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Climate Benefits of Intact Amazon
Forests and the Biophysical
Consequences of Disturbance
Jessica C. A. Baker* and Dominick V. Spracklen

School of Earth and Environment, Institute for Climate and Atmospheric Science, University of Leeds, Leeds, United Kingdom

Tropical forests have an important regulating influence on local and regional climate,

through modulating the exchange of moisture and energy between the land and the

atmosphere. Deforestation disrupts this exchange, though the climatic consequences of

progressive, patch-scale deforestation of formerly intact forested landscapes have not

previously been assessed. Remote sensing datasets of land surface and atmospheric

variables were used to compare the climate responses of Amazon forests that lost

their intact status between 2000 and 2013. Clear gradients in environmental change

with increasing disturbance were observed. Leaf area index (LAI) showed progressively

stronger reductions as forest loss increased, with evapotranspiration (ET) showing

a comparative decline. These changes in LAI and ET were related to changes in

temperature (T), with increasedwarming as deforestation increased. Severe deforestation

of intact Amazon forest, defined as areas where canopy cover was reduced below 70%,

was shown to have increased daytime land surface T by 0.44◦C over the study period.

Differences between intact and disturbed forests were most pronounced during the

dry season, with severely deforested areas warming as much as 1.5◦C. Maintenance

of canopy cover was identified as an important factor in minimizing the impacts of

disturbance. Overall, the results highlight the climate benefits provided by intact tropical

forests, providing further evidence that protecting intact forests is of utmost importance.
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INTRODUCTION

Tropical rainforests moderate the flux of energy and water between the land and the atmosphere,
and affect atmospheric chemistry through the exchange of trace gases (Silva Dias et al., 2002). Tall
rainforest trees provide a physical connection between deep soil layers and heights up to 40m
above the Earth’s surface (Simard et al., 2011). In the Amazon, tropical forest has an important and
complex role governing local and regional climate (seeMarengo et al., 2018 and references therein).
At the local scale, evaporating moisture affects the partitioning of radiation between sensible and
latent heat (the Bowen ratio), leading to a cooling and moistening of the boundary layer (Da Rocha
et al., 2004; Bonan, 2008). At larger spatial scales, the “cascade” of water vapor propagating across
the basin drives regional rainfall and provides a buffer against the damaging effects of drought,
with forests in the southern Amazon a particularly important source of re-evaporated water for
sustaining forest biomes further downwind (Zemp et al., 2014; Staal et al., 2018).
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Almost 1 million km2 of Amazon forest has already been
deforested, representing nearly a fifth of its original extent
(Davidson et al., 2012; Nobre et al., 2016). Most of the
deforestation has occurred along the southern margins of the
basin, in the so-called “arc of deforestation” (Malhi et al., 2008).
The implementation of a satellite monitoring program in Brazil
[Projeto de Monitoramento do Desmatamento na Amazônia
Legal por Satélite (PRODES)], saw a marked reduction in annual
deforestation rates over the Brazilian legal Amazon from 2004
to 2012, since which time the clearance rate has remained
comparatively stable, though evidence suggests that it has begun
to rise again in recent years (INPE, 2019). However, a new
study has shown that PRODES, which only considers primary
forest removal and excludes small-scale (<6.25 ha) patches from
its definition of deforestation, may have been underestimating
recent deforestation by as much as a factor of two. Kalamandeen
et al. (2018) showed that small-scale forest loss accounted for
approximately 40% of deforestation across the entire Amazon
from 2001 to 2014, and had a strong positive trend over this
period. This rise in low-density forest loss just as large-scale
forest clearance events appeared to be coming under control,
illustrates the growing threat of small-scale deforestation to
Amazon ecosystems.

In addition to perturbing the global carbon balance (Pan
et al., 2011; Baccini et al., 2012), removal of tropical forest
has consequences for local and regional climate, and can even
drive temperature and precipitation changes outside of the
tropics (see D’almeida et al., 2007; Davidson et al., 2012;
Lawrence and Vandecar, 2014). Much understanding has come
from experiments with regional or general circulation models,
with simulations revealing the climate consequences of forest
clearance in the model world (D’almeida et al., 2007; Sampaio
et al., 2007; Costa and Pires, 2010; Medvigy et al., 2011, 2013;
Swann et al., 2015). Ameta-analysis of 44modeling studies found
a negative linear relationship between Amazon deforestation
extent and basin-wide rainfall (Spracklen et al., 2015), though
many of the studies analyzed had highly idealized deforestation
scenarios, such as 100% forest removal. Trajectory-based analyses
have also shown that deforestation is likely to exacerbate the
effects of droughts in the Amazon, through a reduction in
atmospheric moisture transport from deforested areas to regions
downwind (Spracklen et al., 2012; Bagley et al., 2014).

Site-level studies have provided valuable data on the impacts
of Amazon forest clearance on the local microclimate. Net surface
radiation is lower over cleared areas, due to a combination
of higher albedo, and greater outgoing longwave radiation
compared with forests (Bastable et al., 1993; Gash and Nobre,
1997). However, despite a lower energy balance, station data
show deforested sites may be up to 2◦C warmer than adjacent
forested areas, and show higher diurnal and seasonal temperature
variability (Von Randow et al., 2004; Dubreuil et al., 2012).
This is due to differences in evapotranspiration (ET): eddy
covariance flux towermeasurements from pasture and forest sites
in the southern Amazon revealed lower ET and higher sensible
heating over the pasture site throughout the year (Von Randow
et al., 2004). Differences were greatest during the dry season

(June–August) as forests were able to access and transpire deep
groundwater, unlike short-rooted pasture vegetation.

