), a technique with some 376 

resemblances to SEM but potentially offering higher spatial resolution, was proposed by 377 

Morandeau et al. [107] for studying the nanoscale structure of alkali-activated materials. HIM 378 

involves imaging of sample surfaces by detecting secondary electrons that are excited from the 379 
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sample surface by bombardment with helium ions. Spatial resolution is high due to the specific 380 

nature of the beam-sample interaction [108]. Hence, in comparison with SEM, this method is 381 

well-suited for resolving nanometer-scale surface morphologies and porosity present in rough and 382 

irregular fractured samples, including alkali-activated binders. Fig. 9 shows a selection of HIM 383 

images of AAS obtained by Morandeau et al. [107]. Finer heterogeneous morphological details 384 

have been captured. Two types of C-(N)-A-S-H gel have been identified, with the ‘inner’ gel 385 

showing a foil-like morphology while the ‘outer’ gel appearing more globular. The use of HIM 386 

with EDX analysis can provide new insight into the structure of alkali-activated materials as well 387 

as other binder systems, and although the HIM instruments are still expensive, this technique is 388 

becoming more widely available in the international community.  389 

 390 

 391 

 392 

Figure 9. HIM images (a) GGBS particle covered by ‘foil-like’ C-(N)-A-S-H gel; (b) the surface of 393 

the concave spherical void: C-(N)-A-S-H gel. Reproduced from [107]. 394 

 395 

Scattering and diffraction-based techniques have been used to provide insight into AAMs during 396 

the initial [109-111], medium-term [112], and later-age [113] evolution of gel, crystallite, and pore 397 

structure in AAMs. The combination of neutron and X-ray scattering, applied in parallel to provide 398 

different aspects of the required information, has also given important new insight into the highly-399 

connected nature of the pore structure in metakaolin-based AAMs [114]. The marked differences 400 
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in pore geometry and its evolution with curing as a function of the nature of the alkali cation 401 

present have also been examined using the combination of PDF, small-angle X-ray scattering and 402 

electrical impedance methods [115]: the structure-forming (kosmotropic) Na+ leads to a pore 403 

network structure that evolves considerably over a 5-year curing duration, while the pore networks 404 

generated through the use of chaotropic (K+ or Cs+) alkali cations are much more stable during 405 

extended curing periods [115].  406 

 407 

Another essential aspect of alkali-activated binder chemistry that has received attention – and 408 

answers to some key outstanding questions – in recent years is the exact chemical nature of the 409 

green coloration in alkali-activated slag binders (and similarly in high volume Portland-slag 410 

blends). There has been much speculation in the past that this coloration is due to the presence of 411 

polysulfide species (resulting from the release of sulfide by slag dissolution), but the previous 412 

spectroscopic evidence was far from sufficient to fully substantiate this argument. However, 413 

Chaouche et al. [118] have recently used synchrotron-based X-ray absorption near edge 414 

spectroscopy (XANES) to demonstrate that the blue/green regions of alkali-activated (and 415 

Portland cement-blended) slag binders contain the characteristic spectroscopic features of the 416 

trisulfur (thiozonide) radical anion S3
-, the same species that gives color to ultramarine pigments. 417 

Consistent with this, Le Cornec et al. [119] have also recently applied vibrational spectroscopy to 418 

the analysis of greening effects in 70% GGBS-30% PC blended cements, and identified 419 

spectroscopic features consistent with the confinement of various sulfur radical ions (S2
-, S3

- and 420 

S4
-) within the interlayer space of LDH phases, proposed to be of the AFm family. They claimed 421 

that all three of these polysulfide species were present at similar ratios in the hydration products 422 

of various slags tested, which modifies the characteristically blue pigmentation of the S3
- radical 423 

anion (which is the most prominent species in their spectra also), to instead give a green color 424 

[119]. This is clearly an important step forward in understanding the fundamental science of 425 

AAMs, but also has implications for understanding the role of binder redox chemistry in 426 

controlling steel corrosion processes. 427 

 428 
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2.5.2 Modelling approaches 429 

There have also been notable recent advances made in the modelling of AAM binder chemistry 430 

by a variety of modelling approaches at different length scales. At an atomistic level, a number of 431 

molecular dynamics (MD) studies have generated model structures claiming to represent N-A-S-432 

H gels. However, the majority of these studies have not included water in a realistic or reasonable 433 

manner, and so have generated structures of anhydrous or partially-hydrated glasses rather than 434 

anything representative of a N-A-S-H structure that could form by precipitation from an aqueous 435 

solution. Features such as edge-sharing tetrahedra and extensive AlIV-O-AlIV bonding, which are 436 

not observed to any significant degree in hydrous aluminosilicate minerals, can be viewed as 437 

indicators of such an unrealistic structure. An exception to this trend is the work of Lolli et al. 438 

[120], who used MD to generate correctly hydrated N-A-S-H gel structures based on three 439 

approaches: a “crystalline” structure based on adjusting the sodalite framework to the desired N-440 

A-S-H stoichiometry; a “defective” structure generated by introducing defects into the sodalite 441 

framework and allowing this to relax (in the presence of water) using MD, and an “amorphous” 442 

structure based on SiO2 glass adjusted to the desired N-A-S-H stoichiometry. Among these three 443 

models, the “defective” structure (Fig. 10) gave the best match to experimental PDF data, and also 444 

yielded predictions of nanoscale mechanical properties and porosity that are consistent with the 445 

available literature, while complying with the requirements for predominantly Q4 bonding, the 446 

absence of edge-sharing tetrahedra, and agreement with Loewenstein’s principle of Al-O-Al 447 

avoidance [121]. This can therefore be considered to be a reasonably representative structural 448 

model for N-A-S-H gel at this length scale, and is consistent at a chemical level with the schematic 449 

description of the potential site types that was shown in Figure 7. 450 

 451 
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 452 

Figure 10. Representation of part of the N-A-S-H gel structure generated by application of molecular 453 

dynamics to relax a defective sodalite framework. Reproduced with permission from [120]. 454 

Copyright American Chemical Society. 455 

 456 

At the mesoscale, Valentini [92] adapted an established code designed for Portland cement 457 

hydration simulations to describe the activation of metakaolin by different alkaline solutions, 458 

while Yang & White [122] advanced the use of on-lattice coarse-grained Monte Carlo simulations 459 

to describe activation of different aluminosilicate precursors. Modeling approaches such as these 460 

are computationally intensive and need care in parameterization and specification to ensure that 461 

atomic-scale interactions are replicated as accurately as possible on the mesoscale, but also 462 

provide unparalleled access to mechanistic and microstructural information on a length scale of 463 

up to hundreds of nanometers, which is very difficult to access experimentally in real-time. 464 

 465 

Thermodynamic modeling of phase assemblages in AAMs has been an area of particularly 466 

important recent developments, where the application of a detailed ideal solid solution model for 467 

the C-(N,K)-A-S-H system [123] supported by the availability of improved solubility data [124] 468 

has significantly moved forward the state of the art. This has enabled advances in phase 469 

assemblage predictions for alkali-activation of blast furnace slag [125-127], including prediction 470 
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of phase diagrams for a wide range of slag and activator compositions [128]. Solubility 471 

information for N-A-S-H gels [129], and improved information for aqueous species in the N-K-472 

A-S-H-Cl system [130], are bringing the opportunity for modelling of some lower-calcium binder 473 

systems [131], although much work is still required to develop and validate the necessary range 474 

of model constituents to enable full description of the phase assemblages in these binders. In 475 

particular, the database of zeolite phases available for inclusion in models of the (N,K)-A-S-H 476 

system requires expansion, as there are significant gaps in the literature here, although constrained 477 

to some degree by issues of metastability and difficulties in actually defining “solubility” in many 478 

instances. 479 

 480 

2.6. Microstructure and mechanical properties 481 

The development of a detailed understanding of the microstructure and mechanical properties of 482 

