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Abstract

Objective Resting-state functional magnetic resonance imaging (fMRI) is promising for Alzheimer’s disease (AD). This 
study aimed to examine short-term reliability of the default-mode network (DMN), one of the main haemodynamic patterns 
of the brain.
Materials and methods Using a 1.5 T Philips Achieva scanner, two consecutive resting-state fMRI runs were acquired on 69 
healthy adults, 62 patients with mild cognitive impairment (MCI) due to AD, and 28 patients with AD dementia. The anterior 
and posterior DMN and, as control, the visual-processing network (VPN) were computed using two diferent methodolo-
gies: connectivity of predetermined seeds (theory-driven) and dual regression (data-driven). Divergence and convergence in 
network strength and topography were calculated with paired t tests, global correlation coeicients, voxel-based correlation 
maps, and indices of reliability.
Results No topographical diferences were found in any of the networks. High correlations and reliability were found in the 
posterior DMN of healthy adults and MCI patients. Lower reliability was found in the anterior DMN and in the VPN, and 
in the posterior DMN of dementia patients.
Discussion Strength and topography of the posterior DMN appear relatively stable and reliable over a short-term period of 
acquisition but with some degree of variability across clinical samples.

Keywords Brain imaging · fMRI · Hemodynamics · Reproducibility of results

Introduction

Resting-state functional magnetic resonance imaging 
(fMRI) holds great potential for clinical application due to 
its high level of availability, relatively high spatial resolu-
tion (2–4 mm), and its non-invasive manner to capture brain 
function [1–4]. In addition, it does not require cognitive task 
performance and there is evidence that it can contribute sig-
niicantly to high levels of individual classiication accuracy 

in prodromal neurodegeneration due to Alzheimer’s disease 
(AD) [5–7].

The analytical procedure of resting-state fMRI is cen-
tred on low-frequency (< 0.1 Hz) luctuations in the Blood 
Oxygen Level-Dependent (BOLD) signal [8, 9] that are 
dependent on the paramagnetic properties of deoxygenated 
haemoglobin [10]. Enhanced excitatory neuronal activity 
brings about an increase in oxygenated blood supply and a 
subsequent decrease in deoxygenated haemoglobin levels 
[11, 12]. This leads to decreased dephasing of excited spins 
and a subsequent increase in T2* decay time, relected by 
an increase in BOLD-signal intensity [13].

Even during “rest” (i.e., the absence of a speciic cogni-
tive task), the brain maintains high levels of neuronal activ-
ity [14]. This is coherently organised into networks based 
on patterns of spontaneous synchronised activity in diferent 
brain areas [2]. This synchronous activity is referred to as 
functional connectivity, and studies on neurodegenerative 
conditions suggest that the patterns of connectivity relect 
the underlying neural anatomy [15]. Various resting-state 
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networks have been identiied, including the visual-process-
ing network (VPN), the sensorimotor network, the fron-
toparietal control network, the salience network, and the 
default-mode network (DMN) [16, 17]. The DMN is unique 
in showing a robust decrease in activity during cognitive 
task performance [14, 17], which is essential for success-
ful engagement in overt cognitive processing, e.g., memory 
encoding [18]. Activation of the DMN also directly sustains 
cognitive processes, including autobiographical episodic 
memory retrieval [16, 19, 20], self-referential mental pro-
cessing [16, 19], and mind wandering [21]. The topography 
of the DMN encompasses several brain areas and often an 
anterior and a posterior component are distinguished. Lim-
bic areas are also involved in this network including the pos-
terior cingulate cortex, retrosplenial cortex, hippocampus, 
and precuneus [22–24]. The anterior DMN centres in the 
medial prefrontal cortex and ventral anterior cingulate cor-
tex [23, 25], while the posterior DMN centres in the inferior 
parietal lobule and several temporal lobe areas. Anterior and 
posterior DMNs also show distinct alterations in functional 
activity that appears to decrease with age in the posterior 
DMN, and both decreases and increases with age in the ante-
rior DMN [26]. Such an increase in activity is believed to 
serve as a compensatory mechanism to optimise levels of 
cognitive performance along the axis of age-related neuro-
logical changes [27].

Interestingly, alterations in DMN activity, diferent from 
the ones observed in normal ageing [28], have been reported 
in several brain disorders, such as Alzheimer’s disease (AD) 
[15, 19]. AD is a progressive neurodegenerative disorder 
characterised, at the pathological level, by aberrant accu-
mulation of amyloid-beta and tau proteins into extracellular 
amyloid plaques and intracellular neuroibrillary tangles, 
respectively [29]. Since initial amyloid deposition has been 
observed in several regions of the DMN, including poste-
rior cingulate cortex, retrosplenial cortex, and lateral parietal 
cortex [30], and because diminished DMN functional con-
nectivity has been observed in mild AD patients and patients 
at the mild cognitive impairment (MCI) prodromal stage of 
AD (see [16] for a review), measures of DMN functional 
activity with resting-state fMRI promise to become a pos-
sible biomarker of early AD [22, 31].

