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Abstract
We define a map from tilings of surfaces with marked points to strand diagrams,
generalising Scott’s construction for the case of triangulations of polygons. We thus
obtain amap from tilings of surfaces to permutations of themarked points on boundary
components, the Scott map. In the disk case (polygon tilings) we prove that the fibres
of the Scott map are the flip equivalence classes. The result allows us to consider the
size of the image as a generalisation of a classical combinatorial problem. We hence
determine the size in low ranks.
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1 Introduction

In a groundbreaking paper [30] Scott proves that the homogeneous coordinate ring of a
Grassmannian has a cluster algebra structure. In the process Scott gives a construction
for Postnikov diagrams [26] starting from triangular tilings of polygons. Given a
triangulation T , one decorates each triangle with ‘strands’
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The resultant strand diagram −→
σ (T ) varies depending on the tiling, but induces a

permutation σ (T ) on the polygon vertex set that is the same permutation in each case.
This construction is amenable to generalisation in a number of ways. For example,
starting with the notion of triangulation for an arbitrary marked surface S [11,12]
(the polygon case extended to include handles, multiple boundary components, and
interior vertices) there is a simplicial complex A(S) of tilings [13–15] of which the
triangulations are the top dimensional simplices. Lower simplices/tilings are obtained
by deleting edges from a triangulation. There is a strand diagram −→

σ (T ) in each case
(we define it below, see Fig. 1a, b for the heuristic). Thus each marked surface induces
a subset σ (A(S)) of the set of permutations of its boundary vertices (see Figs. 2, 6 for
examples).

This construction gives rise to a number of questions. The one we address here
is, what are the fibres of this Scott map σ? To give an intrinsic characterisation is
a difficult problem in general. Here we give the answer in the polygon case, i.e.
generalising σ (T ), with fibre the set of all triangulations of the polygon, to the full
A-complex of the polygon.

The answer is in terms of another crucial geometrical device used in the theory of
cluster mutations [12] and widely elsewhere (see e.g. [1,11,14,17] and cf. [9])—flip
equivalence (or the Whitehead move):

Our main Theorem, Theorem 2.1, can now be stated informally as in the title.
We shall conclude this introduction with some further remarks about related work.

Then from Sects. 2–6 we turn to the precise definitions, formal statement and proof
of Theorem 2.1.

In Sect. 7 we report on combinatorial aspects of the problem—specifically the size
of the image of the map σ in the polygon cases. The number of triangulations of
polygons is given by the Catalan numbers. Taking the set Ar of all tilings of the r -gon,
we have the little Schröder numbers (see e.g. [31, Ch.6]) The image-side problem is
open. We use solutions to Schröder’s problem and related problems posed by Cayley
(as in [25,28]), and our Theorem to compute the sequence in low rank r , and in Sect.
7.4 prove a key Lemma towards the general problem. To give a flavour of the set
σ (Ar ) ⊂ �r , the set of vertex permutations:

|σ (Ar )| = 1, 2, 7, 26, 100, 404, 1691, . . . (r = 3, 4, 5, . . . , 9)

Finally in Sect. 8 we give some elementary applications of Theorem 2.1 to Post-
nikov’s alternating strand diagrams and the closely related reduced plabic graphs [26].
In particular we consider a direct map G from tilings to plabic graphs generalising [27,
§2]. (A heuristic for this ‘stellar-replacement’ map is given by the examples and then
Fig. 1c.)
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(a) (b) (c)

Fig. 1 a Tile with strand segments; b tiling with strands; c induced plabic graph

Fig. 2 Examples of tilings, their strand diagrams and permutations

The geometry and topology of the plane, and of two-manifolds, continues to reward
study from several perspectives. Recent motivations include modelling of anyons for
TopologicalQuantumComputation [18], fusion categories [1], cluster categories [4,8],
Teichmüller spaces [11,15], frieze patterns [6], diagram algebras [16,22,29], classical
problems in combinatorics [20,28] and combinatorics of symmetric groups and per-
mutations [29]. In Baur et al. [4] used Scott’s map [30] to produce strand diagrams
for triangulated surfaces, again with the same permutation, in each case. This raises
the intriguing question of which permutations are accessible in this way, and the role
of the geometry in such constructions. Strictly speaking, the precise identification of
permutations is dependent, in this setup, on a labelling convention. It is the numbers
of permutations and the fibres over them (as we investigate here) that are, therefore,
the main invariants accessible in the present formalism.
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Fig. 3 Tilings of the pants surface. Here κ(S, M) = 6 × 0 + 3 × 3 + 2 × 0 + 3 − 6 = 6

2 Definitions and results

Given any manifold X we write ∂X for the boundary and (X) for X\∂X . For a subset
D ⊂ X we write D for its closure [23].