Remote sensing techniques have made it possible to analyse
the environmental impacts of deforestation over larger spatial
scales. Studies using satellite ET observations to evaluate the
effects of deforestation in the Brazilian Cerrado (Spera et al.,
2016), and the Brazilian Amazon (Lathuillière et al., 2012; Silvério
et al., 2015), all found strong hydrological responses to land
cover change. High ET fluxes over continuous forest in the Xingu
Indigenous Park of southern Amazonia resulted in it being 1.9◦C
cooler than the surrounding patchwork agricultural landscape
(Silvério et al., 2015). At the pantropical scale, Alkama and
Cescatti (2016) used satellite temperature retrievals to show that,
in line with ground-based measurements, diurnal temperature
variability increased by approximately 2◦C following clearance of
tropical forest. The authors also showed land surface temperature
to be more sensitive to forest cover loss than air temperature,
which showed approximately two thirds of the sensitivity.
Impacts on rainfall may depend on the scale of deforestation.
Some remote sensing studies have observed increased rainfall
over patches of forest loss (Negri et al., 2004; Chagnon and Bras,
2005; Funatsu et al., 2012), particularly within a few kilometers of
forest edges (Knox et al., 2010), though larger-scale deforestation
reduces moisture recycling and thus has a negative effect on
rainfall (see Spracklen et al., 2018 and references therein).

Over the past decade, researchers and conservationists have
used satellite data to map intact forests across the globe (Potapov
et al., 2008, 2017). Intact forests were defined as forests with
no remotely-detectable signs of anthropogenic disturbance, with
forests assumed to be intact unless evidence to the contrary was
found. One caveat of this approach is that selective logging and
small-scale disturbances, which are difficult to observe remotely,
could be overlooked, causing a possible overestimation of “intact”
status (Potapov et al., 2008). In a recent review, Watson et al.
(2018) summarized the myriad benefits and services that intact
forest ecosystems provide, including regulating weather on local
and regional scales, mitigating climate change, contributing to
the conservation of biodiversity, improving air quality, and
helping to preserve indigenous cultures. In the tropics, only
20% of all forested areas are classified as intact, a fraction that
is diminishing as humans continue to encroach further into
pristine ecosystems (Potapov et al., 2017). Protected areas can
help prevent deforestation in the Amazon (Soares-Filho et al.,
2010; Spracklen et al., 2015), but face a variety of legal threats
(Nogueira et al., 2018). Together with the rise in small-scale
disturbances in the region documented by Kalamandeen et al.
(2018), this shows that there is a growing need to evaluate the
climate impacts of deforesting intact forests in the Amazon.

This study seeks to quantify the climatic value of intact
tropical forests in the Amazon, and evaluate the biophysical
changes that occur during progressive, patch-scale deforestation
of larger forested landscapes. Forest change datasets were used in
conjunction with remote sensing observations of the land surface
and the atmosphere to identify local environmental changes
over areas that were differentially impacted by anthropogenic
disturbance between 2000 and 2013.
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MATERIALS AND METHODS

Classification of Forest Disturbance
Categories
To evaluate the biophysical consequences of deforesting intact
Amazon forest between 2001 and 2013, forest pixels were
classified into four categories that were designed to represent
increasing levels of anthropogenic disturbance. This approach
utilized two global forest datasets: the Intact Forest Landscapes
(IFL) product, which maps forests that have no remotely-
detectable signs of human impact (Potapov et al., 2017), and the
Global Forest Change (GFC) version 1.6 product, which records
forest cover change over time (Hansen et al., 2013). The IFL
shapefiles for 2000 and 2013 were used in this study (IFL_2000
and IFL_2013), along with the following GFC layers: tree canopy
cover for year 2000 (treecover2000) and year of forest cover
loss (loss year).

The 2000 and 2013 IFL shapefiles were rasterised to 0.05◦

spatial resolution in order to match the grids of the climate data
used in the analysis. This was performed using the Geospatial
Data Abstraction software Library Python package (GDAL/OGR
contributors, 2018). Pixels were classified as “intact” if the center
of the pixel fell within the IFL polygon and non-intact if the pixel
center fell outside the polygon. Pixels that were classified as intact
but had tree cover changes >5% were excluded from the analysis
(<2% of IF pixels), as it is likely these weremisclassified as a result
of the rasterization process.

The GFC datasets were first used at their original resolution
(approximately 30 × 30m at the Equator) to calculate a tree
cover dataset for the year 2013 (treecover2013). For this, the
treeCover2000 dataset was masked to remove pixels where
deforestation had occurred up to and including the year 2013
(determined using the loss year dataset). The GFC data layers
treecover2000 and treecover2013 were then resampled to 0.05◦

by finding the mean tree cover across all 30 m-resolution pixels
within each 0.05◦ grid cell.

Next, the GFC datasets were used to derive forest masks for
use in the classification procedure. A 70% tree-cover threshold
was chosen to distinguish between land areas classified as forest
and non-forest. The treecover2000 and treecover2013 datasets
(each at 0.05◦) were then used to create forest masks for 2000
and 2013 by selecting all pixels where tree cover exceeded 70%
in those years (forestcover2000 and forestcover2013). Our results
were found to be robust across a gradient of other canopy cover
thresholds (Figure S1).