For resting-state fMRI to be successfully applied clini-
cally, however, reliability of the acquired signal in the con-
text of neurodegeneration needs to be established. Although 
several test–retest reliability studies of resting-state fMRI 
have been carried out in young healthy adults [1, 32–39], 
few studies have focused on healthy elderly [40] and MCI 
patients [41], and, to our knowledge, no such studies have 
been carried out in AD patients. Usually, the study of reli-
ability of brain networks requires longitudinal designs and 
repeated follow-ups that are not always possible in clini-
cal populations, especially those with a neurodegenerative 

condition characterised by progressive neural loss/dysfunc-
tion such as AD. The aim of this study, therefore, was to 
investigate the reliability of signal acquired with resting-state 
fMRI in the DMN in healthy elderly adults, MCI patients, 
and AD patients in the short term, following a procedure 
which exploits the processing of multiple runs acquired 
within the same fMRI session. All participants were scanned 
once, but across two diferent runs. Data were analysed using 
two diferent methodologies: seed-based linear functional 
connectivity and dual-regression analysis [42]. These are 
major methodologies widely implemented for the analysis of 
brain networks. Concurrent analytical approaches were cho-
sen to maximise conservativeness and test the presence of 
both diferences and similarities. Diferences between Run 1 
and Run 2 were tested by means of paired t tests run to com-
pare the spatial map of each network calculated on each run. 
Run 1 is usually an acquisition during which the participants 
acclimatise to the scanner environment, whereas Run 2 may 
be associated with more fatigue, decreased wakefulness, and 
more movements. For this reason, the null hypothesis was 
accompanied by an alternative hypothesis testing whether 
signiicant diferences in the DMN would exist between the 
two runs.

Voxel-based correlation between the two runs was instead 
calculated to test the similarities of the two sets of maps. 
In addition, analysis of network strength at the major hubs 
within each map was carried out from seed-based networks. 
For this purpose, further numerical indices of functional 
connectivity were extracted with a seed-based approach, 
using an anatomical atlas. Multiple measures of statistical 
correlation and consistency were calculated: Pearson’s cor-
relation, Cronbach’s alpha, and intraclass correlation.

Materials and methods

Participants and data acquisition

Seventy-two healthy volunteers, 67 patients with MCI, and 
31 patients with dementia of the AD type were recruited 
at the IRCCS Fondazione Ospedale San Camillo, Venice, 
Italy, as part of a wider project studying cognitive ei-
ciency in physiological and pathological ageing (Grant no 
42/RF-2010-2321718 by the Italian Ministry of Health to 
AV) and their data contributed to the Venice Lido Ageing 
Database. This study had received approval by the Institu-
tional Review Board of the IRCCS Fondazione Ospedale 
San Camillo (Venice, Italy), (Protocol N. 11/09 version 2). 
Informed consent was obtained from all individual partici-
pants included in the study. Diagnostic status was estab-
lished based on a consensus among clinicians. All partici-
pants, aged > 45 years, underwent complete neurological 
screening to rule out the presence of clinical exclusion 
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criteria (extensively described in De Marco et al. [43]). To 
determine the extent of cognitive impairment, a compre-
hensive neuropsychological-test battery was used (see [5]), 
and scores derived from this battery were used to reach a 
consensus diagnosis.

T2*-weighted brain MRI sequences were acquired with 
a 1.5 T Philips Achieva MRI scanner. To enable assessment 
of the set exclusion criteria, T1-weighted, T2-weighted, and 
FLAIR scans were also obtained. Before scanning, partici-
pants were instructed to close their eyes and remain still 
for the whole duration of the session, but to remain awake. 
Resting-state fMRI scans were not preceded by any speciic 
cognitive tasks.

The T2*-weighted images were acquired using the follow-
ing scanning parameters: TR = 2 s, echo delay time = 50 ms, 
flip angle 90°, voxel dimensions 2.875 × 2.875 × 6 mm, 
matrix size 80 × 80 × 20, and ield of view 230 mm. Two 
120-volume runs of 20 contiguous axial slices obtained in 
ascending order were acquired for each participant. Twenty 
seconds of dummy scans were acquired before each run to 
enable longitudinal magnetisation to reach equilibrium.