AAMs is obviously key to the application of these materials in civil and infrastructure applications. 483 

In particular, it is essential to understand whether the engineering design equations that have been 484 

established for conventional concretes are also broadly applicable to AAM concretes. A detailed 485 

review of the mechanical properties of AAM concretes has been provided recently by Ding et al. 486 

[132], and the full scope of that review will not be repeated here. However, it should be noted that 487 

in many cases, the general functional forms of relationships that work well in describing the 488 

characteristics of Portland cement-based concretes also appear valid for AAM concretes, but some 489 

re-fitting of parameters seems necessary.  490 

 491 

Analysis of the stress-strain characteristics of AAM concretes has tended to show that these 492 

materials show a higher tensile strength, lower modulus of elasticity, and lower Poisson’s ratio 493 

than conventional Portland cement concretes, as reported by e.g. [133-135] and many others. 494 

Thomas and Peethamparan [136] also showed that the specimen size effect in compressive 495 

strength testing of AAM concrete cylinders was well described by the established models for 496 

Portland cement in the case of AAMs based on GGBS, but observed an unexpectedly strong size 497 
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effect in AAMs based on fly ash. This was attributed to microcracking effects in the fly ash–based 498 

binders; microcracking of AAMs is certainly an area requiring more detailed analysis, and will be 499 

revisited below (section 2.8) in the discussion of dimensional stability. The creep of AAM 500 

concretes also requires further attention. There are indications that although the early-age creep 501 

of these materials resembles that of Portland cement-based concretes, the deceleration of creep 502 

over extended timeframes may be less dramatic in AAM concretes, meaning that longer-term 503 

creep processes must be taken into account in structural design procedures [137]. AAMs have also 504 

been observed to have a higher fracture energy [138, 139] and a more compact interfacial 505 

transition zone [138, 140] than comparable Portland cement-based materials, and undergo a more 506 

localized cracking process [141]. The strong aggregate-paste bond also gives relatively high 507 

fatigue resistance [142, 143]. 508 

 509 

An important finding underpinning much of the analysis of AAM property-microstructure 510 

relationships was the identification by Winnefeld et al. [68] that the degree of reaction of the blast 511 

furnace slag precursor appears to be a characteristic parameter which controls strength, across a 512 

range of slag sources and activators. It is quite probable that this relationship is critically 513 

dependent on the pore structure of the AAM binder; Ranjbar et al. [144] obtained strengths of 514 

over 130 MPa by hot-pressing fly ash-based AAMs to reduce porosity, while Rouyer et al. [145] 515 

showed a clear relationship between Young’s modulus and pore volume of a range of metakaolin-516 

based AAMs. Blyth et al. [146] also showed orders-of-magnitude differences in intrinsic 517 

permeability between hydroxide-activated and silicate-activated slag binders, but without a 518 

corresponding difference in the Young’s modulus, which was attributed to a very marked 519 

reduction in the characteristic pore diameter upon silicate activation. Bernal et al. [147] also 520 

reported a surprisingly low dependence of mechanical properties on total pore volume in alkali-521 

activated slag mortars, where water/binder ratios of 0.40 and 0.44 gave similar 28-day strengths 522 

and identical 56-day strengths. Babaee and Castel [148] used water vapor sorption as a sensitive 523 

probe of pore structure in blended fly ash-slag AAMs, distinguishing the very fine pores which 524 

dominate slag-rich pastes from the mesoporous nature of fly ash-rich binders. Hu et al. [149] 525 
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reported that the compressive strength of alkali-activated slag/fly ash mortar is mainly affected by 526 

total porosity and porosity of capillary pores, with sizes ranging from 10 to 104 nm. The change 527 

of pore structure in the mortar was strongly influenced by the activator silicate modulus, alkali 528 

dosage and fly ash content. 529 

 530 

2.7. One-part alkali-activated binders 531 

One-part (‘just add water’) alkali-activated materials can be treated as an important step towards 532 

to the commercial-scale development of these low-carbon binders. A new review on one-part 533 

AAMs has been published [150] which included systematic analysis of the available literature, so 534 

the current paper will not attempt to repeat the full scope of that review, which covered one-part 535 

AAMs in respect of raw materials, admixtures, optimum calcination, composition, curing 536 

conditions, and mechanical strength. Fig. 11 illustrates the general procedure to prepare one-part 537 

AAMs by adding water to a dry mixture of solid alkali-activator and a solid aluminosilicate 538 

precursor, including a calcination step if necessary. This technology has been considered as a 539 

method to face some technical challenges related to conventional (two-part) AAMs, in particular 540 

the question of how to handle large amounts of activator solutions which may be viscous, 541 

corrosive, and/or hazardous, on site in a construction application. It should be noted that the pH 542 

of most alkali-silicate activators is actually similar to that of fresh Portland cement paste, but the 543 

fact that these may need to be stored and handled in large quantities by personnel who are not 544 

specialized in chemical handling is nonetheless an important reason to drive forward the 545 

development of one-part AAMs. 546 

 547 
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 548 

Figure 11. The general procedure of one-part AAM (geopolymer) preparation. From [150]. 549 

 550 

In one-part alkali-activated binders, any substance that dissolves sufficiently rapidly, and offers 551 

alkali cations and provides a high pH environment to facilitate dissolution of the aluminosilicate 552 

precursor, can in principle be used as an activator [151]. Sodium metasilicate powders 553 

(Na2SiO3·xH2O, 0 ≤ x ≤ 5) has been studied as a solid activator in one-part alkali-activated binders 554 

[152-154]. Anhydrous sodium metasilicate was reported to contribute to higher compressive 555 

strength and better workability than its hydrous counterparts when used to activate fly ash and 556 

blast furnace slag-based binders, and is available commercially in the form of spray-dried powders 557 

that appear quite amenable to use in alkali-activation processes at an acceptable cost.  558 

 559 

Hybrid alkaline cement, where Portland cement and an alkaline activator are added in parallel, 560 

can also be regarded as a type of one-part AAM binder. The nanostructural evolution of these 561 

cements has been presented by García-Lodeiro et al. [155] via a descriptive model. Fernández-562 

Jiménez et al. [156] investigated the hydration mechanisms of fly ash-based alkaline hybrid 563 

cement as a function of the nature of the activator as it was supplied in different forms (solid and 564 

liquid). When solid sodium sulfate was used as the activator in hybrid binder systems, slightly 565 

higher mechanical strength and less AFt and AFm phases were obtained than when it was added 566 

as a liquid. Both early age reaction kinetics and the nature of reaction products were influenced 567 

by the form of addition of the activator.  568 
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 569 

Various different precursors, and combinations of precursors, have been validated for use in one-570 

part AAM binders. In addition to the more commonly used GGBS [157, 158], fly ash [159, 160] 571 

and calcined clays [161], there has also been meaningful work dedicated to the development of 572 

one-part AAMs from industrial waste silicas and NaAlO2 [162][163], and red mud [164, 165]. In 573 

many of these binder systems, a careful balance needs to be drawn between adding sufficient 574 

alkalis to enable rapid strength development, and avoiding the excessive alkali levels that may 575 

lead to efflorescence. Ongoing work to understand the causes and implications of efflorescence 576 

in both one-part and two-part AAM binder systems [166-168] is certainly necessary to underpin 577 

the development and deployment of one-part AAMs. 578 

 579 

Qu et al. [169] produced a pre-industrial hybrid alkaline cement, manufactured in a Latin 580 