Amazon forest pixels were divided into four categories
representing a gradient in the extent of disturbance that
occurred between 2000 and 2013 (Table 1). The analysis was
constrained to the Amazon evergreen broadleaf forest biome, as
defined by the Collection 5 (C5) Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover classification product
(MCD12C1) for the year 2001 (Friedl et al., 2010). Boolean logic
was applied to identify pixels in each category. First, intact forest
(IF) pixels were identified using the 2013 IFL dataset. IF pixels
represent undisturbed or pristine forests that did not experience
any remotely-detectable disturbance over the period analyzed
and were thus considered the control group. The other three

categories represent the “disturbance categories,” and include
forests that have lost their intact status, either prior to, or over
the course of, the analysis period. The non-intact forest (NIF)
category contained pixels that were not classified as intact in
2000, but had >70% tree canopy cover in 2000 and were still
forests (>70% tree cover) in 2013. The third and fourth categories
were forests that lost their intact status between 2000 and 2013. If
tree cover was≥70% in 2013 then pixels were classified as having
experienced “moderate,” patch-scale deforestation, while pixels
where tree cover fell below the 70% threshold were categorized
as having experienced “severe” deforestation. For pixels in both
of these categories, landscapes of intact forest with high canopy
cover in 2000 were transformed to a patchwork of forested and
deforested areas by 2013, with categories differing only in the size
and extent of the deforested patches.

The spatial distributions of intact forest, non-intact forest, and
previously intact forest areas that experienced either “moderate”
or “severe” deforestation between 2000 and 2013, are shown
in Figure 1A. Non-intact forests are fairly widely distributed
across the Amazon, but tend to follow the contours of rivers
and other water courses. This is related to the IFL mapping
approach, which excludes forests within 1 km of navigable rivers,
as these are more accessible to humans and thus more likely
to have experienced disturbance than inaccessible inland forests
(Potapov et al., 2017). Most of the forests that lost their intact
status over the analysis period (orange and magenta areas in
Figure 1) are in the southern Amazon, with a few patches of
moderate deforestation over the Guiana Shield in the northeast.
Deforestation primarily occurred along themargins of non-intact
forest areas, indicating an expansion of human-impacted forest
landscapes along disturbance frontiers.

Remote Sensing Datasets
The environmental impact of intact forest disturbance was
assessed using remote sensing datasets of the land surface and the
atmosphere (Table 2). Leaf area index (LAI), evapotranspiration
(ET), land surface temperature (T) and precipitation (P) datasets
were analyzed over the period 2001–2013.

LAI data were retrieved from the monthly GLASS01B01
0.05◦ product, which is based on MODIS reflectance from
2001–2014 (Liang et al., 2014). For ET, we used the Level
3, gap-filled 0.05◦ C5 MOD16 MODIS product provided by
the Numerical Terradynamic Simulation Group (NTSG) at the
University of Montana (Mu et al., 2007, 2011), regridded from 8-
day to monthly resolution. Since previous work has highlighted
differences in remote sensing ET products over the Amazon, and
warned against using any one data product in isolation (Miralles
et al., 2016), monthly ET estimates were additionally obtained
from the 8-km Global Land Surface Evapotranspiration (GLS-
ET) product (Zhang et al., 2010), also distributed by NTSG, and
the 0.25◦ × 0.25◦ Global Land Evaporation Amsterdam Model
(GLEAM) version 3.2a dataset (Miralles et al., 2011; Martens
et al., 2017). The MODIS ET and GLS-ET products were derived
using variations of the Penman-Monteith equation (Monteith,
1965), although the remote sensing and reanalysis input datasets
for the two products are different. Meanwhile, the GLEAM
ET estimates are founded on the Priestley-Taylor approach for
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TABLE 1 | Forest disturbance categories used in this study.

Category Definition Tree cover in

year 2000 (%)

Tree cover in

year 2013 (%)

Tree cover

change (%)

Intact forest (IF) Forest pixels classified as intact in 2013 (no

anthropogenic degradation)

97.79 97.62 −0.18

Non-intact forest (NIF) >70% tree cover in 2000 but not within IFL, still >70%

tree cover in 2013

93.49 89.73 −4.04

Moderate

deforestation

Forest pixels that were intact in 2000 but not in 2013, still

>70% tree cover in 2013

97.80 93.54 −4.37

Severe deforestation Forest pixels that were intact in 2000 but not in 2013,

with <70% tree cover 2013

91.56 53.98 −39.81

Mean tree cover values for 2000 and 2013 are shown for each category, and the mean change in fractional tree cover as a percentage of the original coverage.

FIGURE 1 | (A) Map showing the distribution of intact forest (pale green), non-intact forest (sage green), moderately deforested (orange), and severely deforested

(magenta) pixels across the Amazon evergreen broadleaf forest biome at 0.05◦ × 0.05◦ resolution. The black box indicates the region shown in (B). (B) Illustration of

the moving-window analysis used in this study. Each pixel in each disturbance category (non-intact, moderate, and severe) was placed at the center of a 5 × 5-pixel

grid box. For the biophysical variable of interest, change over the central pixel (e.g., the “severe deforestation” pixel marked “X,” or the “moderate deforestation” pixel

marked “Y”), was compared with the mean change over surrounding intact forest (hatched pixels).

estimating ET (Priestley and Taylor, 1972). GLS-ET and GLEAM
were analysed at 0.25◦ resolution and results are shown in the
Supplementary Material (Figures S2 and S3).