A marked surface is an oriented 2-manifold S; and a finite subset M . Set M∂ =
M ∩ ∂S. An arc in marked surface (S, M) is a curve α in S such that (α) is an
embedding of the open interval in (S)\M ; ∂α ⊆ M ; and if α cuts out a simple disk D
from S then |M ∩ D| > 2.

Two arcs α, β in (S, M) are compatible if there exist representatives α′ and β ′ in
their isotopy classes such that (α′) ∩ (β ′) = ∅.

A concrete tiling of (S, M) is a collection of pairwise compatible arcs that are in
fact pairwise non-intersecting. A tiling T is a boundary-fixing ambient isotopy class
of concrete tilings—which we may specify by a concrete representative, with arc set
E(T ) (it will be clear that this makes sense on classes). A tile of tiling T is a connected
component of S\ ∪α∈E(T ) α. We write F(T ) for the set of tiles. (Note that if S is not
homeomorphic to a disk then a tile need not be homeomorphic to a disk. For example
a tile could be the whole of S in the case of Fig. 3.)

Fixing (S, M), it is a theorem that there are finite maximal sets of compatible arcs.
Set κ(S, M) = 6g + 3b + 2p + |M | − 6, where g is the genus, b the number of
connected components of ∂S, and p = |M ∩ (S)|. Suppose κ(S, M) ≥ 1 and every
boundary component intersects M . Then T maximal has |E(T )| = κ(S, M), and
every tile is a simple disk bounded by three arcs. Evidently given a tiling T then the
removal of an arc yields another tiling. In this sense the set of tilings of (S, M) forms
a simplicial complex, denoted A(S, M).

We say two tilings are related by ‘flip’ if they differ only by the position of a
diagonal triangulating a quadrilateral. The transitive closure of this relation is called
f li p equivalence.Wewrite [T ]� for the equivalence class of the tiling T ; andÆ(S, M)

for the set of classes of A(S, M).

2.1 The Scott map

Let L be a connected component of the boundary of an oriented 2-manifold, and P
a finite subset labeled p1, p2, . . . , p|P| in the clockwise order (a traveller along P in
the clockwise direction keeps the manifold on her right). Then an umbral set P± is a
further subset of points p−

i and p+
i (i ∈ 1, 2, . . . , |P|) such that the clockwise order
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Fig. 4 Composing tiles and strand segments. Here τ (d)(2) = 6

of all these points is . . . , pi , p
+
i , p−

i+1, pi+1, . . . . That is, the interval (p
−
i , p+

i ) ⊂ L
contains only pi .

Given (S, M), let M± denote a fixed collection of umbral sets over all boundary
components. A Jordan diagram d on (S, M) is a finite number of closed oriented
curves in S together with a collection of n = |M∂ | oriented curves in S such that each
curve passes from some p+

i to some p−
j in M±; and the collection of endpoints is

M±. Intersections of curves are allowed, but must be transversal. Write τ (d) for the
permutation of M∂ this induces. That is, if p+

i goes to p−
j in d then τ (d)(i) = j .

Diagram d is considered up to boundary-fixing isotopy. Let Pu(S, M) denote the set
of Jordan diagrams.

Next we define a map −→
σ : A(S, M) → Pu(S, M). Consider a tiling T in A(S, M).

By construction each boundary L of a tile t is made up of segments of arcs, terminating
at a set of points P . Hencewe can associate P± to P as above. To arc segment s passing
from pi to pi+1 say, we associate a strand segment αs in t passing from p+

i+1 to p−
i ,

such that the part of the tile on the s side of strand segment αs is a topological disk.
Finally strand segment crossings are transversal and minimal in number. See tile t in
Fig. 4 for example.