American plant on a scale of around 20 tons. The proportions used were 30 % Portland clinker + 581 

32.5 % blast furnace slag + 32.5% fly ash + 5% solid activator (the main salt is Na2SO4). This 582 

hybrid alkaline cement was showed to react with water at ambient temperature and reached a 583 

compressive strength around 32 MPa at 28 days, with acceptable setting time and early strength. 584 

Further, the cement paste was tested at up to 1000°C, and showed better high-temperature 585 

resistance than Portland cement due to the recrystallization of new poorly hydraulic phases, 586 

mainly in gehlenite- and rankinite-type phases [170, 171]. Velandia et al. [172] also demonstrated 587 

the production of concretes with good performance using a hybrid fly ash-Portland-Na2SO4 binder, 588 

and provided extensive data about the durability performance of these concretes, including 589 

correlations between key durability parameters and compressive strength at ages of up to 1 year. 590 

 591 

2.8. Dimensional stability 592 

The dimensional stability of any cementitious binder is a critical factor in determining its use in 593 

engineering applications, as concretes are required to neither shrink nor expand excessively in 594 

service. The relatively low level of bound water present in AAMs, particularly those with low 595 
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calcium content, has been observed to cause some susceptibility to drying shrinkage, as has 596 

recently been reviewed by Mastali et al. [173]. This area has attracted a high degree of attention 597 

in the literature in recent years, as the importance of understanding and controlling shrinkage has 598 

become more and more evident. Low-calcium AAMs do not self-desiccate during curing in the 599 

same manner as does Portland cement during its hydration [174], as there is not such a strong 600 

chemical driving force withdrawing water from the pore fluid into solid phases. However, they do 601 

undergo autogenous shrinkage which can lead to early-age cracking if not appropriately controlled 602 

[175].  603 

 604 

Higher-calcium AAMs such as sodium-silicate activated GGBS can self-desiccate, in part due to 605 

the formation of hydration products, and also because the high ionic strength of their pore solution 606 

reduces water activity to draw the relative humidity below 100% [176]; this latter effect is likely 607 

to be the cause of any observed self-desiccation effects in lower-calcium binders that do not 608 

chemically incorporate water of hydration. Ye & Radlińska [177] proposed that the drying 609 

shrinkage of alkali-activated GGBS involves densification of the C-(N)-A-S-H as its structure is 610 

damaged by reductions in relative humidity, as neither the moisture loss nor the drying shrinkage 611 

were reversible upon soaking of dried specimens. Shrinkage mitigation strategies similar to those 612 

that are implemented in conventional Portland cement have been evaluated recently for 613 

application in AAS {Ye, 2017 #741}. Chemical shrinkage of alkali-activated GGBS and GGBS-614 

rich blends has been studied experimentally [178] and also identified through thermodynamic 615 

modeling [125, 127]. Thomas et al. [179] identified a beneficial role for heat curing in reduction 616 

of drying shrinkage, while Gao et al. [180] applied a particle packing model at paste scale to 617 

optimize blends of GGBS and fly ash for minimum porosity and shrinkage. The shrinkage 618 

properties of alkali-activated binders based on different blended precursors have also been 619 

reported [181, 182]. Shrinkage-reducing admixtures [183-186] and super-absorbent polymers 620 

[187-189] have also shown some effectiveness in reducing drying shrinkage, as has the tailored 621 

design of blended activators [190]. While shrinkage control in AAMs does remain an area of open 622 

research, with many questions yet to be answered, the fact that this broad range of approaches 623 
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have all shown some potential for success is a strong indication that this is not an intractable issue. 624 

 625 

2.9. Durability 626 

The durability of alkali-activated binders, and concretes produced from them, has been reviewed 627 

in various publications [151, 191-193]. In most cases, AAMs have been tested according to 628 

methods devised and validated for the testing of Portland cement-based binders; there are ongoing 629 

discussions around whether this is entirely appropriate, including through the work of a RILEM 630 

Technical Committee [194, 195], and it appears that in the majority of cases there are details of 631 

the standard testing methodologies that will require modification if they are to give truly 632 

meaningful results for AAMs. Sample preconditioning has been highlighted as an area requiring 633 

particular care when designing tests for AAMs, as some of these materials can be damaged by the 634 

preconditioning regimes that are often applied to Portland cement-based materials before testing, 635 

particularly when very vigorous drying is applied [93, 196-198]. A performance-based 636 

specification designed specifically for application to AAMs has been released in the UK, based 637 

on minimal adaptations to established Portland cement testing methodologies [199], and efforts 638 

are also ongoing in other countries and through multinational collaborative programs; it is 639 

expected that this will be an area of rapid development in the coming years. 640 

 641 

It has long been identified that binder carbonation under exposure to CO2 is an area of durability 642 

that requires careful consideration when designing and specifying AAMs. Early accelerated 643 

testing at high CO2 partial pressures appeared to show that alkali-activated binders would be very 644 

susceptible to carbonation, but this was not directly matched by observations under natural 645 

conditions. The reasons for the sometimes very poor performance of AAMs under accelerated 646 

carbonation exposure is now understood to be related to specific changes in the carbonate-647 

bicarbonate equilibrium of the AAM pore solution at elevated CO2 partial pressures [200]. This 648 

can give an unrepresentative reduction in pH compared to natural carbonation exposure, which 649 

has been shown to give a much less marked reductions in pH [201, 202]. Relative humidity control 650 
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during carbonation testing has also been shown to be highly influential in determining the 651 

observed rate of carbonation [203]. 652 

 653 

The carbonation of AAMs has been shown to be strongly dependent on binder microstructure, and 654 

particularly the degree of microstructural evolution and pore network refinement achieved prior 655 

to the start of carbonation exposure, which can be influenced by curing, as well as various mix 656 

design parameters such as the activator dose [204-207]. The presence of hydrotalcite-type LDH 657 

phases has been identified as being particularly crucial in enabling carbonation resistance, whether 658 

these are produced directly as a result of activation of an Mg-containing precursor, or due to the 659 

addition of a supplemental Mg source (or calcined LDH as a seeding/templating agent) [208] [15, 660 

209, 210]. The mechanisms of carbonation shrinkage in alkali-activated slag binders have also 661 

been identified [211]. Together, these new aspects of insight provide essential steps toward 662 

designing AAMs that can appropriately resist carbonation in service, and also in understanding 663 

the connections between accelerated and natural carbonation mechanisms to enable the design of 664 

appropriate laboratory tests for the prediction of field performance. Electrochemical examinations 665 

of carbonated AAM concrete showed that the binders have been capable of keeping the 666 

reinforcement in a passive condition even with the lowered pH caused by the accelerated 667 

carbonation [212, 213], but this does necessitate further investigation.  668 

 669 

In many steel-reinforced concrete applications, the service life of a structure or element is 670 

governed by the ability of the concrete to protect the steel from chloride-induced corrosion. The 671 

rate and mechanisms of chloride transport in AAMs have been reviewed in detail by Osio-672 

Norgaard et al. [214]. Thomas et al. [215, 216] have provided a comparison of chloride test 673 

methods as applied to these materials. Hu et al. [144] found that some alkali could leach out during 674 

specimen saturation before the electrically accelerated chloride transport test, and that the water-675 

to-specimen ratio could have a critical effect on the passed charges, but not on the chloride 676 

migration coefficient of the specimens. This is an active area of work in international 677 

organizations including RILEM and the European Federation for Corrosion, who have established 678 
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working groups to investigate chloride transport and corrosion initiation in AAMs, with a 679 

particular view toward the development of more appropriate testing methods. Noushini and Castel 680 

