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Abstract:

The development of low-carbon binders has been recognized as a means of reducing the carbon
footprint of the Portland cement industry, in response to growing global concerns over CO»
emissions from the construction sector. This paper reviews recent progress in the three most
attractive low-carbon binders: alkali-activated, carbonate, and belite-ye’elimite-based binders.
Alkali-activated binders/materials were reviewed at the past two ICCC congresses, so this paper
focuses on some key developments of alkali-activated binders/materials since the last keynote
paper was published in 2015. Recent progress on carbonate and belite-ye’elimite-based binders
are also reviewed and discussed, as they are attracting more and more attention as essential
alternative low-carbon cementitious materials. These classes of binders have a clear role to play

in providing a sustainable future for global construction, as part of the available toolkit of cements.

Keywords: low-carbon cementitious binders; alkali-activated material; carbonated binders;

belite-ye’elimite binders; sustainability
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1. Introduction

Growing concerns over the greenhouse emissions profile of the Portland cement and concrete
industry have led to a very high level of recent interest in the development of low-carbon binders
as alternatives to Portland-based cements. This paper reviews recent progress in the three most
prominent classes of low-carbon binders: alkali-activated or geopolymer, carbonate, and belite-
ye’elimite-based binders. Alkali-activated binders/materials were reviewed at the past two (13
and 14™) International Congresses on the Chemistry of Cement (ICCC) [1, 2], and in discussing
these materials, this paper focuses on some of their key developments since the last keynote paper
was published in 2015 [2]. These include rheological properties, setting behavior, structural
characterization, dimensional stability, durability, and their applications. However, this paper does
not aim to provide a detailed overview with respect to all existing insights into these materials,
which can be obtained in other references including [3-5], but rather focuses on the most important
new information that has been obtained in the past 4 years. Recent progress on carbonate and
belite-ye’elimite-based binders will also be reviewed and discussed in detail, as these are
attracting more and more attention as essential parts of the ‘toolkit” of alternative low-carbon

cementitious materials.

2. Alkali-Activated Binders

2.1. Raw materials

2.1.1 Activators

As numerous workers have promoted alkali-activated binders as a potentially low-carbon
cementing system during the past decades (see Section 2.11 for more detailed discussion of
advances in the environmental assessment of these materials), increased scrutiny has fallen on the
selection of the activator for use in these binders. This also has cost implications: the activator is
usually the most expensive component of an alkali-activated binder, particularly if it has been
produced at high purity for use in other industry sectors (which is the case for most commercial

2
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alkali silicate solutions), where such high purity may be less important to its use in alkali-
activation. So, alternative routes to alkali-activation that do not require the use of large volumes
of commercial sodium silicate solutions have received serious recent attention. The production of
silicate activators from olivine [6] or from waste glass [7-10], and the use of biomass ashes as an

alkaline activator [11], have been established with some success.

The use of near-neutral salts as activators has also seen considerable advances in recent years.
This appears to be a pathway that is particularly attractive for production of cements based on
ground granulated blast furnace slag, which can be made to react and harden in a useful timeframe
by the addition of alkali carbonates or sulfates [12, 13]. In some cases, significant benefits can be
gained by using a calcined layered double hydroxide as a carbonate-binding mineral additive [14,
15], to accelerate the reaction of some slags with a modest magnesia content which would
otherwise not react sufficiently rapidly with near-neutral salt activators. The combination of
calcium hydroxide and potassium carbonate has also been shown to give very good performance
as an activator for kaolinite [16], offering a potentially very low-carbon emissions route to the

production of affordable binders without needing a clay calcination step.

2.1.2 Precursors

The selection of precursors available for use in alkali-activation has also broadened significantly
in recent years, with particular emphasis being placed upon the use of materials for which there
is not strong competition in demand from utilization in blends with Portland cement. For example,
calcined non-kaolinitic clays [17-20], palm oil fuel ash [21, 22] or other minerals [23-26], have
been shown to yield alkali-activated binder systems with technical properties that are attractive in
given applications. Various industrial by-products or wastes without current large-scale utilization
as supplementary cementitious materials have been tested and validated for use in alkali-activated
binders, including red mud [27-29] and various glassy wastes including slags, some of which can
benefit from thermal re-processing or modification to improve their reactivity before use [10, 30-

35]. Detailed work is also ongoing to better understand the reactivity of fly ashes under alkali-
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activation conditions [36-39], and to valorize kaolinitic clay resources which are not of sufficient
purity for use in other applications such as ceramic whitewares or coatings [40-42]. Common to
many of these types of materials, the role of iron in alkali-activation precursors (and in the
resulting binders) is beginning to be understood to some degree [19, 43, 44]. However, a detailed
description of its reactivity and the structural implications of its inclusion in the binding gel still
remain very much elusive. This is an area in which further advances are expected — and needed —

in the coming years.

Some of the potential precursors described here and in the broader literature are only available in
commercially viable quantities in limited locations - but in the locations where they are available,
utilization in alkali-activated binders can be extremely attractive as a local solution to the needs
of the construction industry. This ability to achieve local specificity in materials design and
specification highlights one of the key strengths of alkali-activation, which is its ability to make
use of a wide (and ever-growing) range of materials as precursors. However, it also raises
challenges in standardization and specification, as it is almost impossible to write a prescriptive
recipe-based standard that covers such a broad set of potential material chemistries. This
highlights the need for performance-based specification of alkali-activated binders rather than
relying on a prescriptive approach; discussion will return to this point in Section 2.10 in

consideration of durability.

2.2. Rheology

An understanding of the rheological properties of alkali-activated cement pastes, mortars and
concretes 1s essential to ascertaining their consistency and workability, and consequently their
ease of casting or placement. In addition, the rheological properties of alkali-activated cement-
based materials have a strong influence on their microstructure, mechanical properties, and
durability. The identification and modeling of rheological characteristics of alkali-activated

materials (pastes, mortars and concretes) have been intensively studied since the last ICCC, as
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this has been identified as an area with major practical importance (and challenges) for the field

application of these materials.

The rheological behavior of alkali-activated slag (AAS) pastes, activated with NaOH alone or in
combination with Na,COs3, was similar to the rheology observed in Portland cement pastes and
could be fitted by the Bingham model. Conversely, the AAS pastes activated with waterglass
(AAS-Wg) required description by the Herschel-Bulkley model, as shown in Fig. 1 [45]. Moreover,
their rheology depends on both the SiO2/NaxO ratio of waterglass and the Na>O concentration of
the activator. The early-age formation of a C-S-H type gel in silicate-activated AAS due to the
reaction between silicate species in waterglass and Ca" as it dissolves from slag particles, and the

effect of this gel formation on the paste rheology, has been confirmed in several publications [3,

4].
100 100
= AASN 4% Nag0 A 4% Naz0 B
80 - 80
= g
L 60+ % 601
72} o
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Figure 1. Shear stress versus shear rate curves showing paste hysteresis cycles: (A) NaOH-activated
paste (AASN); (B) waterglass-activated paste (Si02/Na,O=1.2 in the activator; AAS-Wg).
Reproduced from [45].

The high viscosity of alkali silicate-activated cements, sometimes also accompanied by a high
yield stress, is one of the critical challenges that hinder their wide application. Favier et al. [46]
identified that this high viscosity was intrinsically due to the use of a viscous alkaline silicate
activating solution, not controlled by interparticle contacts. Yang et al. [47] focused on
ameliorating the rheological performance of sodium silicate-activated fly ash/slag pastes using fly
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ash microspheres as an inorganic dispersing agent. Rheology is also temperature-dependent;
Mehdizadeh and Najafi Kani [48] determined an “apparent activation energy” parameter from the
temperature dependence of the rheology of alkali-activated phosphorous slag (AAPS) paste, based
on the Arrhenius viscosity model, and determined an activation energy of 42 (£ 3) kJ/mol for the
temperature range 10-40°C, which was of a similar magnitude to the equivalent parameter

determined for Portland cement pastes.

The nature of the mixing protocol has been identified to be a key determinant in AAS mortar and
concrete rheology. In a series of studies, the Bingham model gave a good fit for all the PC and
AAS mortars and concretes tested [49, 50]. A longer time of mixing had an adverse effect on
rheology, but gave a slight improvement in hardened performance. In AAS-Wg concrete, the
application of a longer mixing time can enhance the rheological behaviour and improve the
mechanical properties, as the input of mixing energy can partially break down the early-stage
microstructure to allow further reaction to continue. A longer mixing time raised the degree of
thixotropy in PC and in NaOH-activated slag concretes, which can be attributed to the formation
of fine particles induced by over-mixing, but decreased flocculation and lowered the degree of

thixotropy in sodium silicate-activated slag concrete.

Alkali-activated materials (AAMs) have also been proven as useful model systems for the testing
and validation of mini-slump [51] and creeping sphere [52] rheological measurement methods.
Each different approach to rheological testing, including but not limited to these methods, brings
access to different shear rate regimes and different shear histories in the sample, which can enrich
the understanding of time-dependent rheological processes in a complex fluid. Understanding the
time-dependence of the rheology of alkali-activated pastes is not straightforward [53, 54], as these
materials tend to be thixotropic in addition to the reversible non-Newtonian aspects of their
behavior, but it is often challenging to distinguish true thixotropy from the gel structural evolution

that is also taking place during the rheological measurements.



158  2.3. Chemical Admixtures

159  Related to the challenges of rheology control in AAMs, it has been identified that it is critically
160  important to improve the use and applicability of admixtures to improve rheology under alkali-
161  activation conditions. Due to the very significant differences in surface chemistry, zeta potential
162 and dissolution mechanisms when comparing alkali-activation to Portland cement hydration [55,
163 56], it is important to design organic molecular architectures that are specifically applicable in
164  alkali-activated binders. Recent efforts [57, 58] have demonstrated important progress in this
165  regard, including demonstration of an allyl ether-based PCE with short side chains that gave
166  extremely effective plasticizing performance in an NaOH-activated slag paste at a dose as low as
167  0.05 wt.% [57]. Keulen et al. [59] also showed that a proprietary PCE admixture could
168  dramatically increase both the slump and the slump retention of alkali-activated fly ash-slag

169  blended concretes, as shown in Fig. 2.
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Admixture content (kg/m?3)
171

172 Figure 2. Slump and slump retention of alkali-activated concretes (binder 73.7 % fly ash, 25% BFS,
173 1.3% Na,;SiO3-5H,0 powder; activator 3 M NaOH) as a function of PCE admixture dose.
174  Reproduced from [59].