T data were taken from the monthly 0.05◦ × 0.05◦ C6 Terra
MODIS (MOD11) land surface T product (Wan, 2014). The
Terra satellite has a local daytime overpass time of 10:30 a.m.
We used the MOD11 Terra product because of the longer time
record compared to the MYD11 Aqua satellite product (data
available from 2000 vs. 2002 for Terra and Aqua, respectively).
Repeating the analysis using the Aqua product yielded similar
results (Figure S4). The 0.05◦-resolution Climate Hazards Group
InfraRed Precipitation with Station data (CHIRPS) dataset,
which merges spaceborne and ground-based measurements
to estimate P (Funk et al., 2015), was also downloaded.
CHIRPS is based on the Tropical Rainfall Measuring Mission
(TRMM) Multi-Satellite Precipitation Analysis (TMPA) version
7 product (Huffman et al., 2007), which was used to calibrate
a longer timeseries of thermal infrared observations of cold
cloud duration to estimate P from 1981–present. In addition
to CHIRPS, 3-h TRMM P data were retrieved from the
3B42 version 7 product, in order to test the diurnal P

response to deforestation. High-resolution LAI, ET, T, and
P data were regridded to 0.25◦ using an area-weighted
regridding scheme (Python package Iris: https://scitools.org.
uk/iris/docs/latest/index.html) to test the influence of spatial
scale on our results. Finally, topography data from the Global
Land One-km Base Elevation Project (GLOBE) (Hastings
and Dunbar, 1998) were resampled to 0.05◦ to match the
climate datasets.

Statistical Analysis
For each biophysical variable (LAI, ET, T, and P), multi-year
composites were created by finding the annual mean across the
first three years of the analysis period (2001–2003) and across
the last three years (2011–2013). Change (1) in each variable
was then determined by differencing the 2001–2003 composite
from the 2011–2013 composite. This approach removed some of
the influence of interannual climate variability from the datasets
and was therefore expected to make the 1 estimates more
robust. Maps showing the mean annual change (1annual) over the
Amazon for each variable are presented in the Supplementary
Material (Figure S5). In addition, deforestation responses were
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TABLE 2 | Details of the remote sensing observations used in this study.

Variable Product Original resolution (◦) References

Leaf area index (LAI) MODIS GLASS01B01 0.05 Liang et al., 2014

Evapotranspiration (ET) MODIS MOD16

Global Land Surface ET

GLEAM v3.2a

0.05

0.08

0.25

Mu et al., 2007

Mu et al., 2011

Zhang et al., 2010

Miralles et al., 2011

Martens et al., 2017

Land surface temperature (T) MODIS MOD11

MODIS MYD11

0.05

0.05

Wan, 2014

Wan, 2014

Precipitation (P) CHIRPS

TRMM 3B42

0.05

0.25

Funk et al., 2015

Huffman et al., 2007

Results from datasets in italics are presented in the supplementary information.

evaluated at the monthly timescale by differencing the seasonal
climatologies for 2011–2013 and 2001–2003. For P data only,
the annual and monthly-scale analyses were repeated using
data from the southern (5–20◦S) and northern (5◦S−10◦N)
regions of the Amazon separately, to account for spatial
variation in precipitation seasonality. Changes in the mean
diurnal P cycle were also computed, using the same multi-
year composites, also analyzing data from the south and north
Amazon separately. Finally, to compare the climate impacts of
deforestation between the wet and dry seasons, annual mean
1 values for all variables were determined using the three
wettest and three driest months in each year, calculated on
a per pixel basis using seasonal P data from CHIRPS (1wet

and 1dry).
As can be seen in Figure 1A, forests that lost their

“intact” classification between 2001 and 2013 are not randomly
distributed in space, but show spatial clustering, particularly
along the southern margins of the Amazon. This tendency for
nearby pixels to have more similar characteristics than distant
pixels is known as positive spatial autocorrelation (SAC). In
order to relate the biophysical changes detectable from remote
sensing to changes in forest cover in a robust way, SAC must
be taken into consideration. To remove the influence of SAC,
we used a moving-window analysis to compare environmental
changes over pixels in each of the disturbance categories with
changes observed over nearby IF. For each of the categories
(Table 1), a 5 × 5-pixel grid box was centered on each pixel in
turn, and the change value for that pixel was compared with the
mean change over all IF pixels within the grid box (Figure 1B).
For the 0.05◦-resolution analysis, this meant comparing against
IF pixels within a radius of approximately 10 km (2 × 0.05◦

grid cells), while for the 0.25◦ resolution analysis it meant
comparing IF pixels within approximately 50 km (2 × 0.25◦

grid cells). This meant that pixels in each disturbance group
were matched with a set of neighboring IF pixels, ensuring
that all comparisons were made between geographically-close
impacted and non-impacted forests (see Table S1 for the number
of pixels included in each group). Pixels that had no IF within
the grid box to compare against were excluded from the analysis.
Mean 1 values of the paired datasets were compared using
a Student’s t-test, to test the statistical significance of any
observed differences.