[217] have recently discussed the development of performance-based criteria for AAM concretes 681 

based on chloride ponding and electrochemically accelerated tests, which is an essential step 682 

toward performance-based standardization of AAMs. For electrochemical testing, it also appears 683 

likely that the proportionality constants applied in the relationships that are commonly used to 684 

obtain material parameters from polarization curves (Tafel slopes) for Portland cement will need 685 

to be re-assessed for AAMs, as there appear to be significant deviations from the classical 686 

electrochemistry of Portland cement when considering the particular pore fluid chemistry of 687 

AAMs [218]. 688 

 689 

Chloride binding, particularly by hydrotalcite-type LDH phases, has been identified by some 690 

authors to be very influential in determining chloride transport through AAMs [219, 220], 691 

although other authors did not identify strong evidence for chloride binding in alkali-activated 692 

slag concretes [215, 221]. There is a clear need for further developments to resolve this open 693 

question, which is of fundamental importance to service life prediction for reinforced AAMs 694 

under chloride exposure. 695 

 696 

Ma et al. [222] linked chloride diffusivity, electrical resistivity, and corrosion testing of reinforced 697 

alkali-activated concretes, and highlighted the importance of sulfide (provided by blast furnace 698 

slag when used as a precursor in AAMs) in defining the corrosion rate post-initiation. The role of 699 

sulfide has also been identified in studies of steel corrosion in simulated alkali-activated slag pore 700 

solutions [223-225] [226], and in various types of mortar specimens [227-229]. The very high 701 

pore solution pH of some AAM binders has also been shown to generate unconventional 702 

threshold-like relationships in chloride initiation, and also to give chemical protection of steel 703 

reinforcement even at high chloride concentrations [230-232]. Mundra et al. [226] also developed 704 

a classification scheme for alkali-activated and slag-blended binders as shown in Fig. 12. 705 
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 706 

Figure 12. Overview of the classification of cements, particularly of AAMs, based on internal 707 

redox conditions, and the parameters influencing the onset of steel pitting and the service-708 

life of these binders. AAFA = alkali-activated fly ashes, AAMK = alkali-activated metakaolin. 709 

Adapted from [226], under Creative Commons license conditions. 710 

 711 

Questions around alkali-silica reactions, analogous to those which can lead to damaging 712 

expansion in Portland cement binders with reactive aggregates, also arise regularly in discussions 713 

of AAMs because of the high levels of alkali present in these binders. However, the results of 714 

testing with a broad range of binder-aggregate combinations have shown that alkali-silica 715 

reactions do not appear to be particularly problematic in AAMs with aggregates of ‘normal’ 716 

reactivity [233]. It is possible to induce alkali-silica reaction expansion under accelerated 717 

conditions and with the use of a reactive aggregate [234, 235], but in the majority of cases, AAM 718 

mortars show less expansion than plain PC mortars with the same reactive aggregates [234, 236-719 

238]. The relatively high Al concentration in the pore solution of AAMs, and in some cases also 720 
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the lack or near-absence of dissolved Ca, appears to be important in restricting alkali-silica 721 

damage [234, 237, 239]. 722 

 723 

The freeze-thaw and frost-salt resistance of AAMs do appear to merit further attention, as the 724 

literature on this topic contains many case studies but lacks consistent or systematic analysis 725 

across the class of materials in general. Sulfate attack on AAMs has also been studied according 726 

to a number of test methods, largely because such testing is often requested by specifiers or end-727 

users as sulfate attack can be problematic for Portland cement-based materials. However, the 728 

fundamental mechanism of Portland cement sulfate attack, with expansive processes involving 729 

the monosulfate-AFm phase, is not possible in most AAMs as this phase is absent from the hydrate 730 

products. Sulfuric acid attack on AAMs is, however, a relevant mechanism related to use in sewer 731 

infrastructure and other highly aggressive environments [240, 241], and the performance of 732 

AAMs (particularly those with low Ca content [242, 243]) under such conditions has been 733 

observed to significantly exceed that of most other cementitious binders [242, 244]. Organic acid 734 

resistance has also been reported to be a strength of low-calcium AAMs, as small organic acids 735 

damage calcium-rich binders through complexation and removal of Ca2+ ions, but this mechanism 736 

is much less significant for AAMs that do not rely on calcium as a key binder constituent [245, 737 

246]. 738 

 739 

Testing of AAM durability in the field has generally shown results that are consistent with 740 

laboratory trials under non-accelerated or minimally-accelerated conditions; the materials that 741 

have been put into service under varying conditions have in many cases served very well, 742 

including concretes dating back to the 1950s [151, 247, 248], and more recent demonstration or 743 

full-scale infrastructure projects [249-252] including an airport in Australia that was constructed 744 

largely from alkali-activated concretes [253]. Such projects are essential in building stakeholder 745 

acceptance of AAM technology, and in using the experience gained to guide standards 746 

development, to ensure that the materials selected, specified and used are fully fit for purpose 747 

[254]. 748 
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2.10. Applications of alkali-activated materials 749 

Alkali-activated binders are finding rapidly increasing uptake in a growing range of applications, 750 

and this section will provide a very brief overview of some of these. The primary route to market 751 

for these materials in the short term will almost certainly be as a binder in concretes, and 752 

increasingly sophisticated approaches to the design and use of AAM concretes (rather than just 753 

directly applying protocols used for Portland cement concretes) are being published for concretes 754 

based on alkali-activated GGBS [60, 255-257], fly ash [258-260], metakaolin [261], and various 755 

blends of these materials [259].  756 

 757 

AAMs, including particularly the lower-calcium “geopolymer”-type materials, are also attracting 758 

attention as matrices for the conditioning and immobilization of radioactive wastes; the ability of 759 

these materials to host, and bind, radioisotopes of cesium and strontium has been demonstrated 760 

and analyzed in some detail [262-264]. The effective immobilization of cesium in Portland 761 

cement-based matrices is well known to be challenging, and so the availability of a cementing 762 

system that can restrict its movement is highly desirable. There have been important recent 763 

investigations of the potential for compatibility of AAM matrices with complex waste streams 764 

containing multiple radioisotopes [265, 266], with oily wastes [267, 268], with ion exchange 765 

media [269, 270], and with graphitic or metallic wastes [271-273]. AAM matrices have also been 766 

demonstrated to show generally good stability under irradiation [274-276], and a hydrogen 767 

radiolytic yield that depends on water content and pore structure [274]. 768 

 769 

The ability to produce lightweight AAMs has been investigated by numerous groups, as reviewed 770 

recently by Bai & Colombo [277] and by Zhang et al. [278]. Successful approaches have included 771 

various types of templating by organic foams or emulsions [160, 267, 268, 279-281], foaming by 772 

peroxide addition [282] or by metal powders [283] and the use of lightweight aggregates [284] 773 

 774 

AAMs have also been tested – and in some cases validated – in a broad range of ‘niche’ 775 

applications in recent years; a non-exhaustive selection of these includes: 776 
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- Well cementing in hydrocarbon and geothermal industries [285-287] 777 

- Chromatographic substrates [288] 778 

- Manufacture of composites [289, 290], including strain-hardening and/or ductile 779 

“engineered composite” materials [291-293] 780 

- Repair mortars [294] 781 

- Materials for additive manufacturing or “3D printing” through various extrusion-based 782 

and powder bed processes (Fig.13 [295]) [296-298]  783 

- Moderate-temperature refractories or fire-resistant construction materials [299-302] 784 