175
176  There has also been important work aimed at improving the open working time of alkali-activated
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concretes and grouts, which is problematic in some applications due to the relatively rapid
workability loss that is shown by some alkali-activated mixes (including in cases where
workability can be lost even though setting is not unduly rapid). This will be discussed further in
Section 2.4. Many chemical retarders for PC are not compatible with AAMs [60], but citric acid
[61], d-gluconic acid [62], borate and phosphate [63] have all been described to give useful
retardation in specific cases. However, the appropriate selection of a retarder depends critically
on the role and content of calcium within the alkali-activation process; high-calcium mixes tend
to be more effectively retarded by small organics that can complex Ca>* as it is released from the
solid precursor and thus delay the precipitation of C-A-S-H type gels, whereas low-calcium mixes
appear to be more amenable to the use of inorganic retarders. Although care is required to select
admixtures that can give retardation without loss of some percentage of the final strength

development, it is not always straightforward.

2.4. Setting time

The setting time of an alkali-activated material (AAM) is a critical performance parameter that
affects its practical application. The practical ability to control setting time of alkali-activated
binders can determine the time window available for mixing, transportation, and casting of
concrete. However, fast setting is a feature of AAS-Wg based materials; the setting time of this
type of binder is often less than 30 min [64]. Setting behavior is affected by many factors, such as
raw materials, specimen preparation and process conditions, as well as the use of additives as
discussed in section 2.3. Lower-calcium alkali-activated binders have been identified to set
through a gel percolation process [65], distinct from the localized precipitation of C-A-S-H type
gels that characterizes the early stages of slag alkali-activation. This distinction brings important

new abilities to understand and manipulate the setting processes of each binder type.

Li et al. [66, 67] found that the setting times of alkali-activated slag-fly ash and alkali-activated

slag-metakaolin pastes were prolonged with increased fly ash or metakaolin contents. Li et al. [64]

8
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summarized the setting times of slag-based AAMs designed in the SiO2-Al203-CaO system with
a single activator (sodium silicate of modulus 1.4), as shown in Fig. 3. They found a general trend
that the setting time decreased with increasing CaO content in the Si02-Al203-CaO system. The
role of Ca (and correspondingly also Mg) as a network modifier in the slag glass leads to more
rapid dissolution of these precursors, whereas fly ash does not show the same degree of reactivity
as it is a more chemically durable glass. However, when comparing blast furnace slags of different
chemistry, the ability to use a single indexing parameter to predict reaction kinetics (as measured
by isothermal calorimetry) remains elusive [68, 69], as it is becoming clear that many parameters
beyond simple glass chemistry play important roles in determining the rate of slag reaction under
alkali-activation. An indexing approach that also includes particle size distribution parameters has
been proposed for fly ash activation [37], but this will also require further development before it

could be considered in any way broadly applicable.

I: Initial (min)
F: Final (min)

I: 136
F: 151

06"

0.2 0.4

CaO

Figure 3 Setting times of AAMs (color scale, in minutes) in the Si0;-Al,03-CaO solid precursor

system [64]

Careful selection and/or combination of activators is another way to manipulate the setting times
of AAMs. Shi & Day [70] and Bernal et al. [13, 71] have illustrated that a prolonged induction
period, which can take up to 3-5 days in some slag-based AAM systems, can be obtained when

sodium carbonate is used as the activator. They showed that the Na,COs3; promotes the formation
9



225

226  pH (between 11 and 12) generated from this activator gives a low rate of initial dissolution of the
227  slag [70]. However, high-magnesia blast furnace slags do react relatively rapidly with Na,COs as
228  an activator [14], and can under some conditions give higher early strength with this activator
229  than with sodium silicate, when using a sufficiently high-MgO slag [72].
230
231  Lietal. [66, 67] further investigated the setting time of alkali-activated slags, and found that the
232 setting time was prolonged with an increase in the dose of NaxCOs as activator, especially when
233  considering the final setting time and a slag of moderate MgO content, as shown in Fig. 4. The
234 initial setting time of NaCOs3-AAS in that study was more than 300 min, while the final setting
235 time was about 6 days. A wide range of setting time results were also shown in the work of
236  Fernandez-Jiménez & Puertas [73] (mortar setting time above 3 d), Kovtun et al. [74] (concrete
237  setting time about 8 h), and Atis et al. [75] (paste setting time about 3 h). However, a well-balanced
238  mixture of Na,CO3, Na,O-rSi0O2-nH>0, and/or NaOH can take advantage of the influence of each
239  of the respective anion groups present, leading to the abilty to control and tailor setting time,
240  workability and mechanical properties [71, 76].
241
0.0
(a) =
u$.
” 160
10 150 g o . _ |
0.0 0.2 04 06 0.8 10 00 02 04 06 0.8 1.0
Na,CO, Na,CO,

247
243 Figure 4. Contours of setting time (min) of alkali-activated slag with Na,CO3-NaOH-Na,SiO3

of calcite and mixed sodium-calcium carbonates prior to C-(A)-S-H; and that the fairly modest

10



244 activators: (a) Initial setting time, (b) Final setting time [66, 67]

245

246  Garg and White [77] investigated how nano-ZnO retards the setting of alkali-activated materials,
247 by pair distribution function (PDF) analysis and isothermal calorimetry. Fig. 5 illustrates the
248  reaction between tetrahydroxozincate ions (Zn(OH)4*) and calcium ions (Ca**) in the retardation
249  stage, that can affect the nucleation/growth of the C-(A)-S-H type gel because Ca** is bound into
250  a calcium zincate phase. In the other hand, nano-ZnO does not significantly influence the alkali-
251  activation reaction of metakaolin-based binders [77], as interactions involving calcium play a

252 pivotal role in dictating the effectiveness of nano-ZnO in retardation of AAMs.

253
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254 Time
255 Figure 5. A schematic outline of the retardation process caused by adding nano-ZnQO to alkali-
256 activation of slag, sketched based on the discussions in Reference [77]
257

258  2.5. Structural characterization

259  2.5.1 Experimental approaches
260 In alkali-activated binder systems, as in Portland-based cements, the disordered, complex and
261  multiphase nature of the reaction products that contribute to the main strength gain means that it

262  is difficult to gain a full understanding of the binder characteristics from any small subset of
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common materials science techniques [2]. Therefore, cementitious materials (and AAMs in
particular) provide fertile ground for the development and implementation of new approaches to
the experimental characterization of complex materials, and the continued structural
characterization of alkali-activated materials is still a key field of investigation. The C-S-H type
gel (often represented as C-(N)-A-S-H) and layered double hydroxide (LDH) secondary phases
that dominate higher-calcium AAMs, and the alkali-aluminosilicate (N-A-S-H) gel formed in
lower-calcium AAMs, are all highly complex in chemistry, but are becoming better understood
through the application of both conventional and advanced experimental analytical tools. The use
of new analytical techniques as well as novel research routes during the past years has provided
valuable insight into the structure of alkali-activated binders, and there is no evidence to suggest

that major advances in this area are likely to end any time soon.

There has been much recent focus on the factors affecting aluminum and alkali uptake into the C-
S-H structure by analysis of synthetic gels. The full details of this work are beyond the scope of
the current review, and an excellent overview was provided in a paper presented at the 2015 ICCC
[78]. A low Ca/Si ratio favors the incorporation of AlI(IV) into C-S-H gel, whereas a high Ca/Si
ratio results in more octahedrally coordinated AI(VI) [79, 80] that is predominately present in
“third aluminate hydrate” (TAH) and in AFm phases [81]. High Al and alkali content, as in the
case of many AAS binders, leads to co-existence of C-A-S-H and N-A-S-H type products,
although these two gels can be very difficult to distinguish and isolate from each other unless
detailed structural models are applied to aid in the interpretation of spectroscopic data [82]. Cross-
linking within the C-A-S-H type structure has also been identified as playing a key role in the

structural description and understanding of the binding phases formed in high-Ca AAMs [82-84]

Nuclear magnetic resonance (NMR) spectroscopy is now well known as a key technique to track
the information on the local bonding environments of silicon and aluminum atoms. The structure
of C-(N)-A-S-H gel has been described by various groups [83, 85-88]. However, NMR has a

limited capacity to assess medium range ordering. X-ray and neutron pair distribution function
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(PDF) analysis are now well established as techniques for understanding the gel structure formed
in alkali-activated binders, due to the ability of the PDF technique to probe the local atomic
structure of disordered materials [89], although the analysis of multi-phase materials by this
technique remains very challenging. Gong & White [90] used X-ray total scatting and PDF
analysis to study the impact of chemical variability on phase formation in alkali-activated
granulated blast-furnace slag (GGBS). The primary reaction product after alkali-activation was
C-(N)-A-S-H gel with a highly disordered structure, and PDF analysis revealed that atomic
arrangements, as shown in Fig. 6 for the short-range ordering < 5 A, in the C-(N)-A-S-H gel
differed depending on the chemical composition, especially the calcium content, of the raw
material. The gel connectivity of C-(N)-A-S-H gel increased with decreased calcium content, as
shown in Fig. 6, represented to a first approximation by the intensity of the peak just above 3 A
assigned to Si-Si/Al and Mg-Al correlations. Magnesium in alkali-activated GGBS pastes is
primarily incorporated in the secondary reaction product, which is a hydrotalcite-like phase, as
will be discussed in more detail below. In-situ X-ray total scattering measurements and PDF
analysis are also starting to be widely used in the study of alkali-activated binders, as one of few
techniques that can give time-resolved information about gel local structure during setting and

hardening [91-93].