Finally, 1 values for each environmental variable were
related to reductions in canopy cover following loss of
intact status. For this, the treecover2000 and treecover2013
datasets were used to calculate the fractional tree cover change
over the analysis period [(1tree_cover = (treecover2013–
treecover2000)/treecover2000]. For all formerly intact forest
pixels that experienced deforestation over the analysis period
(i.e., pixels in the “moderate” and “severe” disturbance categories
combined), 1LAI, 1ET, 1T and 1P values were binned by
1tree_cover, using a bin width of 2.5%, and discarding bins with
fewer than five data points. The analysis was applied to 1annual,
1wet and 1dry values to compare responses across different
climatic conditions.

RESULTS

Differences between intact and human-impacted forests were
found for three out of the four land-surface and atmospheric
variables examined. Annual mean 1LAI, 1ET, and 1T showed
significant differences from the changes observed over intact
forests for all disturbance categories (Figure 2), while1P showed
no significant responses (Figure 2D, Figure S6). The strongest
differences in 1LAI, 1ET, and 1T were evident over pixels that
saw the most extensive land-cover changes from 2001 to 2013
– those in the “severe” category, where deforestation reduced
tree cover to below 70%. Forests that lost their intact status but
maintained at least 70% tree cover, and forests that had lost their
intact status prior to 2000 (NIF pixels), also showed stronger
changes in LAI, ET, and T compared with forests that remained
intact. Biophysical responses across pixels in these two categories
were of a similarmagnitude, consistent with tree cover reductions
of approximately 5% in each case (Table 1).

LAI, ET, and T showed clear response gradients with
increasing forest disturbance (Figures 2, 3). Forest pixels in all
categories showed absolute declines in LAI, including forests
classified as intact in 2013 (Figure 2A). Relative 1LAI values
were all negative, and reduced progressively with increasing
forest disturbance (Figure 2B). The observed pattern of LAI
reductions was consistent with our independently-defined
disturbance categories (Table 1), providing verification that they
represented a true impact gradient. NIF pixels showed the
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FIGURE 2 | (A–D) Absolute changes in annual mean 0.05◦ remotely-sensed leaf area index (A), evapotranspiration (B), daytime land surface temperature (C), and

precipitation (D), averaged over pixels in each disturbance category and the corresponding neighboring intact forest (see Figure 1B), for the period 2001–2013.

(E–H) As in A–E, but with values expressed relative to the changes observed over nearby intact forest. Error bars show the 95% confidence intervals. Asterisks

indicate the significance of the differences, calculated using the Student’s t-test (*p < 0.05, ***p < 0.001, n.s. = not significant).

FIGURE 3 | Changes in annual mean 0.05◦ remotely-sensed leaf area index (A), evapotranspiration (B), daytime land surface temperature (C) and precipitation (D),

averaged over pixels in each disturbance category, and expressed relative to the changes observed over neighboring intact forest, for the period 2001–2013. The

boxes in each panel represent the quartiles of each dataset, mean values are marked with an “x,” and values along the lower axis indicate the number of data points.

smallest LAI response as these areas were degraded from intact
to non-intact forest prior to the analysis period, whereas pixels
in the other two categories lost their intact classification between
2001 and 2013. Even over “severe” deforestation pixels, the size of
the LAI response is still relatively modest, with a mean reduction
of 0.44 ± 0.04 m2m−2 (mean ± 95% confidence interval [CI]).

However, the variance within each category is large, as can be
seen in Figure 3. It must also be noted that satellite LAI tends
to saturate over dense broadleaf canopies (Myneni et al., 2002),
and thus reductions in LAI above the saturation threshold may
not be detected, which could partly explain the small magnitude
of the mean response.
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1ET becomes more negative as forests become more heavily
deforested, following the same trend as 1LAI. The MODIS
ET dataset is computed using MODIS LAI as an input, so the
two variables cannot be considered fully independent. However,
since absolute changes in LAI and ET showed opposite signs
(Figures 2A,B), we do not think our results were strongly
biased by the relationship between the datasets. The maximum
relative change in mean annual ET was over intact forests
that saw “severe” deforestation (−1.5 ± 0.4mm month−1,
Figure 2F). Similar trends were found for all three of the
remote sensing ET products analyzed, though not all responses
were significant for the lower resolution datasets (Figure S2).
Nonetheless, the consistency in trends provides a good indication
that the relationship between ET and tropical forest disturbance
is robust. Absolute change values varied slightly between ET
products, with MODIS, and GLS-ET showing ET increases
across all forest change categories, while GLEAM showed
declines (Figure 2, Figures S2a,b). These differences highlight
the necessity of comparing results across multiple satellite
ET products.

Most of the Amazon basin showed a warming trend over
the analysis timeframe (Figure S5c), though disturbed forests
warmed significantly more than neighboring intact forests
(Figures 2C,G). As with LAI and ET, the magnitude of the
1T response increased with increasing disturbance. Non-
intact forests and forests affected by “moderate” or “severe”
deforestation respectively warmed 0.014 ± 0.003, 0.050 ±

0.008, and 0.44 ± 0.06◦C more between 2001 and 2013 than
nearby forests that remained intact. For regions in the “severe”
category, warming was double that observed over surrounding
intact forests (Figure 2C). The mean elevation of pixels in each
degradation category was calculated to test for potential biases
that might influence the 1T results. Pixels in the “non-intact”
and “moderate” categories were found to be at significantly
lower elevation than IF pixels (NIF = −33.3 ± 1.8m, p <

0.001, and “moderate” = ± 3.3m, p < 0.01). Since warming
rates generally increase with altitude (Vuille et al., 2003; Bradley
et al., 2006), stronger warming over the lower elevation forests
could mean that elevational differences are masking some of the
effect of disturbance on 1T in these two categories. Although,
since the differences that were observed were <50m, and no
significant differences were observed for “severe” deforestation
areas, elevation is unlikely to have had a substantial impact on
the findings presented here.