A complete scanning session took approximately 35 min, 
during which several images were acquired. In this study, 
only T2*-weighted images were used for analysis. A T2*-
scanning session took approximately 10 min, during which 
two consecutive runs were acquired, each lasting 4 min and 
20 s, including 20 s during which 10 dummy volumes were 
acquired.

fMRI data pre‑processing

Data were pre-processed and analysed using Statistical 
Parametric Mapping (SPM) 8 software (Wellcome Centre 
for Human Neuroimaging, London, UK) implemented in 
MATLAB R2014a (Mathworks Inc., UK). All echo planar 
scans were corrected for slice timing [44], and each of the 
two volume runs was independently realigned [45]. This 
option allows the creation of mean volumes as reference 
and the estimation of six linear and rotational rigid body 
motion parameters that were visually inspected to identify 
problematic head movements. Participants with a transla-
tional and/or rotational movement that exceeded 1.5 mm 
or 3°, respectively, were excluded from the analysis. These 
included two healthy participants, ive MCI patients, and 
two AD dementia patients. This is a procedure that is widely 
used to minimise the impact of excessive motion [46–50]. 
One additional patient with dementia and one additional 
control were excluded because of signal artefacts. The inal 
data set included 69 healthy participants (27 males; mean 
age = 66 years ± 8.40; mean MMSE-score = 29.09; mean 
education level = 11.41 years), 62 MCI patients (30 males; 
mean age = 74 years ± 6.22; mean MMSE-score = 27.73; 
mean education level = 10.76 years) and 28 patients with 

AD dementia (14 males; mean age = 75 years ± 7.50; mean 
MMSE-score = 21.18; mean education level = 8.11 years). 
Between-group matching for demographic characteristics 
was not necessary, because no between-group comparison 
was carried out.

After realignment, scans were corrected for individual 
brain diferences using spatial normalisation, which includes 
co-registration of the fMRI time series with the standard 
SPM echo planar imaging (EPI) template, and volume-
based registration to normalise the EPI data to the Montreal 
Neurological Institute (MNI) template with known stand-
ard space [51]. Spatial normalisation was carried out for 
both runs separately, using the irst realigned volume of the 
irst run and the irst realigned volume of the second run as 
source images to match the EPI template. The normalised 
voxel size was set at 2.00 × 2.00 × 2.00 mm. Next, a band-
pass ilter between 0.008 and 0.100 Hz [14] was applied 
using the REST toolbox (http://www.restf mri.net) in SPM 
8 to remove part of non-neural sources of variability in the 
BOLD signal (mostly due to cardiorespiratory factors and to 
slow signal drift). With speciic focus on cardiorespiratory 
rhythms, since these are pseudoperiodic, it was assumed that 
both cardiac and respiratory signals would be regressed out 
when analysed with within-subject designs in a way similar 
to that routinely implemented for modelling of task-based 
fMRI. Finally, signal-to-noise ratio was improved by spa-
tially smoothing the fMRI images using an isotropic Gauss-
ian kernel of 6 mm3 full-width at half-maximum [52].

Cognitive and neurostructural characterisation 
of the cohort

Scores obtained on representative neuropsychological tests 
of particular relevance in ageing and neurodegeneration of 
the AD type were extracted and confronted between groups. 
As shown in Table 1, signiicant clinical diferences were 
visible across the three diagnostic groups for all measures.

The three diagnostic groups were further characterised by 
analysing the global volumetric properties of their brains. 
The T1-weighted images were segmented following the 
standard SPM routine, and native-space maps of grey mat-
ter, white matter and cerebrospinal luid were quantiied in 
millilitres using the “get_totals” command line (http://www.
cs.ucl.ac.uk/staf /g.ridgw ay/vbm/get_total s.m). Total intrac-
ranial volumes were then computed summing up the volume 
of the three tissue classes, and the fraction of grey matter (an 
index of global brain atrophy) was then obtained by fraction-
ating grey matter volume by total intracranial volume. Three 
independent-sample t tests were then run to compare the lev-
els of global atrophy among the three groups. These resulted 
to be all signiicant (all p values < 0.05), indicating that the 
three groups had diferent levels of cerebral atrophy due to 
neurodegenerative processes. Based on this, it was decided 

http://www.restfmri.net
http://www.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m
http://www.cs.ucl.ac.uk/staff/g.ridgway/vbm/get_totals.m


394 Magnetic Resonance Materials in Physics, Biology and Medicine (2019) 32:391–405

1 3

not to pool all participants in a single group, but apply study 
procedures in a separate way for each diagnostic group.

Approaches to fMRI processing

To address the experimental question from multiple angles, 
the two runs were investigated in terms of divergence and 
convergence (i.e., testing both diferences and similarities 
between runs). The analysis of divergence/diferences was 
devised mainly to rule out the presence of major discrepan-
cies between the two runs and served as a prerequisite to the 
main analyses.