 785 

 786 
Figure 13. Additive manufacture of a vase from a metakaolin-based AAM, by extrusion. Reproduced 787 

from [295]. 788 

 789 

2.11. LCA and environmental aspects 790 

When considering any type of cement as a potentially “eco-friendly” or “low-carbon” alternative 791 

to established technologies, it is essential that the actual environmental footprint of both the 792 

conventional and innovative materials are sufficiently well understood and quantified, to enable 793 

a fair comparison to be made. However, this is an area in which most current research publication 794 

practice in the field of alternative cements falls well short of providing the information needed for 795 

informed decision-making. This is potentially in part because of the trend for technical authors to 796 
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justify the importance of their work (to funders, editors or other stakeholders) by ‘advertising’ the 797 

class of materials they prefer to study, and in part because the rigorous comparative environmental 798 

assessment of two construction materials is actually a highly specialized and challenging research 799 

task in itself. In the specific context of AAMs, Habert & Ouellet-Plamondon [303] have provided 800 

some very insightful discussion and assessment of data sources, and highlighted in particular the 801 

importance of understanding and controlling the environmental footprint of the alkali activator 802 

when designing and specifying an AAM mix design. 803 

 804 

Another critical aspect of the assessment of sustainability is the need to conduct a locally-specific 805 

determination of energy supply and transport options, and their costs and environmental footprints, 806 

as these will differ very strongly between locations worldwide. This means that it is impossible to 807 

conduct a valid, generic assessment of the emissions footprint of an AAM at a useful level of 808 

precision, without knowing where in the world it will be used. The emissions attributed to 809 

electricity generation differ widely from (e.g.) hydroelectric to nuclear to coal sources, and AAMs 810 

are much more dependent on electrical energy in production than is Portland cement. This opens 811 

some attractive possibilities when considering binder production using a decarbonized electricity 812 

supply [304], which may be a strong point in favor of the use of AAMs in regions where low-813 

carbon electricity is available.  814 

 815 

The trend in the academic literature recently has therefore been toward regionally-specific (or 816 

very localized) assessments of AAMs for use in particular applications or concrete/mortar 817 

products in the Americas [305-307], Europe [308-310], and Australasia [311, 312]. The general 818 

trend observed in these studies is that AAMs offer greenhouse emissions savings compared to a 819 

Portland cement baseline, and usually on the order of 40-60%, but somewhat increased the 820 

environmental impact in other non-greenhouse categories, such as abiotic depletion, ozone layer 821 

depletion, fresh and marine water ecotoxicity, and human toxicity, that are considered in the life-822 

cycle assessment process. It has also been identified that there is a strong need for more refined 823 

and updated life-cycle inventory data for activator constituents including sodium silicate [303, 824 
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305, 313], as the currently available international databases do not reflect current production 825 

practice or processes. The assessment of recyclability [314, 315] and release of potentially 826 

problematic elements (toxic or naturally occurring radioactive materials) [316-318] from AAMs 827 

in service has also received some attention as an essential constituent of a full cradle-to-grave or 828 

cradle-to-cradle environmental assessment. This will doubtless gain further importance as non-829 

carbon emissions become more of a focus in material and product assessments worldwide, while 830 

the sources and characteristics of waste materials used in AAM production become ever more 831 

diverse. 832 

 833 

The other critical aspect that needs to be considered in environmental analysis of AAMs is 834 

durability (at both material and element/structure scale), and this was discussed in Section 2.9 835 

above. Considering all of these aspects together, and to conclude the discussion of AAMs, it 836 

should be identified that AAMs are becoming a mature class of materials whose nature and 837 

properties are increasingly well understood, and which offer numerous attractive opportunities to 838 

exercise their desirable technical and environmental characteristics for the benefit of society. They 839 

should not in any way be viewed as a panacea for all problems in the construction materials sector, 840 

and nor are they likely to be universally suitable as a replacement for Portland cement-based 841 

binders across the full range of applications in which cements are used, for both technical and 842 

logistical (materials-supply) reasons. However, as a constituent of the future toolkit of cements, 843 

AAMs do bring very significant value.  844 

 845 

In the following sections, the focus of this review will turn to some other types of cementing 846 

systems, which are not yet as widely deployed as AAMs, but which can also form valuable 847 

components of the cements toolkit. 848 

 849 

3. Carbonate Binders  850 

The concept of carbonatable binders is based on the fact that some raw materials can harden 851 
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through carbonation. Carbonated cementitious binders have attracted wide attention in recent 852 

years, attributed to their rapid strength gain and the sequestration of CO2 when exposed to a CO2 853 

rich environment [319, 320]. This section will discuss carbonated calcium silicate, carbonated 854 

Portland cement, MgO-based cement and carbonated waste-derived binders. These four binder 855 

types react with water and CO2, yielding strong cementing materials.  856 

3.1. Carbonated calcium silicate binders 857 

Tricalcium silicate (C3S), β-dicalcium silicate (β-C2S), γ-dicalcium silicate (γ-C2S), tricalcium 858 

disilicate (C3S2) and monocalcium silicate (CS) can react with CO2 and form strong monolithic 859 

matrices [321-323]. Ashraf & Olek [324] reported that the carbonation of pure calcium silicates 860 

consists of two distinct processes: an initial phase-boundary controlled process, and then a 861 

subsequent product layer diffusion controlled process. The reaction rate constant was found to 862 

vary based on the calcium silicate phases; β-C2S has the highest reaction rate, followed by C3S, 863 

γ-C2S, C3S2 and finally CS. 864 

 865 

The carbonation products of pure calcium silicate are calcium carbonate and Ca-modified silica 866 

gel or silica gel [323, 325, 326]. The calcium carbonate crystals resulting from carbonation of C3S, 867 

C2S, C3S2 and CS include the polymorphs calcite, aragonite, and vaterite [326, 327]. The presence 868 

of a 13C CP/MAS NMR signal in carbonated C3S, C2S, and C3S2 phases can be attributed to the 869 

additional formation of amorphous calcium carbonate (ACC), as shown schematically in Fig. 14. 870 

However, ACC is not formed in carbonated CS under the same environmental conditions, Fig.14 871 

[326]. The presence of poorly crystallized forms of CaCO3 tends to increase the strength of the 872 

carbonated calcium silicate matrices [328]. Furthermore, the values of the elastic modulus of 873 

CaCO3-rich binders can vary over a relatively wide range due to the presence of different 874 

polymorphs of CaCO3 crystals [327].  875 

  876 
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 877 

   878 

Figure 14. Proposed distribution of the pores (smaller than 10 nm) in carbonated calcium silicate 879 

matrixes a) without the presence of amorphous calcium carbonate (ACC) and b) in the presence of 880 
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amorphous calcium carbonate (ACC), adapted from [319]. 881 

 882 

As shown in Fig. 15, the degree of polymerization of Ca-modified silica gel (which is essentially 883 

defined by the inverse of the Ca/Si ratio) is nearly the same for all the carbonated calcium silicates 884 

discussed, except for the carbonated C3S, which has a slightly lower degree [326]. However, all 885 

the calcium silicates reach a similar overall carbonation level due to the retardation of the 886 

carbonation reaction after formation of nearly the same amounts of CaCO3 (Fig. 16), indicating 887 

that effect is related to blockage of the surfaces of potentially reactive particles by the precipitated 888 

carbonates.   889 

 890 

 891 

Figure 15. Average Ca/Si atomic ratios of Ca-modified silica gel phase formed during the 892 

carbonation reaction of the calcium silicate samples [321].  893 

 894 
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 895 
Figure 16. CaCO3 contents (by mass, %) as a function of carbonation duration for different 896 

calcium silicate phases [326]. 897 

 898 

Among these calcium silicates, carbonation of C2S has attracted more attention due to the different 899 

crystal polymorphs that it can take, particularly β-C2S and γ-C2S, as γ-C2S can be produced at 900 

much lower synthesis temperatures than the conventional hydraulic calcium silicate phases. 901 