We tested the sensitivity of our analysis to the spatial
resolution and to satellite overpass time. Repeating our analysis
at a coarser resolution of 0.25◦ yielded similar results (Figure S7),
with disturbed forests warming significantlymore than respective
nearby intact forests (p < 0.001). Relative change values were
higher, since the 5 × 5 grid box used to pair degraded and
intact forest pixels covered a larger area (approximately 125
× 125 km), and thus T values were compared across larger
distances. The reductions in LAI and ET with increasing
disturbance showed similar trends to those observed at 0.05◦

(Figures S7a,b), though for the 0.25◦ ET analysis responses were
not statistically significant.Mean annual P showed no response to
forest disturbance at either resolution (Figure 2D, Figure S7d).

We repeated our analysis with MYD11T data from Aqua,
which has a local daytime crossing time of 1:30 p.m. compared to
10:30 a.m. for Terra. Consistently, we found more warming over
pixels in all disturbance categories compared to IF (Figure S4),
with the strongest mean T response over “severe” deforestation
pixels (0.55 ± 0.05◦C). This 1 value is higher than that
for MOD11 (0.44 ± 0.06◦C), despite a slightly shorter data
record for Aqua (MYD11 1 values were calculated from
2003 to 2013), suggesting the midday warming response is
stronger than that in the morning. Variation in the diurnal
T response to deforestation was also tested using night-time
T data from the Terra and Aqua satellites, which have local
evening overpass times of 10:30 p.m. and 1:30 a.m. respectively.
Both datasets showed a modest night-time cooling response
over regions where intact forest was severely deforested (−0.1
± 0.03◦C for MOD11 and −0.07 ± 0.03◦C for MYD11,
Figure S8).

Seasonal variations in environmental response to disturbance
were evaluated. 1LAI, 1ET, and 1T showed a clear seasonal
signal in relative differences between intact and disturbed
forests (Figure 4). Seasonality increased with increasing forest
disturbance, with “severe” deforestation pixels showing the
highest intra-annual variability. Differences were greatest toward
the end of the Amazon dry season and lower during the
wetter months. In August and September, heavily disturbed
forests warmed by as much as 0.75 ± 0.1◦C more than
nearby intact forests (Figure 4C). Meanwhile, P responses to
deforestation, which were evaluated over the northern and
southern Amazon separately due to spatial differences in P
seasonality, showed limited monthly variability (Figure S9).
Furthermore, the differences between the forest disturbance
categories were much less distinct for 1P than for the other
variables analyzed. Changes in the diurnal P cycle were also
examined, though no clear responses to forest degradation were
detected (Figures S10, S11).

Finally, climate responses following loss of intact status were
related to fractional canopy-cover loss.1LAI,1ET, and1T were
roughly proportional to the reduction in tree cover, while 1P
showed no relationship with colocalized canopy cover reductions
(Figure 5). LAI, ET, and T showed small responses to disturbance
where canopy-cover changes were small, and progressively larger
responses with increasing canopy loss. Stronger responses were
observed during dry months and weaker responses during wet
months, in line with the monthly-scale analysis (Figure 4). Pixels
where tree cover declined by more than 60% showed up to
1.5◦C more warming in the driest three months of the year
(Figure 5c). This result highlights the need to limit canopy
destruction for tropical forests to be able to buffer the impacts of
climate change.

DISCUSSION

The aim of this research was to quantify the climatic value of
intact tropical forest in the Amazon. Following several recent
studies that used satellite data to examine the biophysical impacts
of deforestation (e.g., Alkama and Cescatti, 2016; Li et al.,

Frontiers in Forests and Global Change | www.frontiersin.org 7 August 2019 | Volume 2 | Article 47

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Baker and Spracklen Climate Benefits of Intact Forests

FIGURE 4 | Monthly changes in 0.05◦ remotely-sensed leaf area index (A), evapotranspiration (B), and daytime land surface temperature (C), averaged over pixels in

each disturbance category, and expressed relative to the changes observed over neighboring intact forest, for the period 2001–2013. Shading shows the 95%

confidence intervals.

FIGURE 5 | Changes in annual mean, wet season (data from wettest 3 months, calculated per pixel) and dry season (driest 3 months, calculated per pixel) 0.05◦

remotely-sensed leaf area index (a), evapotranspiration (b), daytime land surface temperature (c), and precipitation (d), in response to reduction in tree cover. Data

come from all forest pixels that lost their intact status between 2000 and 2013. Values are expressed relative to the changes observed over neighboring intact forest,

for the period 2001–2013.