Two complementary analytical routes were deined for 
the calculation of individual maps of network functional 
connectivity and for testing similarities and diferences 
between runs. A seed-based methodology was implemented 
as a theory-driven approach, and a dual regression was 
implemented as a data-driven approach. The a priori choice 
of seeds enabled us to focus on these regions more in detail. 
Conversely, the data-driven deinition of maps allowed us 
to test similarities between runs in a voxel-by-voxel way.

Theory‑driven approach: seed‑based functional 

connectivity networks

A predetermined set of seed regions was selected based on 
the Automatic Atlas Labelling [53], and were constructed 
using the WFU PickAtlas toolbox [54]. The seeds included 
the posterior cingulate cortex and the medial prefrontal cor-
tex for the calculation of the posterior and anterior DMN, 
respectively, and the calcarine cortex for the calculation 
of the VPN as methodological control (Fig. 1). Additional 
seeds were drawn in the white matter and in the cerebrospi-
nal luid. Seed-based timecourses were extracted from each 
seed region using the MarsBAR toolbox [55]. Individual 
maps of functional connectivity were computed modelling 
the linear association between the timecourse of the seed and 
the timecourse of each cerebral voxel. The signal extracted 
from the map of white matter and cerebrospinal luid was 
regressed out, together with the six linear and rotational 
rigid body motion parameters, their squared values, their 

temporal diference, and the square of the diferenced values, 
for a total of 24 regressors [56]. These regressors were cal-
culated using the mp_diffpow24 script (https ://www.warwi 
ck.ac.uk/fac/sci/stati stics /staf /acade mic-resea rch/nicho ls/
scrip ts/spm/mp_difp ow24.sh).

A fervent debate is still ongoing on as to whether whole-
brain signal should also be regressed out from individual 
linear models [57]. In this study, this was not carried out, as 
it might lead to spurious negative correlations within indi-
vidual models, which, in turn, lead to altered group-level 
connectivity patterns [58].

Data‑driven approach: dual‑regression networks

A second, multiple-step approach was also followed: a dual-
regression procedure was carried out [42, 59] using a series 
of MATLAB and SPM routines. Briely, this technique pro-
cesses the spatial outline of a set of maps generated with an 
independent component analysis, a technique that decom-
poses the entire fMRI data set into a selected number of 
latent variables (components), each of which corresponds 
to an independent source of signal and has its own speciic 
topography [6, 16]. Components of interest (corresponding 
to the topography of brain networks of interest) are identi-
ied, and an average individual timecourse within the con-
tour of the component is extracted. Maps of connectivity are 
then calculated by modelling the linear association between 
this global timecourse and that of each single voxel. This 
was carried out regressing out the same nuisance vectors 
as per seed-based networks (Sect. 2.4.1). Given the data-
driven nature of this approach and the profound neurologi-
cal diferences between healthy adults and patients, three 
separate independent component analyses were run, one 
per each diagnostic group. The fMRI toolbox GIFT (GIFT, 
v1.3i, http://www.miala b.mrn.org/softw are/gift) was used, 
in combination with the Infomax optimisation principle and 
the number of components to be extracted was set at 20, 
as landmark research has proiciently used this number of 
components to identify the major haemodynamic networks 
[60]. Among the 20 components, the anterior and posterior 

Table 1  Cognitive 
characteristics of the cohort. 
Mean (and standard deviation) 
is shown for each test

Clinical instruments measuring general levels of cognition, episodic memory, and semantic processing are 
included. All group diference were signiicant at a Bonferroni-corrected p < 0.05

Healthy adults (n = 69) MCI (n = 62) AD demen-
tia patients 
(n = 28)

Mini mental state examination 29.09 (1.21) 27.73 (4.22) 21.18 (2.54)

Category luency test 42.80 (9.42) 29.34 (9.84) 16.46 (5.84)

WAIS—Similarities 21.30 (4.74) 19.08 (4.14) 10.52 (4.28)

Prose memory test—delayed recall 13.00 (4.61) 7.27 (4.58) 1.93 (2.81)

Rey complex igure—delayed recall 16.33 (5.55) 9.68 (13.41) 2.62 (4.03)

https://www.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/mp_diffpow24.sh
https://www.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/mp_diffpow24.sh
https://www.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/spm/mp_diffpow24.sh
http://www.mialab.mrn.org/software/gift
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DMNs and VPN were identiied by three independent raters, 
who obtained 100% agreement on the inal selection [61].

Inferential models

Investigating divergence

Paired t tests were carried out in SPM per group to assess 
individual diferences in seed-based and dual-regression 
network topography between runs, using significance 
thresholds of p = 0.0005 (uncorrected) at the set level, and 
p = 0.05 (false discovery rate corrected) at the cluster level, 
as reported by the SPM output. False discovery rate was 
preferred over familywise error correction, because it deines 
a more liberal threshold for rejecting the null hypothesis 
[62]. As far as the speciications of this study are concerned, 

however, (i.e., inding conirmatory evidence in support of 
similarity between runs), this translated into the more con-
servative choice. According to the alternative hypothesis, 
signiicant diferences would exist given that participants 
tend to experience fatigue, decreased wakefulness, and more 
movements during Run 2.