Chang et al. found β-C2S and γ-C2S to absorb 9.2% and 18.3% of their theoretical levels of CO2 902 

after 2 h of carbonation, respectively [328], but β-C2S showed the twice the compressive strength 903 

compared to γ-C2S. A similar result was reported by Guan et al., who found that the compressive 904 

strength of carbonated γ-C2S was 52.4 MPa after 2 h carbonation [329]. Calcite and aragonite are 905 

the main crystals formed by carbonation of γ-C2S, and amorphous Ca-modified silica gel lacking 906 

long-range order was also formed [329-331]. Mu et al. [327] proposed a conceptual model of the 907 

carbonation process of a γ-C2S particle, as shown in Fig. 17.  908 

 909 

 910 
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 911 

Figure 17. A conceptual carbonation model diagram of γ-C2S particle. From [327] 912 

 913 

3.2. Carbonated Portland cement (PC) binders  914 

It is well known that accelerated early-age carbonation of Portland cement binders can result in 915 

rapid strength gain and lower permeability. This is because the carbonation reaction leads to a 916 

reduction in total porosity through the formation of carbonation products that occupy more space 917 

than the portlandite that they are replacing. Shi et al. [332] proposed the use of pre-conditioning 918 

to improve the accelerated carbonation of PC binders; the compressive strength of carbonated 919 

concrete after proper pre-conditioning then 2 h of CO2 exposure is similar to that of the concrete 920 

after 24 h of steam curing. Furthermore, the carbonated concrete exhibits a similar compressive 921 

strength to that of steam-cured concrete during winter weathering exposure [333]. Shi et al. [334, 922 

335] suggested that pre-conditioning environments have the most crucial effect on the 923 

effectiveness of CO2 curing. Additionally, the temperature of the samples rises very quickly once 924 

the samples are exposed to CO2; this could reach a peak value of 70 °C during the first 15-20 min, 925 

then goes down gradually with time.  926 

 927 

Kenward et al. [336] studied hydration of an oil-well cement in the presence and the absence of 928 

pure CO2 gas. The carbonate formed was initially amorphous calcium carbonate that was not 929 

detectable by XRD, but this changed to crystalline calcite detectable by XRD within 24 h. The 930 

addition of carbon dioxide did result in performance benefits. 931 

 932 
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Shah et al. [331] have suggested that the precipitation of the three polymorphs of calcium 933 

carbonate (calcite, vaterite, and aragonite) takes place in carbonated PC, while Castellote et al. 934 

[333] only detected calcite in carbonated PC. CaCO3 polymorphism is sensitive to pore fluid 935 

chemistry, carbonation conditions and duration, and may also involve amorphous phases as noted 936 

in Section 3.1, so this is a complex area requiring further analysis. Based on thermogravimetric 937 

analysis, the main mass loss from carbonated PC pastes takes place between 600°C and 950°C. 938 

The poorly crystalline carbonates, preferentially associated with C-S-H carbonation, decomposed 939 

at a temperature below 600°C, while the decomposition temperature of well crystallized CaCO3 940 

is above 600 °C [320, 337, 338]. The carbonated PC was strongly decalcified to form these CaCO3 941 

phases along with a Ca-modified silica gel, identified via the decrease of the Q1 and Q2 sites, and 942 

increase in Q3 and Q4 sites, according to 29Si MAS NMR analysis. 27Al MAS NMR spectroscopy 943 

confirmed that the aluminum-bearing phases, containing mainly AlO6 (ettringite and AFm) and 944 

AlO4 sites (C-A-S-H) were dissolved to form an alumino-silicate amorphous gel (with Al as AlO4), 945 

characterized by a broad resonance that was always positioned at the same chemical shift (55 ppm) 946 

[339].  947 

 948 

3.3. Magnesium-based cement (MC) binders 949 

In recent decades, the use of reactive magnesium oxide (MgO) in PC has received more and more 950 

attention. Carbonation of magnesium-rich cements improves the compressive strength of these 951 

cementitious materials, which is attributed to the densification of materials caused by the 952 

formation of nesquehonite (MgCO3·3H2O), dypingite (Mg5(CO3)4(OH)2·5H2O) and artinite 953 

(Mg2(OH)2CO3·3H2O) [340, 341]. Mo et al. [342] suggested that a large amount of calcite and a 954 

relatively smaller amount of aragonite are the calcium carbonates formed, while magnesian calcite 955 

is formed due to the incorporation of Mg2+ in the carbonated phase, and nesquehonite is formed 956 

only in pastes containing at least 40% reactive MgO. Nesquehonite has been identified as the key 957 

binding phase in other potential carbonated magnesia-based binders [343]. 958 

 959 
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Figure 18 shows the morphology of carbonated magnesia cement [344]. The needle-like 960 

nesquehonite and disk/rose-like hydromagnesite/dypingite, which are the main sources of strength 961 

development in these cement formulations, are observed. The disk/rose-like 962 

hydromagnesite/dypingite crystals that formed due to the carbonation process could be 963 

distinguished from the hydromagnesite seeds included within the initial mix, which possesses a 964 

ground ball-like morphology. 965 

 966 

 967 

Figure 18. SEM images of H2O samples after carbonation: (a) H2O·S0, (b) H2O·S0.5 and (c) 968 

H2O·S1.0. From [344]. 969 

 970 

The area of magnesia-based cements is very diverse, and includes cements which harden and gain 971 

strength by various combinations of carbonation and other chemical reactions, as reviewed in 972 

detail recently by Walling & Provis [345]. These cements are proposed for use in many 973 

applications ranging from large-scale construction to nuclear waste immobilization, and in some 974 
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cases offer the possibility for notable CO2 emissions savings compared to conventional Portland 975 

cement. The supply of MgO is constrained in some areas due to cost or resource availability, but 976 

this is not universally the case, and materials of very good technical and environmental 977 

performance can certainly be produced using this chemistry. 978 

 979 

3.4. Carbonated waste-derived binders  980 

Steel slag is a broad classification for several types of industrial by-products produced during the 981 

steel making process, which may be regarded as a waste-derived binder precursor [346-348]. 982 

Generally, the components of steel slag include hydraulic calcium silicates (C3S, β-C2S), non-983 

hydraulic calcium silicates (e.g. γ-C2S, CS), and free CaO, each of which can react with CO2. 984 

Formation of calcium carbonate in the form of calcite and aragonite in the carbonated steel slag 985 

binders causes microstructural densification associated with a reduction in the total porosity, and 986 

hence improves the compressive strength. A carbonated steel slag binder was observed to show a 987 

shift in its dominant pore diameter from 0.3-3 μm before carbonation, to <0.1 μm in the carbonated 988 

paste [349]. The free CaO in the steel slag is partially or completely consumed due to the reaction 989 

with CO2, which improves the volume stability of the binder [350, 351]. Calcium carbonate (as 990 

calcite and aragonite) is the main carbonate product formed, and portlandite and calcium silicate 991 

seem to be more carbonation-reactive than the Fe-bearing phases that are also present [349]. 992 

Monkman et al. [352] reported the possibility of using a carbonated ladle slag as a fine aggregate. 993 

After carbonation, calcium carbonates and spurrite were detected as new phases by XRD, together 994 

with the consumption of hydrogarnet and calcium hydroxide. Mortars made with the slag sand 995 

demonstrated strengths comparable to mortars made with conventional river sand.  996 