13



309
310

311
312
313
314
315
316
317
318
319
320
321
322

r —— [R-paste
LSUALO a0 Ca-gi/Al — UK-2-paste
[ ! Ca-Al — — — AU-paste
- ! — — = SP-paste
2r — UK-1-paste
~ —— CAN-paste
I —— COL-paste
o 1
QS I
= |
S
-1+
") y

1.5 2 2.5 3 3.5 4 4.5 5
r(A)

Figure 6. X-ray PDFs of pastes produced from hydroxide-activated granulated blast-furnace slags

(slags from different sources as noted in the legend), showing the short-range ordering (< 5 A) [90].

A method to investigate the chemistry of aluminosilicate-based cementitious binders by alkali-
activation of high-purity synthetic amorphous aluminosilicate powder has been proposed by
Walkley et al. [94]. The phase evolution and nanostructure development of these materials have
been examined after activation [95, 96]. Using this information, a new structural model of alkali
aluminosilicate gel (N-A-S-H) gel frameworks has been proposed based on data from solid-state
nuclear magnetic resonance spectroscopy (1’0, »*Na, and 2’Al) [97]. Fig. 7 shows part of the
proposed conceptual model for this gel structure, with charge-balancing of the partial negative
charges on bridging oxygen associated with tetrahedral Al provided by sodium and by extra-
framework Al (Algr). The alkali aluminosilicate gel predominantly comprises fully coordinated
(Q* or q*) Si and Al units. A considerable proportion of AI** in tetrahedral coordination exists in
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sites of lower symmetry, where some of the charge-balancing capacity in the gel is provided by

extra-framework Al species which have not previously been observed in these materials. Greiser

et al. [98] conducted advanced multi-dimensional NMR analysis of N-A-S-H gels derived from

various amorphous silica sources and also identified extra-framework Al sites, although

contended that their results were consistent with tetrahedral Algr sites, as also noted by Brus et al.

[99] rather than the octahedral Algr identified by Walkley et al. [97]. There is evidently important

further work required to unravel the nanostructural details of the N-A-S-H gel structure, and multi-

nuclear and multi-dimensional NMR techniques are expected to underpin and inform these efforts

in coming years.
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Figure 7. Al and 2Na MAS and 3QMAS NMR analysis for the gel of alkali-activated synthetic
precursor (Si/Al=2), and a 3D representation of a polymerized section of the N-A-S-H gel showing
various constituent environments as marked, adapted with permission from [97]. Copyright
American Chemical Society.
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Scanning electron microscopy (SEM), together with energy-dispersive X-ray spectroscopy (EDX),
has been widely used as a powerful tool by different scholars [91, 100, 101] to track
microstructural evolution in alkali-activated binders, including some important work on model
systems where “microreactors” were ion-milled into slag grains and the morphology of the
reaction products formed by their reaction with different alkaline solutions monitored [102]. Fig.
8 shows examples of the data that were obtained using this approach, where both the concentration
and the nature of the alkaline solution led to remarkable differences in the appearance of the
reaction products formed. The large platelets of hydrotalcite-like minerals and the globular C-S-
H type gel are particularly evident at the highest concentration of KOH tested, but there is a clear

progress of the alkali-activation reaction under all conditions depicted.
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Figure 8 (a) A microreactor ion-milled into a GGBS grain; and microreactors exposed for 2 days to:

(b) 0.1 M KOH; (¢) 10 M KOH; (d) 1 M NaOH. Reproduced from [102]

The use of SEM as an analytical technique is very well established in the field of cementitious
materials, both for imaging and for determination of elemental compositions. Particularly
important information has recently been obtained regarding the Mg-Al layered double hydroxide
(hydrotalcite-like) phase in alkali-activated slags. Richardson & Li [103] used SEM-EDX to
determine the Mg/Al ratio in KOH-activated blast furnace slag paste after 18 years of curing; a
ratio of 2.6 was determined, in excellent agreement with calculations based on XRD data for that
binder. Ke et al. determined Mg/Al ratios closer to 2.0 for the corresponding Mg-Al LDH phases
in Na,COs-activated slag binders [14] and in Na»SiOs-activated slag binders [104], also using
SEM-EDX, and consistent with older literature including [105] and others. This phase is often
described in the cements literature as being simply “hydrotalcite”, but in a mineralogical sense,
true hydrotalcite has Mg/Al = 3.0 and contains carbonate in its interlayer [106], whereas the LDH
phases formed in many alkali-activated binders will be carbonate-free. The carbonate-containing
member of the hydrotalcite family with Mg/Al = 2 is correctly called meixnerite, whereas the
carbonate-free “MsAH;13” hydrotalcite-group composition, which is probably the most relevant to
most alkali-activated binding systems, does not have a formal mineral name. So, the continued
description of the Mg-Al LDH phase formed in alkali-activated binders as “hydrotalcite-like”
seems satisfactory, but it does need to be clearly identified that this is not true hydrotalcite in the

mineralogical sense.

Transmission electron microscopy (TEM) has also been applied to the analysis of alkali-activated
binders with some success [103], but sample preparation for this technique remains challenging
and the samples are prone to beam damage. Helium ion microscopy (HIM), a technique with some
resemblances to SEM but potentially offering higher spatial resolution, was proposed by
Morandeau et al. [107] for studying the nanoscale structure of alkali-activated materials. HIM

involves imaging of sample surfaces by detecting secondary electrons that are excited from the
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sample surface by bombardment with helium ions. Spatial resolution is high due to the specific
nature of the beam-sample interaction [108]. Hence, in comparison with SEM, this method is
well-suited for resolving nanometer-scale surface morphologies and porosity present in rough and
irregular fractured samples, including alkali-activated binders. Fig. 9 shows a selection of HIM
images of AAS obtained by Morandeau et al. [107]. Finer heterogeneous morphological details
have been captured. Two types of C-(N)-A-S-H gel have been identified, with the ‘inner’ gel
showing a foil-like morphology while the ‘outer’ gel appearing more globular. The use of HIM
with EDX analysis can provide new insight into the structure of alkali-activated materials as well
as other binder systems, and although the HIM instruments are still expensive, this technique is

becoming more widely available in the international community.

L
15010 I%Iﬂ

Figure 9. HIM images (a) GGBS particle covered by ‘foil-like’ C-(N)-A-S-H gel; (b) the surface of

the concave spherical void: C-(N)-A-S-H gel. Reproduced from [107].

Scattering and diffraction-based techniques have been used to provide insight into AAMs during
the initial [109-111], medium-term [112], and later-age [113] evolution of gel, crystallite, and pore
structure in AAMs. The combination of neutron and X-ray scattering, applied in parallel to provide
different aspects of the required information, has also given important new insight into the highly-

connected nature of the pore structure in metakaolin-based AAMs [114]. The marked differences
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in pore geometry and its evolution with curing as a function of the nature of the alkali cation
present have also been examined using the combination of PDF, small-angle X-ray scattering and
electrical impedance methods [115]: the structure-forming (kosmotropic) Na* leads to a pore
network structure that evolves considerably over a 5-year curing duration, while the pore networks
generated through the use of chaotropic (K* or Cs*) alkali cations are much more stable during

extended curing periods [115].

Another essential aspect of alkali-activated binder chemistry that has received attention — and
answers to some key outstanding questions — in recent years is the exact chemical nature of the
green coloration in alkali-activated slag binders (and similarly in high volume Portland-slag
blends). There has been much speculation in the past that this coloration is due to the presence of
polysulfide species (resulting from the release of sulfide by slag dissolution), but the previous
spectroscopic evidence was far from sufficient to fully substantiate this argument. However,
Chaouche et al. [118] have recently used synchrotron-based X-ray absorption near edge
spectroscopy (XANES) to demonstrate that the blue/green regions of alkali-activated (and
Portland cement-blended) slag binders contain the characteristic spectroscopic features of the
trisulfur (thiozonide) radical anion S3°, the same species that gives color to ultramarine pigments.
Consistent with this, Le Cornec et al. [119] have also recently applied vibrational spectroscopy to
the analysis of greening effects in 70% GGBS-30% PC blended cements, and identified
spectroscopic features consistent with the confinement of various sulfur radical ions (S27, S3~ and
S47) within the interlayer space of LDH phases, proposed to be of the AFm family. They claimed
that all three of these polysulfide species were present at similar ratios in the hydration products
of various slags tested, which modifies the characteristically blue pigmentation of the S3 radical
anion (which is the most prominent species in their spectra also), to instead give a green color
[119]. This is clearly an important step forward in understanding the fundamental science of
AAMs, but also has implications for understanding the role of binder redox chemistry in

controlling steel corrosion processes.
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2.5.2 Modelling approaches

There have also been notable recent advances made in the modelling of AAM binder chemistry
by a variety of modelling approaches at different length scales. At an atomistic level, a number of
molecular dynamics (MD) studies have generated model structures claiming to represent N-A-S-
H gels. However, the majority of these studies have not included water in a realistic or reasonable
manner, and so have generated structures of anhydrous or partially-hydrated glasses rather than
anything representative of a N-A-S-H structure that could form by precipitation from an aqueous
solution. Features such as edge-sharing tetrahedra and extensive AlI'Y-O-AI'"Y bonding, which are
not observed to any significant degree in hydrous aluminosilicate minerals, can be viewed as
indicators of such an unrealistic structure. An exception to this trend is the work of Lolli et al.
[120], who used MD to generate correctly hydrated N-A-S-H gel structures based on three
approaches: a “crystalline” structure based on adjusting the sodalite framework to the desired N-
A-S-H stoichiometry; a “defective” structure generated by introducing defects into the sodalite
framework and allowing this to relax (in the presence of water) using MD, and an “amorphous”
structure based on SiO> glass adjusted to the desired N-A-S-H stoichiometry. Among these three
models, the “defective” structure (Fig. 10) gave the best match to experimental PDF data, and also
yielded predictions of nanoscale mechanical properties and porosity that are consistent with the
available literature, while complying with the requirements for predominantly Q* bonding, the
absence of edge-sharing tetrahedra, and agreement with Loewenstein’s principle of Al-O-Al
avoidance [121]. This can therefore be considered to be a reasonably representative structural
model for N-A-S-H gel at this length scale, and is consistent at a chemical level with the schematic

description of the potential site types that was shown in Figure 7.