Investigating convergence

Initially, the similarity between the two maps was qualita-
tively inspected by running a conjunction analysis between 
maps generated from Run 1 and Run 2. This was done for 
all maps of connectivity.

Second (and in specific compliance with the remit of 
the hypothesis), correlational models were devised to 
analyse statistical similarities between Run 1 and Run 2. 

Fig. 1  Three ROIs devised 
as part of the theory-driven 
section of the study methodol-
ogy. These were constructed 
based on an anatomical atlas as 
main seed of the anterior DMN 
(medial prefrontal cortex, red), 
posterior DMN (posterior cin-
gulate cortex, blue), and VPN 
(calcarine cortex, green)
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These were implemented as voxel-based whole-brain cor-
relations as part of the data-driven approach (processing, 
therefore, maps of connectivity created after dual regres-
sion), and as regional correlations limited to the ROIs as 
part of the theory-driven approach (thus processing maps 
of connectivity obtained with seed-based models.

Theory‑driven approach: consistency of  ROIs’ statis‑

tics Following the deinition of seed-based maps, local 
indices of the three seeds (described in Sect.  2.4.1 and 
illustrated in Fig.  1) were further analysed. Data were 
extracted from these three ROIs for each participant indi-
vidually and exported to MATLAB. IBM SPSS Statistics 
23 was further used for statistical analysis. To examine 
if Run 1 and Run 2 were correlated with one another, a 
bivariate Pearson’s correlation model was initially car-
ried out. As a short-term within-subject design was used, 
there was no need to correct for factors like age and AD 
pathology. Since Pearson’s product-moment solely exam-
ines a relationship between runs and does not indicate 
internal consistency, other indices of reliability were 
computed, namely, intraclass correlation and Cronbach’s 
alpha [63, 64]. Indices of reliability were run in the entire 
cohort and within each diagnostic group. Intraclass cor-
relation was set to capture absolute agreement reliability 
in the numerical estimate between runs.

Data‑driven approach: global and  voxel‑based 

whole‑brain correlations Both global and regional prop-
erties of individual maps of functional connectivity 
obtained from the dual regression were analysed. First, 
individual maps of connectivity were reshaped into uni-
dimensional data matrices for the calculation of coef-
icients of correlation across the entire network map of 
each participant. These were then plotted at a group level 
to characterise the global strength of correlation coei-
cients. Second, voxel-by-voxel correlations were tested 
with the Biological Parameter Mapping toolbox [65], 
fully implemented in SPM. This toolbox allows the calcu-
lation of whole-brain maps of positive and negative cor-
relations between two sets of inter-dependent maps. The 
presence of a positive coeicient of correlation between 
Run 1 and Run 2 was tested for each voxel. A statisti-
cal threshold of r > 0.6 was applied to focus exclusively 
on the strongest associations. The resulting maps were 
inspected and interpreted in the light of the expected map 
of the outcome (i.e., the outline of the network).

Results

No signiicant diferences emerged from any of the t test 
models. Moreover, all networks of healthy elderly, MCI 
patients, and AD patients showed high topographical simi-
larity between runs. This is illustrated in Figs. 2 and 3, 
which show the results of the one-sample t tests and the 
conjunction analyses for the maps emerged from seed-
based and dual-regression procedures.

Regional ROI indices of connectivity emerged from 
seed-based models were plotted and inspected to verify 
normality across the three diagnostic groups. To do so, 
each distribution was visually compared to that of mul-
tiple vectors randomly extracted from a normal distribu-
tion having the same mean and standard deviation as the 
measured data (this was carried out using R environment 
and the “rnorm” function). In no case did the distribution 
of peak scores suggest breach of normality.

Bivariate correlation analyses (illustrated in Fig. 4) 
revealed that the relationship between runs was very solid 
in the posterior DMN (p values < 0.001). Overall, the 
anterior DMN and the VPN yielded weaker coeicients 
of correlation. Cronbach’s alpha values and intraclass cor-
relation coeicients are included in Table 2. Overall, the 
results mimicked the outcome of the coeicient models, 
with Cronbach’s alpha and intraclass correlation coei-
cient converging towards an average > 0.8 reliability for 
the pDMN in each diagnostic group. The reliability of both 
aDMN and VPN was associated with variable but overall 
smaller indices.