 997 

High calcium fly ashes have an attractive capacity to be used for mineral sequestration of CO2 998 

under controlled conditions [353, 354]. A recent study show that Ca-rich fly ashes react readily 999 

with gas-phase CO2 to produce robustly cemented solids which can achieve a compressive 1000 

strength of around 35 MPa and take up 9% CO2 under optimized conditions [355]. Mahoutian and 1001 
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Shao [356] implemented a low temperature process to produce a binder material from blends of 1002 

fly ash and ladle slag. CO2 gas (99.5% purity) was used for carbonation of the synthesized cement 1003 

for 2 hours and showed that the early age carbonation curing increased the subsequent hydration 1004 

strength.  1005 

 1006 

4. Belite-Ye’elimite Binders  1007 

Ye’elimite, or calcium sulfoaluminate (Ca4Al6O12SO4), is the main mineral in CSA cement clinker, 1008 

and has a crystallographic structure belonging to the sodalite family [357]. CSA cements have 1009 

been developed on a commercial basis and used in real applications, primarily in China, since the 1010 

1970s [358]. These cements are normally used as components in specialty applications because 1011 

of their higher price compared to Portland cement. However, as low-carbon binders, the interest 1012 

in these binders from the cement industry continues to increase because it is closer to the objective 1013 

of ‘eco-friendly’ than many of the other low-carbon binder systems that are still under R&D [359, 1014 

360]. The highly innovative production of ye’elimite-containing clinkers burning waste elemental 1015 

sulfur as fuel, meeting both energy and materials supply demand in a single step, has also been 1016 

demonstrated in a full-scale kiln [361], with the potential for further scale-up. 1017 

 1018 

Ye’elimite reacts very quickly with water and contributes to the development of early strength of 1019 

this binder, forming monosulfate, ettringite, and amorphous aluminum hydroxide as major 1020 

hydrates. Various other reaction products can be obtained, such as strätlingite, 1021 

monocarboaluminate, and gibbsite depending on the minor phases in the CSA cement [362, 363]. 1022 

Normally calcium sulfates are used to adjust the binder hydration reactions, and to promote the 1023 

formation of ettringite rather than monosulfate [364, 365]. Dicalcium silicate (belite) and ferrites 1024 

are present as additional main mineralogical components of CSA cements. In this paper, the 1025 

authors will focus on some belite-ye’elimite binders containing more belite than ye’elimite, which 1026 

is different from CSA cements that contain more ye’elimite than belite. Both belite and ye’elimite 1027 

are lower energy minerals compared with tricalcium silicate (alite), which are suitable for low 1028 
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energy and low-carbon clinker cement production and applications.  1029 

4.1. Belite-ye’elimite-ferrite binders 1030 

Belite-ye’elimite-ferrite (BYF) binders, also known as calcium sulfoaluminate or sulfobelite 1031 

cement [359, 360], have belite as the main phase (45-75%), and ye’elimite as a second component 1032 

(20-45%). This approach to manufacturing BYF binders allows the use of less expensive Al-rich 1033 

raw materials, due to the lower ye’elimite content in the clinker compared to ‘conventional’ CSA 1034 

cements which require a higher-purity Al source. The recent main research interest in this type of 1035 

binder is related to the understanding of ye’elimite hydration, that should be carefully controlled 1036 

to achieve desired rheology and setting time, and also on achieving more reactivity of the belite 1037 

component that contributes to the later growth in strength. BYF binders are not yet in large-scale 1038 

industrial production, but have been developed to pilot scale by some cement companies under 1039 

certain national and multi-national projects. 1040 

 1041 

A study by Cuesta et al. [366] on the early hydration mechanisms of synthetic ye'elimite revealed 1042 

that the polymorphism of ye’elimite (orthorhombic stoichiometric and pseudo-cubic solid-1043 

solution ye’elimite) influenced the hydration kinetics, together with the w/c ratio and the solubility 1044 

of the additional sulfate sources.  1045 

 1046 

Recently, new data on the hydration of BYF cements have been published by Álvarez-Pinazo et 1047 

al. [367]. ‘Non-active’ clinker (containing β-belite and orthorhombic ye’elimite) and ‘active 1048 

clinker’ (containing α’H-belite and pseudo-cubic ye’elimite) have been studied with different 1049 

calcium sulfate sources. The findings of this study showed that the active-clinker mortar 1050 

developed higher compressive strengths than non-active-clinker mortars, independent of the 1051 

choice of sulfate source, and it formed higher quantities of ettringite during hydration and less 1052 

AFm compared to non-active cements. Another interesting finding that should be mentioned is 1053 

that the paste with basanite (CaSO4·0.5H2O) as the sulfate source showed the highest viscosity 1054 

values and a hysteresis cycle attributed to fast setting, more so than gypsum- and anhydrite-1055 
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containing pastes; this behavior can be adjusted by adding a small amount of polycarboxylate-1056 

based superplasticizer (SP) (0.05 wt%) without changing the phase assemblage [368, 369] (Fig. 1057 

19). This offers a possibility to add a superplasticizer normally used in Portland cement binders 1058 

to control the rheological behaviour of BYF cements.  1059 

 1060 

 1061 

Figure 19. Flow curves of different BYF clinkers with different additional sulphate sources (re-1062 

drawn based on [367]) 1063 

 1064 

Morin et al. [370] studied five different BYF cements by experimental analysis and 1065 

thermodynamic modeling to track the hydration kinetics and phase assemblage, which were 1066 

influenced by the quantity of anhydrite, the w/c ratio, and the clinker fineness. The results 1067 

indicated that with increasing addition of anhydrite, belite hydration was delayed, which 1068 

contributed to the formation of a strength plateau between early ye’elimite hydration and later 1069 

belite and ferrite hydration. Also, a higher fineness of cement together with increased w/c ratio 1070 
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leads to higher belite hydration kinetics. Those authors proposed that the question of whether there 1071 

is enough water provided to form all hydration products strongly influences the hydration of belite 1072 

and ferrite phases.  1073 

 1074 

4.2. Belite-alite-ye’elimite binder 1075 

Because some belite-ye’elimite-ferrite cements present quite low mechanical strength due to their 1076 

high content of belite with slow reactivity, methods to improve early strength have been sought. 1077 

One such approach is a clinkering method aiming to introduce a reactive alite phase into the belite-1078 

ye’elimite binder system, as an alternative way to improve the mechanical strength. However, the 1079 

temperature incompatibility between alite formation (above ~1300 °C) and ye’elimite 1080 

decomposition (between 1300 and 1350 °C) brings difficulty in achieving the coexistence of alite 1081 

and ye’elimte phases in clinkering processes. However, this problem can be solved and controlled 1082 

by addition of minor quantities of CaF2 [371] or other oxides, such as ZnO, B2O3, or Na2O, in the 1083 

raw meal [372]. 1084 

 1085 

Chitvoranund et al. [373] prepared a clinker by firing limestone, tuff, gypsum and calcium fluoride 1086 

(used as mineraliser) in a laboratory furnace at 1300 °C for 45 min, which requires a synthesis 1087 

temperature 150–200°C lower than traditional PC clinker. The minerals present in the clinker 1088 

included alite (48.3%), belite (1.5% α’-C2S + 10.3 % β-C2S + 2.2% γ-C2S), ye’elimite (9.6%), 1089 

and ferrite (12.9%). Later, the ground clinker was mixed with 5% anhydrite to make a so-called 1090 

alite-calcium sulfoaluminate cement. The hydration products were mainly C-S-H, ettringite, 1091 

monosulfate, and portlandite, and hydration rates are rapid. Thermodynamic modeling revealed 1092 

that the cement reacted strongly within the first 10 days of hydration, then the reaction process 1093 

slowed down and was almost completed by 100 days. Ferrite exhibited reactivity in the presence 1094 

of C3S, and was consumed to give monosulfoaluminate and katoite. The compressive strength of 1095 

mortars developed quite rapidly, from 10 MPa at 1 day to 35 MPa at 28 days. The release of CO2 1096 

from this approach to clinker production is estimated at about 11-12 % less than conventional 1097 
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Portland cement without the consideration of other factors.  1098 