20



452
453

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

“\H,0

O Si

O al

O Na
Defective:
Si:Al 1.5

Figure 10. Representation of part of the N-A-S-H gel structure generated by application of molecular
dynamics to relax a defective sodalite framework. Reproduced with permission from [120].

Copyright American Chemical Society.

At the mesoscale, Valentini [92] adapted an established code designed for Portland cement
hydration simulations to describe the activation of metakaolin by different alkaline solutions,
while Yang & White [122] advanced the use of on-lattice coarse-grained Monte Carlo simulations
to describe activation of different aluminosilicate precursors. Modeling approaches such as these
are computationally intensive and need care in parameterization and specification to ensure that
atomic-scale interactions are replicated as accurately as possible on the mesoscale, but also
provide unparalleled access to mechanistic and microstructural information on a length scale of

up to hundreds of nanometers, which is very difficult to access experimentally in real-time.

Thermodynamic modeling of phase assemblages in AAMs has been an area of particularly
important recent developments, where the application of a detailed ideal solid solution model for
the C-(N,K)-A-S-H system [123] supported by the availability of improved solubility data [124]
has significantly moved forward the state of the art. This has enabled advances in phase

assemblage predictions for alkali-activation of blast furnace slag [125-127], including prediction
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of phase diagrams for a wide range of slag and activator compositions [128]. Solubility
information for N-A-S-H gels [129], and improved information for aqueous species in the N-K-
A-S-H-CI system [130], are bringing the opportunity for modelling of some lower-calcium binder
systems [131], although much work is still required to develop and validate the necessary range
of model constituents to enable full description of the phase assemblages in these binders. In
particular, the database of zeolite phases available for inclusion in models of the (N,K)-A-S-H
system requires expansion, as there are significant gaps in the literature here, although constrained
to some degree by issues of metastability and difficulties in actually defining “solubility” in many

instances.

2.6. Microstructure and mechanical properties

The development of a detailed understanding of the microstructure and mechanical properties of
AAMs is obviously key to the application of these materials in civil and infrastructure applications.
In particular, it is essential to understand whether the engineering design equations that have been
established for conventional concretes are also broadly applicable to AAM concretes. A detailed
review of the mechanical properties of AAM concretes has been provided recently by Ding et al.
[132], and the full scope of that review will not be repeated here. However, it should be noted that
in many cases, the general functional forms of relationships that work well in describing the
characteristics of Portland cement-based concretes also appear valid for AAM concretes, but some

re-fitting of parameters seems necessary.

Analysis of the stress-strain characteristics of AAM concretes has tended to show that these
materials show a higher tensile strength, lower modulus of elasticity, and lower Poisson’s ratio
than conventional Portland cement concretes, as reported by e.g. [133-135] and many others.
Thomas and Peethamparan [136] also showed that the specimen size effect in compressive
strength testing of AAM concrete cylinders was well described by the established models for

Portland cement in the case of AAMs based on GGBS, but observed an unexpectedly strong size
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effect in AAMs based on fly ash. This was attributed to microcracking effects in the fly ash—based
binders; microcracking of AAMs is certainly an area requiring more detailed analysis, and will be
revisited below (section 2.8) in the discussion of dimensional stability. The creep of AAM
concretes also requires further attention. There are indications that although the early-age creep
of these materials resembles that of Portland cement-based concretes, the deceleration of creep
over extended timeframes may be less dramatic in AAM concretes, meaning that longer-term
creep processes must be taken into account in structural design procedures [137]. AAMs have also
been observed to have a higher fracture energy [138, 139] and a more compact interfacial
transition zone [138, 140] than comparable Portland cement-based materials, and undergo a more
localized cracking process [141]. The strong aggregate-paste bond also gives relatively high

fatigue resistance [142, 143].

An important finding underpinning much of the analysis of AAM property-microstructure
relationships was the identification by Winnefeld et al. [68] that the degree of reaction of the blast
furnace slag precursor appears to be a characteristic parameter which controls strength, across a
range of slag sources and activators. It is quite probable that this relationship is critically
dependent on the pore structure of the AAM binder; Ranjbar et al. [144] obtained strengths of
over 130 MPa by hot-pressing fly ash-based AAMs to reduce porosity, while Rouyer et al. [145]
showed a clear relationship between Young’s modulus and pore volume of a range of metakaolin-
based AAMs. Blyth et al. [146] also showed orders-of-magnitude differences in intrinsic
permeability between hydroxide-activated and silicate-activated slag binders, but without a
corresponding difference in the Young’s modulus, which was attributed to a very marked
reduction in the characteristic pore diameter upon silicate activation. Bernal et al. [147] also
reported a surprisingly low dependence of mechanical properties on total pore volume in alkali-
activated slag mortars, where water/binder ratios of 0.40 and 0.44 gave similar 28-day strengths
and identical 56-day strengths. Babaee and Castel [148] used water vapor sorption as a sensitive
probe of pore structure in blended fly ash-slag AAMs, distinguishing the very fine pores which

dominate slag-rich pastes from the mesoporous nature of fly ash-rich binders. Hu et al. [149]

23



526
527
528
529
530

531

532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547

reported that the compressive strength of alkali-activated slag/fly ash mortar is mainly affected by
total porosity and porosity of capillary pores, with sizes ranging from 10 to 10* nm. The change
of pore structure in the mortar was strongly influenced by the activator silicate modulus, alkali

dosage and fly ash content.

2.7. One-part alkali-activated binders

One-part (‘just add water’) alkali-activated materials can be treated as an important step towards
to the commercial-scale development of these low-carbon binders. A new review on one-part
AAMs has been published [150] which included systematic analysis of the available literature, so
the current paper will not attempt to repeat the full scope of that review, which covered one-part
AAMs in respect of raw materials, admixtures, optimum calcination, composition, curing
conditions, and mechanical strength. Fig. 11 illustrates the general procedure to prepare one-part
AAMs by adding water to a dry mixture of solid alkali-activator and a solid aluminosilicate
precursor, including a calcination step if necessary. This technology has been considered as a
method to face some technical challenges related to conventional (two-part) AAMs, in particular
the question of how to handle large amounts of activator solutions which may be viscous,
corrosive, and/or hazardous, on site in a construction application. It should be noted that the pH
of most alkali-silicate activators is actually similar to that of fresh Portland cement paste, but the
fact that these may need to be stored and handled in large quantities by personnel who are not
specialized in chemical handling is nonetheless an important reason to drive forward the

development of one-part AAMs.
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Figure 11. The general procedure of one-part AAM (geopolymer) preparation. From [150].

In one-part alkali-activated binders, any substance that dissolves sufficiently rapidly, and offers
alkali cations and provides a high pH environment to facilitate dissolution of the aluminosilicate
precursor, can in principle be used as an activator [151]. Sodium metasilicate powders
(Na2Si03-xH20, 0 <x <5) has been studied as a solid activator in one-part alkali-activated binders
[152-154]. Anhydrous sodium metasilicate was reported to contribute to higher compressive
strength and better workability than its hydrous counterparts when used to activate fly ash and
blast furnace slag-based binders, and is available commercially in the form of spray-dried powders

that appear quite amenable to use in alkali-activation processes at an acceptable cost.

Hybrid alkaline cement, where Portland cement and an alkaline activator are added in parallel,
can also be regarded as a type of one-part AAM binder. The nanostructural evolution of these
cements has been presented by Garcia-Lodeiro et al. [155] via a descriptive model. Ferndndez-
Jiménez et al. [156] investigated the hydration mechanisms of fly ash-based alkaline hybrid
cement as a function of the nature of the activator as it was supplied in different forms (solid and
liquid). When solid sodium sulfate was used as the activator in hybrid binder systems, slightly
higher mechanical strength and less AFt and AFm phases were obtained than when it was added
as a liquid. Both early age reaction kinetics and the nature of reaction products were influenced

by the form of addition of the activator.
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Various different precursors, and combinations of precursors, have been validated for use in one-
part AAM binders. In addition to the more commonly used GGBS [157, 158], fly ash [159, 160]
and calcined clays [161], there has also been meaningful work dedicated to the development of
one-part AAMs from industrial waste silicas and NaAlO» [162][163], and red mud [164, 165]. In
many of these binder systems, a careful balance needs to be drawn between adding sufficient
alkalis to enable rapid strength development, and avoiding the excessive alkali levels that may
lead to efflorescence. Ongoing work to understand the causes and implications of efflorescence
in both one-part and two-part AAM binder systems [166-168] is certainly necessary to underpin

the development and deployment of one-part AAMs.

Qu et al. [169] produced a pre-industrial hybrid alkaline cement, manufactured in a Latin
American plant on a scale of around 20 tons. The proportions used were 30 % Portland clinker +
32.5 % blast furnace slag + 32.5% fly ash + 5% solid activator (the main salt is Na>xSO4). This
hybrid alkaline cement was showed to react with water at ambient temperature and reached a
compressive strength around 32 MPa at 28 days, with acceptable setting time and early strength.
Further, the cement paste was tested at up to 1000°C, and showed better high-temperature
resistance than Portland cement due to the recrystallization of new poorly hydraulic phases,
mainly in gehlenite- and rankinite-type phases [170, 171]. Velandia et al. [172] also demonstrated
the production of concretes with good performance using a hybrid fly ash-Portland-Na>SO4 binder,
and provided extensive data about the durability performance of these concretes, including

correlations between key durability parameters and compressive strength at ages of up to 1 year.

2.8. Dimensional stability

The dimensional stability of any cementitious binder is a critical factor in determining its use in
engineering applications, as concretes are required to neither shrink nor expand excessively in
service. The relatively low level of bound water present in AAMs, particularly those with low
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calcium content, has been observed to cause some susceptibility to drying shrinkage, as has
recently been reviewed by Mastali et al. [173]. This area has attracted a high degree of attention
in the literature in recent years, as the importance of understanding and controlling shrinkage has
become more and more evident. Low-calcium AAMs do not self-desiccate during curing in the
same manner as does Portland cement during its hydration [174], as there is not such a strong
chemical driving force withdrawing water from the pore fluid into solid phases. However, they do
undergo autogenous shrinkage which can lead to early-age cracking if not appropriately controlled

[175].