Individual indices of Run 1–Run 2 correlation across 
the entire reshaped network map are illustrated in Fig. 5 
and show global robust similarity between the two runs (r 
scores tended to distribute near 0.5). The voxel-by-voxel 
correlation between the maps of functional connectivity 
calculated with dual regression on Run 1 and Run 2 is 
shown in Fig. 6. The results are aligned with the outcome 
of the ROI-based analyses: no well-deined patterns were 
found in association with the anterior DMN and VPN 
(although a trend emerged within the occipital pole for 
the latter network). Solid correlations within the postero-
medial and inferior parietal hubs of the posterior DMN 
were found instead across all three diagnostic groups, 
interestingly with a gradual decline observed in patients 
with MCI and AD dementia. To test whether diferences 
in motion between runs were the source of decreased reli-
ability in patients, we computed for each run an index of 
absolute framewise displacement [66]. Briely, this index 
is a measure of the average linear and rotational displace-
ment shown over the entire run. Paired t test comparisons 
were run to compare the two runs separately for each diag-
nostic status. No signiicant diferences were found.
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Discussion

In this study, we investigated short-term reliability of 
resting-state fMRI, with a particular focus on the DMN, 
in healthy elderly, MCI patient, and AD patient samples. 
To do so, we ran both statistical models devised to detect 
diferences between the two runs, and statistical models 
devised instead to capture the degree of similarity between 
the two runs. In fact, the absence of signiicant diferences 
between runs emerged from paired-sample t tests (and thus, 

the non-rejectability of the null hypothesis) is itself not suf-
icient to support the concept of analogy between runs. For 
this reason, paired comparisons were lanked by more con-
ventional measures of statistical similarity. In addition, maps 
of network connectivity were computed using two diferent 
theory-driven and data-driven approaches: seed-based mod-
els and a dual-regression procedure, respectively.

At present, indices of functional connectivity are not 
recognised as validated biomarkers for AD. This study was 
carried out with this clinical objective in mind, in support 

Fig. 2  Maps of the anterior and posterior DMN and the VPN, as cal-
culated from seed-based models via one-sample t tests. The strength 
of the haemodynamic connectivity which constitutes this network is 
illustrated separately for each diagnostic group: during Run 1 (yel-

low) and Run 2 (blue). The conjunction analysis is illustrated in gold. 
MNI coordinates: x = − 4; y = − 62; z = 22. Colours indicate the statis-
tical strength of the z statistics. A legend is included on the right-hand 
side, CONJ conjunction
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of a potential future applicability of these measures as 
clinical biomarker proxies of abnormal ageing. Results 
indicated high within-subject reliability in the posterior 
DMN in healthy controls and patients, as conirmed by all 
statistical methods, including those testing the hypothesis 
of signiicant diferences between runs, and those testing 
statistical similarities. The reliability of the pDMN in MCI 
and AD dementia, however, showed a declining trend, as 
conirmed in voxel-by-voxel models. Lower signal reliability 

was observed in the anterior DMN and in the VPN. This 
partially goes against our prediction of reliability measures 
becoming less eicient as disease progresses, because poor 
reliability was seen in all groups.

Since biomarker validity depends on both within- and 
between-subject variabilities [67], our results only partly 
support the applicability of the entire construct of resting-
state fMRI as a potential indicator of abnormal ageing. 
The reason for focusing on within-subject reliability is to 

Fig. 3  Maps of the anterior and posterior DMN and the VPN, as 
calculated based on the dual-regression procedure via one-sample t 
tests. The strength of the haemodynamic connectivity which consti-
tutes this network is illustrated separately for each diagnostic group: 

during Run 1 (yellow) and Run 2 (blue). The conjunction analysis is 
illustrated in gold. MNI coordinates: x = − 4; y = − 56; z = 22. Colours 
indicate the statistical strength of the z statistics. A legend is included 
on the right-hand side. CONJ conjunction
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assess reliability while leaving out sample heterogeneity, 
which consequently enables generalisation of results [68, 
69]. For this reason, we expected Cronbach’s alpha to be the 
key measure of reliability, rather than the intraclass correla-
tion coeicient [1, 37, 40, 41]. In this study, however, the 
results provided by these two measures were comparable. 
Even though the intraclass correlation coeicient has mul-
tiple subtypes that, when chosen incorrectly, can inluence 
reliability estimation [70], we found almost identical results 
across all subtypes.