It will be clear that if two tiles meet at an arc segment then the umbral point
constructions from each tile can be chosen to agree: as in Fig. 4. Applying the αs

construction to every segment s of every tile t in T , we thus obtain a collection −→
σ (T )

of strand segments in S forming strands whose collection of terminal points are at the
umbral points of ∂S; so that −→σ (T ) ∈ Pu(S, M). Altogether, writing �M for the set of
permutations of set M , we have σ : A(S, M) → �M∂

defined by

σ = τ ◦ −→
σ (1)

We call this the Scott map. It agrees with Scott’s construction [30] in the case of
triangulations of simple polygons.

We remark that the intermediate map −→
σ is injective, as we will show later (Theo-

rem 8.4). The map σ however is clearly not injective, as the image of any triangulation
of a polygon is the permutation induced by i �→ i + 2.
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390 K. Baur, P. P. Martin

The focus of this article is the case where (S, M) is a polygon P with n vertices.
We write An for A(S, M) in this case, Æn for Æ(S, M), and Pun for Pu(S, M). Our
main result can now be stated:

Theorem 2.1 Let T1, T2 ∈ An be tilings of an n-gon P. Then σ (T1) = σ (T2) if and
only if [T1]� = [T2]�.

Sections 3, 4, 5 and 6 are concerned with the proof of this result.
We will see in Lemma 3.5 that −→σ (An) lies in the subset of Pun of alternating strand

diagrams [26, §14]. Theorem 2.1 is thus related to Postnikov’s result [26, Corollary
14.2] that the permutations arising from two alternating strand diagrams are the same
if and only if the strand diagrams can be obtained from each other through a sequence
of certain kinds of ‘moves’. Consider the effect of a flip on the associated strands:

Comparing with Figure 14.2 of [26], the diagram shows that the flip corresponds
to a certain combination of two types of Postnikov’s three moves (see Fig. 19). Thus,
[26, Corollary 14.2] may be used for the “if” part of Theorem 2.1.

Remark 2.2 Theorem 2.1 does not hold as stated for arbitrary surfaces. For example,
if T is a tiling of an annulus (S, M), then the Dehn twist of T induces the same
permutation as T , regardless of the tile sizes. Similarly, if we consider tilings of
punctured discs, the Scott map is invariant under certain rotations about the puncture.

2.2 Notation for tilings of polygons

We note here simplifying features of the polygon case that are useful in proofs.
Geometrically we may consider a tile as a subset of polygon P considered as a

subset of R2. This facilitates the following definition.

Definition 2.3 Let T ∈ An . By Tr(T ) ⊂ R
2 we denote the union of all triangles in

T . We call T1 and T2 tr iangulated − part equivalent if Tr(T1) = Tr(T2) and they
agree on the complement of Tr(T1). See Fig. 5.

By Hatcher’s Corollary in [14], two tilings are flip equivalent if and only if they are
triangulated-part equivalent. The following is immediate.

Lemma 2.4 Let T1 and T2 be tilings of an n-gon P. All tiles of size ≥ 4 agree in these
tilings if and only if [T1]� = [T2]�.
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Fig. 5 Tilings of an octagon, and the associated Tr(Ti ). Note that T1, T2 are triangulated-part equivalent,
but T3, T4 are not

Fig. 6 Examples of tilings, strands and Scott maps

Write n = {1, 2, . . . , n} for the vertex set of P , assigned to vertices as for example
in Fig. 6. The ‘vertices’ of An as a simplicial complex are the n(n−3)/2 diagonals. A
diagonal betweenpolygonvertices i, j is uniquely determinedby the vertices.Wewrite
[i, j] for such a diagonal. Here order is unimportant. A tiling in An can then be given as
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392 K. Baur, P. P. Martin

its set of diagonals. Example: The tiling from A8 in Fig. 1 is T = {[2, 8], [3, 5], [5, 8]}.
An example of a top-dimensional simplex (triangulation) in A8 of which this T is a
face is T ∪ {[3, 8], [6, 8]}.

Equally usefully, focussing instead on tiles, we may represent a tiling T ∈ An as
a subset of the power set P(n): for T ∈ P(n) one includes the subsets that are the
vertex sets of tiles in T .