Higher-calcium AAMs such as sodium-silicate activated GGBS can self-desiccate, in part due to
the formation of hydration products, and also because the high ionic strength of their pore solution
reduces water activity to draw the relative humidity below 100% [176]; this latter effect is likely
to be the cause of any observed self-desiccation effects in lower-calcium binders that do not
chemically incorporate water of hydration. Ye & Radlinska [177] proposed that the drying
shrinkage of alkali-activated GGBS involves densification of the C-(N)-A-S-H as its structure is
damaged by reductions in relative humidity, as neither the moisture loss nor the drying shrinkage
were reversible upon soaking of dried specimens. Shrinkage mitigation strategies similar to those
that are implemented in conventional Portland cement have been evaluated recently for
application in AAS {Ye, 2017 #741}. Chemical shrinkage of alkali-activated GGBS and GGBS-
rich blends has been studied experimentally [178] and also identified through thermodynamic
modeling [125, 127]. Thomas et al. [179] identified a beneficial role for heat curing in reduction
of drying shrinkage, while Gao et al. [180] applied a particle packing model at paste scale to
optimize blends of GGBS and fly ash for minimum porosity and shrinkage. The shrinkage
properties of alkali-activated binders based on different blended precursors have also been
reported [181, 182]. Shrinkage-reducing admixtures [183-186] and super-absorbent polymers
[187-189] have also shown some effectiveness in reducing drying shrinkage, as has the tailored
design of blended activators [190]. While shrinkage control in AAMs does remain an area of open

research, with many questions yet to be answered, the fact that this broad range of approaches
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have all shown some potential for success is a strong indication that this is not an intractable issue.

2.9. Durability

The durability of alkali-activated binders, and concretes produced from them, has been reviewed
in various publications [151, 191-193]. In most cases, AAMs have been tested according to
methods devised and validated for the testing of Portland cement-based binders; there are ongoing
discussions around whether this is entirely appropriate, including through the work of a RILEM
Technical Committee [194, 195], and it appears that in the majority of cases there are details of
the standard testing methodologies that will require modification if they are to give truly
meaningful results for AAMs. Sample preconditioning has been highlighted as an area requiring
particular care when designing tests for AAMs, as some of these materials can be damaged by the
preconditioning regimes that are often applied to Portland cement-based materials before testing,
particularly when very vigorous drying is applied [93, 196-198]. A performance-based
specification designed specifically for application to AAMs has been released in the UK, based
on minimal adaptations to established Portland cement testing methodologies [199], and efforts
are also ongoing in other countries and through multinational collaborative programs; it is

expected that this will be an area of rapid development in the coming years.

It has long been identified that binder carbonation under exposure to CO: is an area of durability
that requires careful consideration when designing and specifying AAMs. Early accelerated
testing at high CO; partial pressures appeared to show that alkali-activated binders would be very
susceptible to carbonation, but this was not directly matched by observations under natural
conditions. The reasons for the sometimes very poor performance of AAMs under accelerated
carbonation exposure is now understood to be related to specific changes in the carbonate-
bicarbonate equilibrium of the AAM pore solution at elevated CO2 partial pressures [200]. This
can give an unrepresentative reduction in pH compared to natural carbonation exposure, which
has been shown to give a much less marked reductions in pH [201, 202]. Relative humidity control
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during carbonation testing has also been shown to be highly influential in determining the

observed rate of carbonation [203].

The carbonation of AAMs has been shown to be strongly dependent on binder microstructure, and
particularly the degree of microstructural evolution and pore network refinement achieved prior
to the start of carbonation exposure, which can be influenced by curing, as well as various mix
design parameters such as the activator dose [204-207]. The presence of hydrotalcite-type LDH
phases has been identified as being particularly crucial in enabling carbonation resistance, whether
these are produced directly as a result of activation of an Mg-containing precursor, or due to the
addition of a supplemental Mg source (or calcined LDH as a seeding/templating agent) [208] [15,
209, 210]. The mechanisms of carbonation shrinkage in alkali-activated slag binders have also
been identified [211]. Together, these new aspects of insight provide essential steps toward
designing AAMs that can appropriately resist carbonation in service, and also in understanding
the connections between accelerated and natural carbonation mechanisms to enable the design of
appropriate laboratory tests for the prediction of field performance. Electrochemical examinations
of carbonated AAM concrete showed that the binders have been capable of keeping the
reinforcement in a passive condition even with the lowered pH caused by the accelerated

carbonation [212, 213], but this does necessitate further investigation.

In many steel-reinforced concrete applications, the service life of a structure or element is
governed by the ability of the concrete to protect the steel from chloride-induced corrosion. The
rate and mechanisms of chloride transport in AAMs have been reviewed in detail by Osio-
Norgaard et al. [214]. Thomas et al. [215, 216] have provided a comparison of chloride test
methods as applied to these materials. Hu et al. [144] found that some alkali could leach out during
specimen saturation before the electrically accelerated chloride transport test, and that the water-
to-specimen ratio could have a critical effect on the passed charges, but not on the chloride
migration coefficient of the specimens. This is an active area of work in international

organizations including RILEM and the European Federation for Corrosion, who have established
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working groups to investigate chloride transport and corrosion initiation in AAMs, with a
particular view toward the development of more appropriate testing methods. Noushini and Castel
[217] have recently discussed the development of performance-based criteria for AAM concretes
based on chloride ponding and electrochemically accelerated tests, which is an essential step
toward performance-based standardization of AAMs. For electrochemical testing, it also appears
likely that the proportionality constants applied in the relationships that are commonly used to
obtain material parameters from polarization curves (Tafel slopes) for Portland cement will need
to be re-assessed for AAMs, as there appear to be significant deviations from the classical
electrochemistry of Portland cement when considering the particular pore fluid chemistry of

AAMs [218].

Chloride binding, particularly by hydrotalcite-type LDH phases, has been identified by some
authors to be very influential in determining chloride transport through AAMs [219, 220],
although other authors did not identify strong evidence for chloride binding in alkali-activated
slag concretes [215, 221]. There is a clear need for further developments to resolve this open
question, which is of fundamental importance to service life prediction for reinforced AAMs

under chloride exposure.

Ma et al. [222] linked chloride diffusivity, electrical resistivity, and corrosion testing of reinforced
alkali-activated concretes, and highlighted the importance of sulfide (provided by blast furnace
slag when used as a precursor in AAMs) in defining the corrosion rate post-initiation. The role of
sulfide has also been identified in studies of steel corrosion in simulated alkali-activated slag pore
solutions [223-225] [226], and in various types of mortar specimens [227-229]. The very high
pore solution pH of some AAM binders has also been shown to generate unconventional
threshold-like relationships in chloride initiation, and also to give chemical protection of steel
reinforcement even at high chloride concentrations [230-232]. Mundra et al. [226] also developed

a classification scheme for alkali-activated and slag-blended binders as shown in Fig. 12.
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Figure 12. Overview of the classification of cements, particularly of AAMs, based on internal
redox conditions, and the parameters influencing the onset of steel pitting and the service-
life of these binders. AAFA = alkali-activated fly ashes, AAMK = alkali-activated metakaolin.

Adapted from [226], under Creative Commons license conditions.

Questions around alkali-silica reactions, analogous to those which can lead to damaging
expansion in Portland cement binders with reactive aggregates, also arise regularly in discussions
of AAMs because of the high levels of alkali present in these binders. However, the results of
testing with a broad range of binder-aggregate combinations have shown that alkali-silica
reactions do not appear to be particularly problematic in AAMs with aggregates of ‘normal’
reactivity [233]. It is possible to induce alkali-silica reaction expansion under accelerated
conditions and with the use of a reactive aggregate [234, 235], but in the majority of cases, AAM
mortars show less expansion than plain PC mortars with the same reactive aggregates [234, 236-

238]. The relatively high Al concentration in the pore solution of AAMs, and in some cases also
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the lack or near-absence of dissolved Ca, appears to be important in restricting alkali-silica

damage [234, 237, 239].

The freeze-thaw and frost-salt resistance of AAMs do appear to merit further attention, as the
literature on this topic contains many case studies but lacks consistent or systematic analysis
across the class of materials in general. Sulfate attack on AAMs has also been studied according
to a number of test methods, largely because such testing is often requested by specifiers or end-
users as sulfate attack can be problematic for Portland cement-based materials. However, the
fundamental mechanism of Portland cement sulfate attack, with expansive processes involving
the monosulfate-AFm phase, is not possible in most AAMs as this phase is absent from the hydrate
products. Sulfuric acid attack on AAMs is, however, a relevant mechanism related to use in sewer
infrastructure and other highly aggressive environments [240, 241], and the performance of
AAMs (particularly those with low Ca content [242, 243]) under such conditions has been
observed to significantly exceed that of most other cementitious binders [242, 244]. Organic acid
resistance has also been reported to be a strength of low-calcium AAMs, as small organic acids
damage calcium-rich binders through complexation and removal of Ca** ions, but this mechanism
is much less significant for AAMs that do not rely on calcium as a key binder constituent [245,

246].

Testing of AAM durability in the field has generally shown results that are consistent with
laboratory trials under non-accelerated or minimally-accelerated conditions; the materials that
have been put into service under varying conditions have in many cases served very well,
including concretes dating back to the 1950s [151, 247, 248], and more recent demonstration or
full-scale infrastructure projects [249-252] including an airport in Australia that was constructed
largely from alkali-activated concretes [253]. Such projects are essential in building stakeholder
acceptance of AAM technology, and in using the experience gained to guide standards
development, to ensure that the materials selected, specified and used are fully fit for purpose

[254].
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2.10. Applications of alkali-activated materials

Alkali-activated binders are finding rapidly increasing uptake in a growing range of applications,
and this section will provide a very brief overview of some of these. The primary route to market
for these materials in the short term will almost certainly be as a binder in concretes, and
increasingly sophisticated approaches to the design and use of AAM concretes (rather than just
directly applying protocols used for Portland cement concretes) are being published for concretes
based on alkali-activated GGBS [60, 255-257], fly ash [258-260], metakaolin [261], and various

blends of these materials [259].