2016; Schultz et al., 2017), our analysis focused on detecting
the subtler changes that occur when tropical forest transitions
from an intact state to a non-intact state. To achieve this, we

used remote sensing observations to evaluate the environmental
consequences of progressive forest disturbance over a large
spatial scale.
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The IFL product classifies intact forests as areas with no
remotely-detectable signs of human activity (Potapov et al.,
2017). This definition could mean areas of forest with
selective logging or sub-canopy disturbance could potentially
be misclassified as intact. In comparisons between intact and
disturbed forest, overestimation of intactness may have led
to a slight underestimation in the biophysical responses to
disturbance shown here (Figures 2, 3). However, given that
climate impacts were small when declines in tree cover were close
to zero (Figure 5), potential overestimation of IFLs is unlikely
to have substantially influenced our results. Meanwhile, where
canopy loss did occur, such as the small (<5%) decreases over the
non-intact and “moderate” disturbance categories (Table 1), ET
and T showed significant responses relative to nearby intact forest
(Figure 2). This is consistent with work showing that relatively
subtle disturbance rates (5–10% canopy reduction) can result
in remotely detectable changes in Amazon forest functioning
(Koltunov et al., 2009). Another study, based on flux tower
measurements, reported reductions in carbon, water and energy
exchange that were directly proportional to canopy loss following
reduced-impact logging of an old-growth Amazon forest, though
these effects were found to be only transient (Miller et al., 2011).
Overall, the results presented here demonstrate that the climate
benefits provided by intact tropical forests are inherently related
to the intactness of canopy cover, suggesting the IFLmethodology
provides an adequate method of classifying intactness from a
climate perspective.

Our results revealed distinct gradients in environmental
change with increasing forest disturbance. As deforestation
increased, LAI and ET both showed declines relative to
neighboring intact forest (Figures 2, 3, Table 1). These results
are consistent with each other, since ecosystem ET has previously
been shown to scale with LAI (Zhang et al., 2016), and there were
no significant P responses that might have modulated the ET
response (Figures 2D,H). Tropical broadleaf forests have some
of the highest LAI of all land cover types (Bruijnzeel et al.,
2011), with values up to five times higher than measured over
crops or pastures (Gash and Nobre, 1997; Zhu et al., 2013;
Yan et al., 2016). The fall in LAI accompanying loss of intact
status reduces the efficiency of ET, since there is a smaller
surface area for transpiration, or for rainfall interception and
subsequent evaporation (Spracklen et al., 2018). In addition,
the removal of deep-rooted forest trees stems the flow of
deep soil water to the atmosphere, further contributing to ET
reductions (Von Randow et al., 2004; Davin and De Noblet-
Ducoudré, 2010). Indeed, declines in average root depth and
thus ET were thought to explain why even low levels of selective
logging resulted in seasonal reductions in greenness over forests
in Brazil (Koltunov et al., 2009). The results presented here
confirm that even relatively minor disturbance can impact forest
hydrological functioning.

The increase in surface 1T with increasing disturbance is
consistent with the declines in 1LAI and 1ET (Figure 2).
Both modeling (Davin and De Noblet-Ducoudré, 2010), and
observational (Zhang et al., 2014; Silvério et al., 2015; Alkama
and Cescatti, 2016; Li et al., 2016) studies agree that although the
T response to deforestation varies with latitude due to variable

influences on the surface energy budget (Duveiller et al., 2018),
in the tropics deforestation leads to a net daytime warming.
This is due to a combination of reduced ET efficiency and lower
surface roughness. Lower ET reduces latent heat fluxes, while a
smoother surface inhibits the turbulent transfer of energy from
the land to the atmosphere, both of which result in stronger
warming at the land surface (Davin and De Noblet-Ducoudré,
2010; Li et al., 2016). This contrasts with the T response to
deforestation at higher latitudes, where the increase in albedo
following forest clearance leads to a net cooling effect (Li et al.,
2016; Schultz et al., 2017). Our estimate of the surface warming
due to Amazon deforestation (0.44◦C from 2001 to 2013, which
equates to 0.34◦C decade−1) is based on simple differencing of
multi-year T composites, but is comparable with that estimated
by Li et al. (2016), who used a regression approach to calculate
pantropical T trends over a similar timeframe (0.28◦C decade−1

for 2003–2013). The weak night-time cooling also observed
over deforested areas in this study (e.g., −0.1 ± 0.03◦C for
MOD11, Figure S8) is consistent with previous work showing
deforestation causes a small negative night-time T response in the
tropics, and a stronger negative night-time T response at higher
latitudes (Schultz et al., 2017). The cooling is due to a reduction
in forest-generated turbulence, which brings warmer air to the
surface at night, and the lower thermal storage capacity of open
areas compared with forests. Finally, this study only considered
local surface warming, though a recent modeling study showed
that the non-local cooling impacts of deforestation caused by
changes in albedo and large-scale circulation could dominate the
T response at the global scale (Winckler et al., 2019).