Signal stability of fMRI might also be inluenced by vari-
ous other factors. Although AD pathology could not have 
inluenced our results—because we used a within-subject 
design and scans were acquired consecutively over the span 

of a few minutes—factors such as machine noise, experi-
mental instructions, data analysis strategy, and physiologi-
cal noise could still have afected reliability [67]. In this 
study, only the latter factor could have inluenced signal 
acquisition and could account for the observed group dif-
ferences, as all participants were scanned using the same 
scanner, given the same instructions and analysed following 
the same data analysis strategy. Physiological noise encom-
passes cardiac-, respiratory-, and head motion and is known 
to increase with increasing signal-to-noise ratio [71, 72]. 
As we used a 1.5 T system in this study, the inluence of 
cardiac- and respiratory noise should be relatively low, and 
should be minimised by the use of a within-subject design. 
It is likely, however, that head motion might have in part 

Fig. 4  Correlation graph of mean functional activity in the central 
ROIs of each network (shown in Fig. 1) as emerged from seed-based 
models: anterior default-mode network (aDMN), posterior default-

mode network (pDMN), and visual-processing network (VPN). Pear-
son’s correlation coeicients and corresponding p values are also 
included
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afected our data. Despite correcting for volume misalign-
ment by means of spatial realignment, head motion is known 
to induce additional secondary biases, such as spin-history 
efects and magnetic ield inhomogeneities [73]. Additional 
strategies have been proposed to correct for motion artefacts, 
aside from that implemented in this work [56, 74]. A num-
ber of these novel techniques, however, have been noted to 
disrupt or alter the autocorrelation structure of fMRI time 
series [75]. Since in-scanner motion is a major source of 
false positives, we are open to the possibility that the use 
of other methodologies may lead to slightly diferent ind-
ings. It is fair to acknowledge, however, that the results of 
the paired t tests were negative (i.e., no diference between 
runs) and that voxel-based correlation of the pDMN was 
limited to the network contour, and thus, false positives do 
not represent an issue in this study.

Signal luctuations could have been additionally inlu-
enced by diferences in eyes open and closed states, which 
may have resulted in signiicant signal diferences in the 

VPN. Although all participants were instructed to keep their 
eyes closed during the whole duration of the scanning ses-
sion, it is possible that some of them might have opened 
their eyes. McAvoy and colleagues, for instance, reported 
increased BOLD-signal intensity in the VPN, sensorimo-
tor, auditory network, and retrosplenial cortex during eyes 
closed compared to eyes open resting states [76]. Since no 
camera was available in the scanner to monitor eye closure, 
the possible confounding inluence of eye closure status on 
the BOLD signal cannot be ruled out. Moreover, although 
the definition of the DMN pattern (or that of the other 
networks) is easily reproducible across subjects [77], it is 
possible that diferent methodological choices (i.e., in the 
selection of the ICA optimisation principle or number of 
components, or in the use of a comparable yet diferent seed, 
e.g., the entire posterior cingulate cortex rather than the sole 
retrosplenial portion) may lead to slightly diferent results.

In addition, neuronal factors such as cognition and behav-
iour could have inluenced within-subject signal luctuation, 
as resting state is associated with unconstrained thoughts 
and subsequent unpredictable behaviour [78]. Nevertheless, 
it is unlikely that spontaneous behaviour constitutes the main 
source of resting-state fMRI BOLD-signal variance in this 
study, since robustness and spatial coherence of this type of 
signal have been reported in non-human primates and across 
various behavioural states (see [67] for a review). In addi-
tion, we have demonstrated particularly high within-subject 
reliability in higher order brain networks, consistent with 
other resting-state fMRI reliability studies (see [67] for a 
review).

In addition, false-positive indings and low power could 
have afected reliability. A recent article by Eklund and 
colleagues claimed that the parametric approaches used 
in SPM and other programmes used to analyse fMRI data, 
might generate up to 70% of false-positive indings, which 
is much larger than the generally accepted 5% [79]. Their 

Table 2  Indices of reliability computed from seed-based maps of net-
work connectivity

Reliability index Entire cohort Healthy MCI AD dementia

Anterior DMN

 Cronbach’s alpha 0.392 0.456 0.192 0.565

 Intraclass correla-
tion

0.392 0.459 0.193 0.569

Posterior DMN

 Cronbach’s alpha 0.895 0.905 0.847 0.925

 Intraclass correla-
tion

0.895 0.906 0.848 0.928

VPN

 Cronbach’s alpha 0.602 0.453 0.859 0.606

 Intraclass correla-
tion

0.604 0.456 0.863 0.610

Fig. 5  Group distribution of 
individual coeicients of cor-
relation calculated over the 
entire network maps. Boxplots 
indicate medians and interquar-
tile ranges
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results might have immense consequences for earlier per-
formed fMRI-based studies, yet they strengthen the non-sig-
niicant indings in our study. Furthermore, suicient power 
is needed to reject the null hypothesis. Since the sample 
size of AD patients (n = 28) was more than 50% smaller 
than that of MCI patients (n = 62) and healthy elderly adults 
(n = 69), it is possible that the relatively low power in the 
AD group increased the likelihood of non-signiicant ind-
ings in this sample [80]. Zandbelt and colleagues, however, 
have reported that a sample size of 30 would be adequate for 
suicient power in studies of this kind [69].