AAMs, including particularly the lower-calcium “geopolymer”-type materials, are also attracting
attention as matrices for the conditioning and immobilization of radioactive wastes; the ability of
these materials to host, and bind, radioisotopes of cesium and strontium has been demonstrated
and analyzed in some detail [262-264]. The effective immobilization of cesium in Portland
cement-based matrices is well known to be challenging, and so the availability of a cementing
system that can restrict its movement is highly desirable. There have been important recent
investigations of the potential for compatibility of AAM matrices with complex waste streams
containing multiple radioisotopes [265, 266], with oily wastes [267, 268], with ion exchange
media [269, 270], and with graphitic or metallic wastes [271-273]. AAM matrices have also been
demonstrated to show generally good stability under irradiation [274-276], and a hydrogen

radiolytic yield that depends on water content and pore structure [274].

The ability to produce lightweight AAMs has been investigated by numerous groups, as reviewed
recently by Bai & Colombo [277] and by Zhang et al. [278]. Successful approaches have included
various types of templating by organic foams or emulsions [160, 267, 268, 279-281], foaming by

peroxide addition [282] or by metal powders [283] and the use of lightweight aggregates [284]

AAMs have also been tested — and in some cases validated — in a broad range of ‘niche’

applications in recent years; a non-exhaustive selection of these includes:
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- Well cementing in hydrocarbon and geothermal industries [285-287]

- Chromatographic substrates [288]

- Manufacture of composites [289, 290], including strain-hardening and/or ductile
“engineered composite” materials [291-293]

- Repair mortars [294]

- Materials for additive manufacturing or “3D printing” through various extrusion-based
and powder bed processes (Fig.13 [295]) [296-298]

- Moderate-temperature refractories or fire-resistant construction materials [299-302]

Figure 13. Additive manufacture of a vase from a metakaolin-based AAM, by extrusion. Reproduced

from [295].

2.11. LCA and environmental aspects

When considering any type of cement as a potentially “eco-friendly” or “low-carbon” alternative
to established technologies, it is essential that the actual environmental footprint of both the
conventional and innovative materials are sufficiently well understood and quantified, to enable
a fair comparison to be made. However, this is an area in which most current research publication
practice in the field of alternative cements falls well short of providing the information needed for
informed decision-making. This is potentially in part because of the trend for technical authors to
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justify the importance of their work (to funders, editors or other stakeholders) by ‘advertising’ the
class of materials they prefer to study, and in part because the rigorous comparative environmental
assessment of two construction materials is actually a highly specialized and challenging research
task in itself. In the specific context of AAMs, Habert & Ouellet-Plamondon [303] have provided
some very insightful discussion and assessment of data sources, and highlighted in particular the
importance of understanding and controlling the environmental footprint of the alkali activator

when designing and specifying an AAM mix design.

Another critical aspect of the assessment of sustainability is the need to conduct a locally-specific
determination of energy supply and transport options, and their costs and environmental footprints,
as these will differ very strongly between locations worldwide. This means that it is impossible to
conduct a valid, generic assessment of the emissions footprint of an AAM at a useful level of
precision, without knowing where in the world it will be used. The emissions attributed to
electricity generation differ widely from (e.g.) hydroelectric to nuclear to coal sources, and AAMs
are much more dependent on electrical energy in production than is Portland cement. This opens
some attractive possibilities when considering binder production using a decarbonized electricity
supply [304], which may be a strong point in favor of the use of AAMs in regions where low-

carbon electricity is available.

The trend in the academic literature recently has therefore been toward regionally-specific (or
very localized) assessments of AAMs for use in particular applications or concrete/mortar
products in the Americas [305-307], Europe [308-310], and Australasia [311, 312]. The general
trend observed in these studies is that AAMs offer greenhouse emissions savings compared to a
Portland cement baseline, and usually on the order of 40-60%, but somewhat increased the
environmental impact in other non-greenhouse categories, such as abiotic depletion, ozone layer
depletion, fresh and marine water ecotoxicity, and human toxicity, that are considered in the life-
cycle assessment process. It has also been identified that there is a strong need for more refined

and updated life-cycle inventory data for activator constituents including sodium silicate [303,
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305, 313], as the currently available international databases do not reflect current production
practice or processes. The assessment of recyclability [314, 315] and release of potentially
problematic elements (toxic or naturally occurring radioactive materials) [316-318] from AAMs
in service has also received some attention as an essential constituent of a full cradle-to-grave or
cradle-to-cradle environmental assessment. This will doubtless gain further importance as non-
carbon emissions become more of a focus in material and product assessments worldwide, while
the sources and characteristics of waste materials used in AAM production become ever more

diverse.

The other critical aspect that needs to be considered in environmental analysis of AAMs is
durability (at both material and element/structure scale), and this was discussed in Section 2.9
above. Considering all of these aspects together, and to conclude the discussion of AAMs, it
should be identified that AAMs are becoming a mature class of materials whose nature and
properties are increasingly well understood, and which offer numerous attractive opportunities to
exercise their desirable technical and environmental characteristics for the benefit of society. They
should not in any way be viewed as a panacea for all problems in the construction materials sector,
and nor are they likely to be universally suitable as a replacement for Portland cement-based
binders across the full range of applications in which cements are used, for both technical and
logistical (materials-supply) reasons. However, as a constituent of the future toolkit of cements,

AAMs do bring very significant value.

In the following sections, the focus of this review will turn to some other types of cementing
systems, which are not yet as widely deployed as AAMs, but which can also form valuable

components of the cements toolkit.

3. Carbonate Binders

The concept of carbonatable binders is based on the fact that some raw materials can harden
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through carbonation. Carbonated cementitious binders have attracted wide attention in recent
years, attributed to their rapid strength gain and the sequestration of CO2 when exposed to a CO2
rich environment [319, 320]. This section will discuss carbonated calcium silicate, carbonated
Portland cement, MgO-based cement and carbonated waste-derived binders. These four binder

types react with water and CO», yielding strong cementing materials.

3.1. Carbonated calcium silicate binders

Tricalcium silicate (C3S), B-dicalcium silicate (B-C2S), y-dicalcium silicate (y-C»S), tricalcium
disilicate (C3S2) and monocalcium silicate (CS) can react with CO; and form strong monolithic
matrices [321-323]. Ashraf & Olek [324] reported that the carbonation of pure calcium silicates
consists of two distinct processes: an initial phase-boundary controlled process, and then a
subsequent product layer diffusion controlled process. The reaction rate constant was found to
vary based on the calcium silicate phases; -C2S has the highest reaction rate, followed by CsS,

v-C2S, C3S2 and finally CS.

The carbonation products of pure calcium silicate are calcium carbonate and Ca-modified silica
gel or silica gel [323, 325, 326]. The calcium carbonate crystals resulting from carbonation of CsS,
C>S, C3S2 and CS include the polymorphs calcite, aragonite, and vaterite [326, 327]. The presence
of a 3C CP/MAS NMR signal in carbonated C3S, C»S, and C3S» phases can be attributed to the
additional formation of amorphous calcium carbonate (ACC), as shown schematically in Fig. 14.
However, ACC is not formed in carbonated CS under the same environmental conditions, Fig.14
[326]. The presence of poorly crystallized forms of CaCOs tends to increase the strength of the
carbonated calcium silicate matrices [328]. Furthermore, the values of the elastic modulus of
CaCOgs-rich binders can vary over a relatively wide range due to the presence of different

polymorphs of CaCOs crystals [327].

37



. G%.
‘K*,o’ \u L @ J o/ “"o\
il b o W v‘"\A
f“'u\’fé | ,J o-.z__-?
[ -9
Y\':‘ I‘ \‘»:o A\ q\ ,J[
\b‘ 4 1/ A o\r’"“\d
J’“".’.’- ] —a-""u“ \
é L. }H o —
_“-‘ T !- ‘
Inter-cluster  —2
pores, diameter:
< 2nm Gel pores,
diameter:
2 ~10nm
877
. Ca-modified
silica gel
4"/»::ll.l!lt'l:rs
Tntercluster
pores, diameter:
<2 nm
Small gel pores,
diameter: 2 ~4 nm Large gel
diameter: 4 ~10
nm
878

879  Figure 14. Proposed distribution of the pores (smaller than 10 nm) in carbonated calcium silicate

880  matrixes a) without the presence of amorphous calcium carbonate (ACC) and b) in the presence of

38



881
882
883
884
885
886
887
888
889
890

891
892

893
894

amorphous calcium carbonate (ACC), adapted from [319].

As shown in Fig. 15, the degree of polymerization of Ca-modified silica gel (which is essentially
defined by the inverse of the Ca/Si ratio) is nearly the same for all the carbonated calcium silicates
discussed, except for the carbonated CsS, which has a slightly lower degree [326]. However, all
the calcium silicates reach a similar overall carbonation level due to the retardation of the
carbonation reaction after formation of nearly the same amounts of CaCOs3 (Fig. 16), indicating
that effect is related to blockage of the surfaces of potentially reactive particles by the precipitated

carbonates.

1.00

0.75 1

0.50 -
0.25 4 i
0.00

B -C,S 'Y'Czs G,S,

Ca/Si atomic ratio of Ca-modified silica gel phase

i

Figure 15. Average Ca/Si atomic ratios of Ca-modified silica gel phase formed during the

carbonation reaction of the calcium silicate samples [321].
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Figure 16. CaCOj; contents (by mass, %) as a function of carbonation duration for different

calcium silicate phases [326].