 1099 

In another study by Londono-Zuluaga et al. [374], a novel clinkering process to prepare belite-1100 

alite-ye’elimite (BAY) binders has been optimized (900 °C/30 min – 1300 °C/15 min) and scaled-1101 

up to 2 kg scale. This process involved as raw meal a mix of natural limestone, sand, iron oxide 1102 

(a byproduct of the sulfuric acid industry), gypsum, and kaolin. The main mineralogical 1103 

composition of their final scaled-up BAY clinker was 60.6 % belite, 14.3 % of alite and 10.4% 1104 

ye’elimite, on a mass basis. BAY cements were prepared by mixing the scaled-up clinker with 12 1105 

wt.% anhydrite. The analysis of hydration highlighted that the main reaction products are 1106 

ettringite, AFm phases (monosulfoaluminate and strätlingite), katoite, and C-S-H. Ye’elimite 1107 

reacted with anhydrite to be completely consumed within 1 day, alite and ferrite almost fully 1108 

reacted after 7 days, and belite showed a typical slower hydration behavior. Portlandite was not 1109 

detected in the pastes at testing ages of 1, 7 and 28 days; it was speculated to be consumed to form 1110 

katoite, AFt phases or monosulfoaluminate. The compressive strength of BAY mortars was 1111 

recorded to be higher than that of a BYF binder prepared by the same group, at any testing age, 1112 

most likely due to the presence of alite. The influence of fly ash blending in BAY cements has 1113 

been also reported by the same authors [375]: with the addition of fly ash, the compressive 1114 

strengths of mortars increased to 68, 73 and 82 MPa, for mortars with 0, 15 and 30 wt.% 1115 

replacement of BAY cement by fly ash respectively, at 180 days. The main hydration products 1116 

were AFt, AFm phases, katoite, and C-S-H for all systems studied. Utilizing a small amount of 1117 

superplasticizer makes it possible to prepare BAF pastes with low viscosity values. The reactivity 1118 

of belite appeared to have been inhibited by the high addition of fly ash, and other than the strength 1119 

increase, no clear evidence of pozzolanic chemical reaction with fly ash in BAY systems was 1120 

obtained. These do appear to be a promising class of cements for future large-scale utilization. 1121 

Zhou et al. [376] investigated the influence of the ferrite phase in a similar binder system on its 1122 

hydration and mechanical properties.  1123 
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4.3. Belite-ye’elimite-ternesite binder 1125 

Belite-ye’elimite-ternesite binders have been treated as another interesting alternative material for 1126 

reducing CO2 emissions. The HeidelbergCement Technology Center (HTC) has worked for 1127 

several years to develop new and innovative techniques of production approaches for this binder, 1128 

and have published some patents related to this type of cement in recent years.  1129 

 1130 

Ternesite (C5S2Ŝ) was first found in Germany as a natural mineral in the 1990s. It is also found in 1131 

the crust covering the areas of Portland cement kilns where the temperature is lower than 1250 °C. 1132 

The advantages of ternesite-containing clinkers are quite clear due to the lower clinkering 1133 

temperature. For a long time, this phase has been regarded as a non-hydraulic material, until it 1134 

was recently found to be reactive with aluminum hydroxide. According to Ben Haha et al. [377], 1135 

aluminum hydroxide can be used to activate ternesite to form ettringite, strätlingite and C-S-H in 1136 

different proportions, depending on the reactivity and reaction degree. Work by Montes et al. [378], 1137 

focusing on how other calcium aluminates activate the hydration of ternesite, has also been 1138 

published recently. Synthetic C3A, C12A7, CA and C4A3Ŝ (ye’elimite) phases were blended with 1139 

ternesite separately, then the hydration reactions of the blends were studied through various 1140 

techniques. Ternesite was activated in all the blends with aluminates, with descending 1141 

effectiveness order C12A7 ≈ CA > C3A >>> C4A3Ŝ. Also, the presence of ternesite changes the 1142 

hydration products of these aluminates. However, ternesite was less consumed in the samples 1143 

mixed with ye’elimite due to the sulfate common ion effect. Even though in this study some 1144 

calorimetric evidence of an activating effect was recorded, ternesite could not be regarded as 1145 

having been activated by ye’elimite as no strätlingite was detected. The characteristics of ternesite 1146 

as a component of belite-ye’elimite (sulfobelitic) binders was later discussed by Blanco and 1147 

Carmona [379] who noted that ye’elimite and ternesite can co-exist in the CaO-SiO2-Al2O3-1148 

CaSO4 system.  1149 

 1150 

A single-stage process to produce ternesite-containing clinkers (belite and ternesite-rich calcium 1151 

sulphoaluminate) has been proposed by Hanein et al. [380], based on some important new work 1152 
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in determining and defining the high-temperature thermodynamics of sulfur-containing 1153 

clinkerization processes [381]. The clinker was obtained in a pilot plant where the partial pressure 1154 

of O2 and SO2 was controlled in the kiln. The target operation temperature was set up to 1260 °C 1155 

in order to make the process to reach steady state rapidly, corresponding with their thermodynamic 1156 

calculations that the upper limit stability temperature for ternesite is ~1290 °C. The results also 1157 

clearly confirmed that ternesite can be synthesized in a dry atmosphere.  1158 

 1159 

5. Conclusions and Final Remarks  1160 

The development and use of low-carbon binders as an alternative to Portland cement-based 1161 

materials, aiming to reduce the carbon footprint associated with construction and other 1162 

applications, has made notable progress in recent years. In summary: 1163 

 1164 

a) Alkali-activated binders are very important and high-potential alternative materials, which 1165 

are now deployed on a commercial scale in several nations in the world. Recently the 1166 

development of understanding on the rheological behavior, setting properties and structural 1167 

characterization of alkali-activated binders has advanced rapidly. Progress in formulation of 1168 

one-part alkali-activated binders has further approached large-scale production and 1169 

application. However, the development and optimization of mix designs based on different 1170 

raw materials and activators has not yet been systematically understood. Durability 1171 

performance appears very good in most areas but needs more detailed work on test method 1172 

validation and standardization. Environmental assessment of these materials should also be 1173 

improved.  1174 

b) Carbonatable binders, regarding as a new approach to address concerns over CO2 emissions, 1175 

still are in a development route. The technology has been advanced recently, especially in the 1176 

understanding of accelerating and controlling the carbonation hardening process. The 1177 

limitations for these binders in application are also becoming clear, for instance the CO2-rich 1178 

atmospheres required for curing, and the pH reduction that means that use in reinforced 1179 
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elements will be challenging. However, these binders which may offer very high CO2 savings 1180 

if a circular CO2 economy develops [360] still deserve serious attention as alternative low-1181 

carbon materials. 1182 

c) Belite-ye’elimite binders: this is a relatively new approach to produce alternative 1183 

cementitious materials compared to the conventional CSA cements, targeting a high belite 1184 

content in the clinkers. Although belite-ye’elimite-based binders are still under development 1185 

and have not reached the full scale-up stage, the clinkering process, understanding of 1186 

hydration, and the formulation of binders has developed greatly, not only in the scientific 1187 

community but also in the cement industry. Good mechanical strength was obtained by 1188 

hydrating this type of binder. The control of the rheological behavior and setting time have 1189 

also been investigated. However, this binder system and technology is not yet commercialized 1190 

or standardized. The clinkering process, which depends on different raw materials, should be 1191 

optimized for large-scale production.    1192 
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