Previous work has highlighted the climatic resilience of
intact forest (Huete et al., 2006; Malhi et al., 2008), and the
results presented here provide further evidence of this. Non-
intact forests warmed 11% more than neighboring intact forest
(0.014◦C from 2001 to 2003; Figure 2G), which could have
implications for drought-sensitive species at the limit of their
biogeographic range (Esquivel-Muelbert et al., 2017). The climate
impacts of deforestation could be particularly consequential
during periods of prolonged drying, such as occur during an
El Niño. It should be noted that land surface T, as used in
this study, may be up to 50% more sensitive to changes in
forest cover than air T (Alkama and Cescatti, 2016). Therefore,
perceived T changes in response to disturbance may be slightly
lower than those shown in Figure 2. Radiometric surface T
can be measured remotely by satellites, while air T products
are based on ground-based station measurements that may not
be available over some regions of remote tropical forest (e.g.,
Heft-Neal et al., 2017), and are thus unlikely to co-locate with
areas of forest loss. In a recent study, Winckler et al. (2019)
reviewed the differing responses of these two T metrics to
deforestation in climate models. They concluded that surface
T is particularly important for understanding surface energy
budgets and thus land-atmosphere interactions, while 2–m air
temperature might have greater ecological relevance. Overall,
the results shown here emphasize that non-intact forests warm
more, and thus might be less able to buffer the effects of climate
change, compared to forests that have been unimpacted by
anthropogenic disturbance.
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In this study, we identified forests as areas within the MODIS
evergreen broadleaf forest classification with tree canopy cover
above a threshold of 70%. Following this, we distinguished
between areas of “moderate” deforestation, which experienced
tree losses and LAI declines but where canopy cover remained
above 70%, and areas of “severe” deforestation, where tree
removal resulted in canopy cover declining below 70%. Much
lower canopy thresholds have been used to define forests, such as
the much-criticized United Nations Framework Convention on
Climate Change definition, which specified a tree cover threshold
of just 10–30% (UNFCCC, 2002; Sasaki and Putz, 2009; Putz
and Redford, 2010), or the Food and Agricultural Organization
threshold of 40% tree cover for closed canopy forests (FAO,
2001). However, the Amazon intact forest pixels in this study
had a mean tree cover of more than 97% (Table 1), thus a
higher canopy threshold was deemed appropriate. Lowering
(raising) the threshold effectively raises (lowers) the amount of
deforestation required before a pixel is considered “deforested,”
thus giving a stronger (weaker) warming response. However,
in general our results were shown to be robust to threshold
variation (Figure S1).

We found conversion of intact forest and increasing forest
loss had no discernible impact on annual mean P at the local
scale across Amazonia (Figures 2–4), and little effect on seasonal
or diurnal P cycles over the northern or southern Amazon
(Figures S9–S11). Previous studies, focusing on deforestation in
Rondônia in the southern Amazon, found forest removal resulted
in local increases in rainfall and a possible shift toward more
afternoon convection (Negri et al., 2004), or a redistribution
of rainfall in space (Khanna et al., 2017). Deforestation may
reduce downwind rainfall through reductions in ET and
reduced atmospheric moisture transport (Spracklen et al., 2012).
Modeling studies also suggest that regional-scale land-use change
will reduce rainfall at the regional scale (Spracklen and Garcia-
Carreras, 2015; Alves et al., 2017). However, such remote
impacts are not easily evaluated through an examination of co-
located land-use and climate changes, and any spatial offset in
the P impacts of deforestation wouldn’t be detected through
the methodology applied here. Further work should focus on
evaluating P responses to disturbance at different spatial scales,
and comparing impacts across the tropics.

Finally, seasonal variations in 1LAI, 1ET, and 1T were
shown to increase along the degradation gradient (Figure 4),
with the most pronounced differences at the end of the dry
season. Responses to canopy cover change were also enhanced
during the driest part of the year, with deforestation causing
warming of up to 1.5◦C over areas with high tree cover loss
(Figure 5c). Only the deepest-rooted trees can maintain ET
during the dry season, as they can access deep soil water that
remains unavailable to shorter-rooted pasture vegetation (Von
Randow et al., 2004; Davin and De Noblet-Ducoudré, 2010).
It follows, therefore, that removal of trees causes the strongest
changes at the end of the dry season, when soil water would
be at its most depleted. It has been suggested that ET fluxes
at the end of the dry season may play a role in triggering the
onset of the wet season, through increasing the humidity and
buoyancy of air, and thus making conditions more favorable for

atmospheric convection (Fu and Li, 2004; Myneni et al., 2007;
Wright et al., 2017). Deforestation disrupts this process, with
reduction in dry season ET possibly contributing to an observed
lengthening of the Amazon dry season over recent decades, as
has been suggested from observational (Fu et al., 2013) and
modeling (Alves et al., 2017) studies. Increased temperatures
have also been linked to greater fire occurrence in the Amazon
(Aragão et al., 2018; Lima et al., 2018), making degraded forests
more susceptible to dry season burning. Altogether, the results
presented here indicate that deforestation disrupts normal forest
functioning, particularly during the dry season when vegetation
is already at its most vulnerable.

SUMMARY

In this study, we used forest change datasets and remote
sensing observations to evaluate the climatic consequences of
disturbing intact Amazon forests. We found a clear signal of
stronger T increases over more disturbed forests, corresponding
to reductions in LAI and ET, while mean annual P showed no
significant response to deforestation at the scale of our analysis.
Deforestation of intact forests to below 70% tree cover was
shown to have caused 0.44◦C of annual warming between 2001
and 2013. Differences between intact and disturbed forests were
most pronounced during the driest part of the year, when T
increases of up to 1.5◦C were observed. The climatic stability
of intact tropical forests was closely related to preservation of
tree coverage, highlighting the importance of minimizing canopy
loss to limit changes in forest-climate interactions. Overall,
our results illustrate the climate benefits provided by intact
forests, strengthening the argument that intact forests are a vital
component of the Amazon climate system and should be a
conservation priority.
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