Among these calcium silicates, carbonation of C»S has attracted more attention due to the different
crystal polymorphs that it can take, particularly B-C2S and y-C,S, as y-C2S can be produced at
much lower synthesis temperatures than the conventional hydraulic calcium silicate phases.
Chang et al. found B-C2S and y-CaS to absorb 9.2% and 18.3% of their theoretical levels of CO:
after 2 h of carbonation, respectively [328], but B-C>S showed the twice the compressive strength
compared to y-CaS. A similar result was reported by Guan et al., who found that the compressive
strength of carbonated y-C>S was 52.4 MPa after 2 h carbonation [329]. Calcite and aragonite are
the main crystals formed by carbonation of y-C»S, and amorphous Ca-modified silica gel lacking
long-range order was also formed [329-331]. Mu et al. [327] proposed a conceptual model of the

carbonation process of a y-CaS particle, as shown in Fig. 17.
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Figure 17. A conceptual carbonation model diagram of y-C,S particle. From [327]

3.2. Carbonated Portland cement (PC) binders

It is well known that accelerated early-age carbonation of Portland cement binders can result in
rapid strength gain and lower permeability. This is because the carbonation reaction leads to a
reduction in total porosity through the formation of carbonation products that occupy more space
than the portlandite that they are replacing. Shi et al. [332] proposed the use of pre-conditioning
to improve the accelerated carbonation of PC binders; the compressive strength of carbonated
concrete after proper pre-conditioning then 2 h of CO; exposure is similar to that of the concrete
after 24 h of steam curing. Furthermore, the carbonated concrete exhibits a similar compressive
strength to that of steam-cured concrete during winter weathering exposure [333]. Shi et al. [334,
335] suggested that pre-conditioning environments have the most crucial effect on the
effectiveness of CO: curing. Additionally, the temperature of the samples rises very quickly once
the samples are exposed to COz; this could reach a peak value of 70 °C during the first 15-20 min,

then goes down gradually with time.

Kenward et al. [336] studied hydration of an oil-well cement in the presence and the absence of
pure CO> gas. The carbonate formed was initially amorphous calcium carbonate that was not
detectable by XRD, but this changed to crystalline calcite detectable by XRD within 24 h. The

addition of carbon dioxide did result in performance benefits.
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Shah et al. [331] have suggested that the precipitation of the three polymorphs of calcium
carbonate (calcite, vaterite, and aragonite) takes place in carbonated PC, while Castellote et al.
[333] only detected calcite in carbonated PC. CaCOs; polymorphism is sensitive to pore fluid
chemistry, carbonation conditions and duration, and may also involve amorphous phases as noted
in Section 3.1, so this is a complex area requiring further analysis. Based on thermogravimetric
analysis, the main mass loss from carbonated PC pastes takes place between 600°C and 950°C.
The poorly crystalline carbonates, preferentially associated with C-S-H carbonation, decomposed
at a temperature below 600°C, while the decomposition temperature of well crystallized CaCO3
is above 600 °C [320, 337, 338]. The carbonated PC was strongly decalcified to form these CaCO3
phases along with a Ca-modified silica gel, identified via the decrease of the Q' and Q? sites, and
increase in Q? and Q* sites, according to 2°Si MAS NMR analysis. 2’ Al MAS NMR spectroscopy
confirmed that the aluminum-bearing phases, containing mainly AlOg (ettringite and AFm) and
AlQg sites (C-A-S-H) were dissolved to form an alumino-silicate amorphous gel (with Al as AlOa),
characterized by a broad resonance that was always positioned at the same chemical shift (55 ppm)

[339].

3.3. Magnesium-based cement (MC) binders

In recent decades, the use of reactive magnesium oxide (MgO) in PC has received more and more
attention. Carbonation of magnesium-rich cements improves the compressive strength of these
cementitious materials, which is attributed to the densification of materials caused by the
formation of nesquehonite (MgCOs-3H>0), dypingite (Mgs(CO3)4(OH)2-5H20) and artinite
(Mg2(OH)2CO3-3H20) [340, 341]. Mo et al. [342] suggested that a large amount of calcite and a
relatively smaller amount of aragonite are the calcium carbonates formed, while magnesian calcite
is formed due to the incorporation of Mg?* in the carbonated phase, and nesquehonite is formed
only in pastes containing at least 40% reactive MgO. Nesquehonite has been identified as the key

binding phase in other potential carbonated magnesia-based binders [343].
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Figure 18 shows the morphology of carbonated magnesia cement [344]. The needle-like
nesquehonite and disk/rose-like hydromagnesite/dypingite, which are the main sources of strength
development in these cement formulations, are observed. The disk/rose-like
hydromagnesite/dypingite crystals that formed due to the carbonation process could be
distinguished from the hydromagnesite seeds included within the initial mix, which possesses a

ground ball-like morphology.

TR
8/8/2016
WD 7.8mm  10:18:49

Figure 18. SEM images of H,O samples after carbonation: (a) HO-S0, (b) H,0-S0.5 and (c)

H;0-S1.0. From [344].

The area of magnesia-based cements is very diverse, and includes cements which harden and gain
strength by various combinations of carbonation and other chemical reactions, as reviewed in
detail recently by Walling & Provis [345]. These cements are proposed for use in many

applications ranging from large-scale construction to nuclear waste immobilization, and in some
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cases offer the possibility for notable CO> emissions savings compared to conventional Portland
cement. The supply of MgO is constrained in some areas due to cost or resource availability, but
this is not universally the case, and materials of very good technical and environmental

performance can certainly be produced using this chemistry.

3.4. Carbonated waste-derived binders

Steel slag is a broad classification for several types of industrial by-products produced during the
steel making process, which may be regarded as a waste-derived binder precursor [346-348].
Generally, the components of steel slag include hydraulic calcium silicates (C3S, B-C2S), non-
hydraulic calcium silicates (e.g. y-C2S, CS), and free CaO, each of which can react with CO».
Formation of calcium carbonate in the form of calcite and aragonite in the carbonated steel slag
binders causes microstructural densification associated with a reduction in the total porosity, and
hence improves the compressive strength. A carbonated steel slag binder was observed to show a
shift in its dominant pore diameter from 0.3-3 um before carbonation, to <0.1 um in the carbonated
paste [349]. The free CaO in the steel slag is partially or completely consumed due to the reaction
with CO», which improves the volume stability of the binder [350, 351]. Calcium carbonate (as
calcite and aragonite) is the main carbonate product formed, and portlandite and calcium silicate
seem to be more carbonation-reactive than the Fe-bearing phases that are also present [349].
Monkman et al. [352] reported the possibility of using a carbonated ladle slag as a fine aggregate.
After carbonation, calcium carbonates and spurrite were detected as new phases by XRD, together
with the consumption of hydrogarnet and calcium hydroxide. Mortars made with the slag sand

demonstrated strengths comparable to mortars made with conventional river sand.

High calcium fly ashes have an attractive capacity to be used for mineral sequestration of CO>
under controlled conditions [353, 354]. A recent study show that Ca-rich fly ashes react readily
with gas-phase CO> to produce robustly cemented solids which can achieve a compressive

strength of around 35 MPa and take up 9% CO» under optimized conditions [355]. Mahoutian and
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Shao [356] implemented a low temperature process to produce a binder material from blends of
fly ash and ladle slag. CO> gas (99.5% purity) was used for carbonation of the synthesized cement
for 2 hours and showed that the early age carbonation curing increased the subsequent hydration

strength.

4. Belite-Ye’elimite Binders

Ye’elimite, or calcium sulfoaluminate (CasAlsO12S04), is the main mineral in CSA cement clinker,
and has a crystallographic structure belonging to the sodalite family [357]. CSA cements have
been developed on a commercial basis and used in real applications, primarily in China, since the
1970s [358]. These cements are normally used as components in specialty applications because
of their higher price compared to Portland cement. However, as low-carbon binders, the interest
in these binders from the cement industry continues to increase because it is closer to the objective
of ‘eco-friendly’ than many of the other low-carbon binder systems that are still under R&D [359,
360]. The highly innovative production of ye’elimite-containing clinkers burning waste elemental
sulfur as fuel, meeting both energy and materials supply demand in a single step, has also been

demonstrated in a full-scale kiln [361], with the potential for further scale-up.

Ye’elimite reacts very quickly with water and contributes to the development of early strength of
this binder, forming monosulfate, ettringite, and amorphous aluminum hydroxide as major
hydrates. Various other reaction products can be obtained, such as stritlingite,
monocarboaluminate, and gibbsite depending on the minor phases in the CSA cement [362, 363].
Normally calcium sulfates are used to adjust the binder hydration reactions, and to promote the
formation of ettringite rather than monosulfate [364, 365]. Dicalcium silicate (belite) and ferrites
are present as additional main mineralogical components of CSA cements. In this paper, the
authors will focus on some belite-ye’elimite binders containing more belite than ye’elimite, which
is different from CSA cements that contain more ye’elimite than belite. Both belite and ye’elimite

are lower energy minerals compared with tricalcium silicate (alite), which are suitable for low
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energy and low-carbon clinker cement production and applications.
4.1. Belite-ye’elimite-ferrite binders

Belite-ye’elimite-ferrite (BYF) binders, also known as calcium sulfoaluminate or sulfobelite
cement [359, 360], have belite as the main phase (45-75%), and ye’elimite as a second component
(20-45%). This approach to manufacturing BYF binders allows the use of less expensive Al-rich
raw materials, due to the lower ye’elimite content in the clinker compared to ‘conventional’ CSA
cements which require a higher-purity Al source. The recent main research interest in this type of
binder is related to the understanding of ye’elimite hydration, that should be carefully controlled
to achieve desired rheology and setting time, and also on achieving more reactivity of the belite
component that contributes to the later growth in strength. BYF binders are not yet in large-scale
industrial production, but have been developed to pilot scale by some cement companies under

certain national and multi-national projects.

A study by Cuesta et al. [366] on the early hydration mechanisms of synthetic ye'elimite revealed
that the polymorphism of ye’elimite (orthorhombic stoichiometric and pseudo-cubic solid-
solution ye’elimite) influenced the hydration kinetics, together with the w/c ratio and the solubility

of the additional sulfate sources.