Of the above-mentioned factors, head motion and eyes 
open/closed status are the most likely factors which might 
have afected our data, inluencing aDMN and VPN at the 
whole-brain level. At the single-voxel level, however, signal 
luctuation appeared to be relatively lower in AD patients. 
We tested the possibility that this decrease might have been 
spuriously due to larger between-run motion diferences 
seen in patients as opposed to controls. The analysis of 

between-run diferences in absolute displacement was con-
vincing evidence to rule out this possibility.

It would be interesting to investigate the mechanisms 
underlying low signal reliability. Since the VPN is among 
the latest resting-state networks afected by amyloid pathol-
ogy [81], yet it shows low levels of reliability, we suggest 
that signal reliability is not dependent on amyloid pathol-
ogy per se, but that other mechanisms, which are associated 
with abnormal ageing, may afect its strength. This is also 
supported by the robust reliability found in the posterior 
DMN, which includes regions that are severely afected by 
amyloid pathology.

Thus, further research into the molecular mechanisms 
underlying decreased resting-state fMRI signal reliability is 
needed to increase insights into abnormal ageing. To obtain 
a complete overview of its applicability as an indicator of 
abnormal ageing, studies that examine between-subject vari-
ability are needed. Furthermore, future studies could exam-
ine signal reliability using diferent fMRI scanners with 
various magnetic ield strengths to increase generalisation 

Fig. 6  Voxel-based correla-
tional maps between Run 1 and 
Run 2 for each brain network 
computed with dual regres-
sion. Maps were thresholded at 
r > 0.6
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of these results further. In addition, long-term signal reli-
ability studies should be carried out in healthy ageing to 
increase insights into the efect of treatment and/or disease 
progression on brain functional connectivity in MCI and 
AD patients. To examine the value of resting-state fMRI as 
a biomarker proxy at the individual level, one could further 
study signal luctuation in single subjects, e.g., via correla-
tional models. Voxel-by-voxel correlational maps, however, 
can only be calculated at a group level, not an individual 
level. In fact, fMRI data modelling at the individual level 
results in the computation of a three-dimensional map (one 
sole number per voxel). In addition, individual voxel-by-
voxel correlations cannot be calculated along the axis of 
time either, since no overt association exists between the 
sequence of volumes of the irst acquisition and the sequence 
of volumes of the subsequent acquisition. Consistently with 
these observations, in this study, we only carried out vox-
elwise models testing diferences and similarities between 
runs at a group level only.

A methodological alternative to resting state is the study 
of task deactivations. Since the regions that de-activate dur-
ing an overt task are the same that are active at rest, reliabil-
ity in the pattern of deactivation may represent a surrogate 
methodology for the analysis of DMN network reliability. 
Deactivations, however, depend on the type and compu-
tational load of the task used as part of the experimental 
manipulation [82], and this might lead to BOLD diferences 
that are partly due to practice efects, or inter-individual neu-
ral reserve [83]. Furthermore, no other networks could be 
studied with task deactivations.

Our results support the use of haemodynamic indices, 
computed from resting-state fMRI, as variables of interest 
for a future clinical translation into a potential biomarker 
proxy of incipient AD at the group level and demonstrate 
that resting-state fMRI could even be reliably applied to 
AD patients in short-term studies when a voxel-by-voxel 
approach is adopted. This would be particularly true for 
the posterior DMN. Certainly, classiication studies with a 
speciic focus on cross-cohort validation would provide a 
deinite answer as to whether a DMN index might be efec-
tively used in clinical routine. In addition, these indings 
may lead to a better understanding of disease mechanisms, 
i.e., short-term functional activity changes in elderly and 
demented patients, and may form the basis for future molec-
ular research into the degree of reliability of neuronal activ-
ity and/or cerebral blood low in abnormal ageing.

Conclusion

Resting-state fMRI is a reliable tool to measure functional 
connectivity in the posterior portion of the DMN over a 
short-term interval. This was supported by the converging 
results obtained with multiple methodologies investigating 

network topography and strength. High reliability of the 
posterior DMN in MCI and AD dementia was conirmed 
by group comparisons investigating topography and by cor-
relational and consistency models investigating strength. 
Strength of voxel-based correlation, however, was reduced 
compared to healthy adults. Activity in the anterior DMN 
and VPN, on the other hand, showed relatively low signal 
stability, as indicated by poor statistical reliability. The take 
home message is that, despite luctuations in signal connec-
tivity, the posterior DMN is a reliable construct. This bodes 
well in the potential future translation of posterior DMN 
indices into potential clinical biomarker proxies.
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