Recently, new data on the hydration of BYF cements have been published by Alvarez-Pinazo et
al. [367]. ‘Non-active’ clinker (containing B-belite and orthorhombic ye’elimite) and ‘active
clinker’ (containing o’u-belite and pseudo-cubic ye’elimite) have been studied with different
calcium sulfate sources. The findings of this study showed that the active-clinker mortar
developed higher compressive strengths than non-active-clinker mortars, independent of the
choice of sulfate source, and it formed higher quantities of ettringite during hydration and less
AFm compared to non-active cements. Another interesting finding that should be mentioned is
that the paste with basanite (CaSQO4-0.5H>0) as the sulfate source showed the highest viscosity

values and a hysteresis cycle attributed to fast setting, more so than gypsum- and anhydrite-
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containing pastes; this behavior can be adjusted by adding a small amount of polycarboxylate-
based superplasticizer (SP) (0.05 wt%) without changing the phase assemblage [368, 369] (Fig.
19). This offers a possibility to add a superplasticizer normally used in Portland cement binders

to control the rheological behaviour of BYF cements.

10% wt gypsum + active clinker

10% wt anhydrate + active clinker

10% wt bassanite + active clinker

10% wt bassanite + active clinker + 0.05 wt% SP
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Figure 19. Flow curves of different BYF clinkers with different additional sulphate sources (re-

drawn based on [367])

Morin et al. [370] studied five different BYF cements by experimental analysis and
thermodynamic modeling to track the hydration kinetics and phase assemblage, which were
influenced by the quantity of anhydrite, the w/c ratio, and the clinker fineness. The results
indicated that with increasing addition of anhydrite, belite hydration was delayed, which
contributed to the formation of a strength plateau between early ye’elimite hydration and later

belite and ferrite hydration. Also, a higher fineness of cement together with increased w/c ratio
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leads to higher belite hydration kinetics. Those authors proposed that the question of whether there
is enough water provided to form all hydration products strongly influences the hydration of belite

and ferrite phases.

4.2. Belite-alite-ye’elimite binder

Because some belite-ye’elimite-ferrite cements present quite low mechanical strength due to their
high content of belite with slow reactivity, methods to improve early strength have been sought.
One such approach is a clinkering method aiming to introduce a reactive alite phase into the belite-
ye’elimite binder system, as an alternative way to improve the mechanical strength. However, the
temperature incompatibility between alite formation (above ~1300 °C) and ye’elimite
decomposition (between 1300 and 1350 °C) brings difficulty in achieving the coexistence of alite
and ye’elimte phases in clinkering processes. However, this problem can be solved and controlled
by addition of minor quantities of CaF> [371] or other oxides, such as ZnO, B2Os3, or Na;O, in the

raw meal [372].

Chitvoranund et al. [373] prepared a clinker by firing limestone, tuff, gypsum and calcium fluoride
(used as mineraliser) in a laboratory furnace at 1300 °C for 45 min, which requires a synthesis
temperature 150-200°C lower than traditional PC clinker. The minerals present in the clinker
included alite (48.3%), belite (1.5% a’-C2S + 10.3 % B-CaS + 2.2% y-C2S), ye’elimite (9.6%),
and ferrite (12.9%). Later, the ground clinker was mixed with 5% anhydrite to make a so-called
alite-calcium sulfoaluminate cement. The hydration products were mainly C-S-H, ettringite,
monosulfate, and portlandite, and hydration rates are rapid. Thermodynamic modeling revealed
that the cement reacted strongly within the first 10 days of hydration, then the reaction process
slowed down and was almost completed by 100 days. Ferrite exhibited reactivity in the presence
of C3S, and was consumed to give monosulfoaluminate and katoite. The compressive strength of
mortars developed quite rapidly, from 10 MPa at 1 day to 35 MPa at 28 days. The release of CO>

from this approach to clinker production is estimated at about 11-12 % less than conventional
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Portland cement without the consideration of other factors.

In another study by Londono-Zuluaga et al. [374], a novel clinkering process to prepare belite-
alite-ye’elimite (BAY) binders has been optimized (900 °C/30 min — 1300 °C/15 min) and scaled-
up to 2 kg scale. This process involved as raw meal a mix of natural limestone, sand, iron oxide
(a byproduct of the sulfuric acid industry), gypsum, and kaolin. The main mineralogical
composition of their final scaled-up BAY clinker was 60.6 % belite, 14.3 % of alite and 10.4%
ye’elimite, on a mass basis. BAY cements were prepared by mixing the scaled-up clinker with 12
wt.% anhydrite. The analysis of hydration highlighted that the main reaction products are
ettringite, AFm phases (monosulfoaluminate and stritlingite), katoite, and C-S-H. Ye’elimite
reacted with anhydrite to be completely consumed within 1 day, alite and ferrite almost fully
reacted after 7 days, and belite showed a typical slower hydration behavior. Portlandite was not
detected in the pastes at testing ages of 1, 7 and 28 days; it was speculated to be consumed to form
katoite, AFt phases or monosulfoaluminate. The compressive strength of BAY mortars was
recorded to be higher than that of a BYF binder prepared by the same group, at any testing age,
most likely due to the presence of alite. The influence of fly ash blending in BAY cements has
been also reported by the same authors [375]: with the addition of fly ash, the compressive
strengths of mortars increased to 68, 73 and 82 MPa, for mortars with 0, 15 and 30 wt.%
replacement of BAY cement by fly ash respectively, at 180 days. The main hydration products
were AFt, AFm phases, katoite, and C-S-H for all systems studied. Utilizing a small amount of
superplasticizer makes it possible to prepare BAF pastes with low viscosity values. The reactivity
of belite appeared to have been inhibited by the high addition of fly ash, and other than the strength
increase, no clear evidence of pozzolanic chemical reaction with fly ash in BAY systems was
obtained. These do appear to be a promising class of cements for future large-scale utilization.
Zhou et al. [376] investigated the influence of the ferrite phase in a similar binder system on its

hydration and mechanical properties.
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4.3. Belite-ye’elimite-ternesite binder

Belite-ye’elimite-ternesite binders have been treated as another interesting alternative material for
reducing CO> emissions. The HeidelbergCement Technology Center (HTC) has worked for
several years to develop new and innovative techniques of production approaches for this binder,

and have published some patents related to this type of cement in recent years.

Ternesite (CsS2S) was first found in Germany as a natural mineral in the 1990s. It is also found in
the crust covering the areas of Portland cement kilns where the temperature is lower than 1250 °C.
The advantages of ternesite-containing clinkers are quite clear due to the lower clinkering
temperature. For a long time, this phase has been regarded as a non-hydraulic material, until it
was recently found to be reactive with aluminum hydroxide. According to Ben Haha et al. [377],
aluminum hydroxide can be used to activate ternesite to form ettringite, strétlingite and C-S-H in
different proportions, depending on the reactivity and reaction degree. Work by Montes et al. [378],
focusing on how other calcium aluminates activate the hydration of ternesite, has also been
published recently. Synthetic C3A, C12A7, CA and C4A3S (ye’elimite) phases were blended with
ternesite separately, then the hydration reactions of the blends were studied through various
techniques. Ternesite was activated in all the blends with aluminates, with descending
effectiveness order C12A7 =~ CA > C3A >>> C4A3S. Also, the presence of ternesite changes the
hydration products of these aluminates. However, ternesite was less consumed in the samples
mixed with ye’elimite due to the sulfate common ion effect. Even though in this study some
calorimetric evidence of an activating effect was recorded, ternesite could not be regarded as
having been activated by ye’elimite as no stritlingite was detected. The characteristics of ternesite
as a component of belite-ye’elimite (sulfobelitic) binders was later discussed by Blanco and
Carmona [379] who noted that ye’elimite and ternesite can co-exist in the CaO-SiO;-Al,0s-

CaSOq4 system.

A single-stage process to produce ternesite-containing clinkers (belite and ternesite-rich calcium

sulphoaluminate) has been proposed by Hanein et al. [380], based on some important new work
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in determining and defining the high-temperature thermodynamics of sulfur-containing
clinkerization processes [381]. The clinker was obtained in a pilot plant where the partial pressure
of Oz and SO was controlled in the kiln. The target operation temperature was set up to 1260 °C
in order to make the process to reach steady state rapidly, corresponding with their thermodynamic
calculations that the upper limit stability temperature for ternesite is ~1290 °C. The results also

clearly confirmed that ternesite can be synthesized in a dry atmosphere.

5. Conclusions and Final Remarks

The development and use of low-carbon binders as an alternative to Portland cement-based
materials, aiming to reduce the carbon footprint associated with construction and other

applications, has made notable progress in recent years. In summary:

a) Alkali-activated binders are very important and high-potential alternative materials, which
are now deployed on a commercial scale in several nations in the world. Recently the
development of understanding on the rheological behavior, setting properties and structural
characterization of alkali-activated binders has advanced rapidly. Progress in formulation of
one-part alkali-activated binders has further approached large-scale production and
application. However, the development and optimization of mix designs based on different
raw materials and activators has not yet been systematically understood. Durability
performance appears very good in most areas but needs more detailed work on test method
validation and standardization. Environmental assessment of these materials should also be
improved.

b) Carbonatable binders, regarding as a new approach to address concerns over CO2 emissions,
still are in a development route. The technology has been advanced recently, especially in the
understanding of accelerating and controlling the carbonation hardening process. The
limitations for these binders in application are also becoming clear, for instance the CO»-rich

atmospheres required for curing, and the pH reduction that means that use in reinforced
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elements will be challenging. However, these binders which may offer very high CO2 savings
if a circular CO2 economy develops [360] still deserve serious attention as alternative low-
carbon materials.

Belite-ye’elimite binders: this is a relatively new approach to produce alternative
cementitious materials compared to the conventional CSA cements, targeting a high belite
content in the clinkers. Although belite-ye’elimite-based binders are still under development
and have not reached the full scale-up stage, the clinkering process, understanding of
hydration, and the formulation of binders has developed greatly, not only in the scientific
community but also in the cement industry. Good mechanical strength was obtained by
hydrating this type of binder. The control of the rheological behavior and setting time have
also been investigated. However, this binder system and technology is not yet commercialized
or standardized. The clinkering process, which depends on different raw materials, should be

optimized for large-scale production.
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