Example 2.5 In tile notation the tiling from A8 in Fig. 1 becomes

T = {{1, 2, 8}, {2, 3, 5, 8}, {3, 4, 5}, {5, 6, 7, 8}}

In this representation, while A3 = {{{1, 2, 3}}}, we have:

A4 = {{{1, 2, 3, 4}}, {{1, 2, 3}, {1, 3, 4}}, {{1, 2, 4}, {2, 3, 4}}}

We present two proofs of Theorem 2.1: one by constructing an inverse—in Sect. 4
we show how to determine the flip equivalence class from the permutation; and one
by direct geometrical arguments—see Sect. 6. We first establish machinery used by
both.

3 Machinery for proof of Theorem 2.1

The open dual γ (T ) of tiling T is the dual graph of T regarded as a plane-embedded
graph (see e.g. [7]) excluding the exterior face (so restricted to vertex set T ). See Fig. 7
for an example.

Lemma 3.1 Graph γ (T ) is a tree.

Proof Let e be a diagonal of T and P the underlying n-gon. Then P\e has two
components. Thus removing a single edge separates γ (T ). 
�

A proper tiling is a tiling with at least two tiles. An ear in a proper tiling T is a tile
with one edge a diagonal. An r -ear is an r -gonal ear.

Corollary 3.2 Every proper tiling has at least 2 ears. 
�

3.1 Elementary properties of strands

Consider a tiling T . Note that a tile t in T and an edge e of t determine a strand of
the −→

σ (T ) construction—the strand leaving t through e. Now, when a strand s leaves
a tile t through an edge e it passes to an adjacent tile t ′ (as in Fig. 7), or exits P
and terminates. We associate a (possibly empty) branch γt,e of γ (T ) to this strand
at e: the subgraph accessible from the vertex of t ′ without touching t . Note that the
continuation of the strand s leaves t ′ at some edge e′ distinct from e, and that γt ′,e′ is
a subgraph of γt,e.
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Fig. 7 Dual tree example

Lemma 3.3 Consider the strand construction on a tiling. After leaving a tile a strand
does not return.

Proof Consider the strand as in the paragraph above. If the strand exits the polygon
P at e we are done. Otherwise, since the sequence of graphs γt i ,ei associated to the
passage of the strand is a decreasing sequence of graphs, containing each other, it
eventually leaves P and terminates in some tile of a vertex of γt ′,e′ and so does not
return to t . 
�

An immediate consequence of Lemma 3.3 is the following:

Corollary 3.4 A strand of a tiling T can only use one strand segment of a given tile of
T .

Lemma 3.5 Let T ∈ An be a tiling of an n-gon. Then the strands of −→
σ (T ) have the

following properties [26, §14]: (i) Crossings are transversal and the strands crossing a
given strand alternate in direction. (ii) If two strands cross twice, they form an oriented
digon. (iii) No strand crosses itself.

Proof The first two properties follow from the construction. That no strand crosses
itself follows from Corollary 3.4. Note that the underlying polygon can be drawn
convex, in which case strands are left-turning. The requirement that there are no
unoriented digons follows from the fact that strands are left-turning in this sense.
(Remark: our main construction is unaffected by non-convexity-preserving ambient
isotopies, but the left-turning property is only preserved under convexity preserving
maps.) 
�

We write x � y for a strand starting at vertex x and ending at vertex y. Thus if
x � y is a strand of tiling T and σ is σ (T ) then this strand determines σ(x) = y.

If a list of vertices is ordered minimally clockwise around the polygon, we will
often just say clockwise, for example (7, 1, 2) is ordered minimally clockwise. To
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394 K. Baur, P. P. Martin

Fig. 8 Strands with their antistrands

emphasise that vertices x1, x2, x3 are ordered minimally clockwise, we will repeat the
“smallest” element at the end: x1 < x2 < x3 < x1.

Definition 3.6 Let q be a vertex of a polygon with strand diagram.

(1) We say that a strand x � y covers q if we have x < q < y < x minimally
clockwise.

(2) We say that x � y covers strand x ′ � y′ if x < x ′ < y′ < y < x or
x < y′ < x ′ < y < x .

3.2 Factorisation Lemma

Consider the two strands s1, s2 passing through an edge e of a tile t . We say these
strands are ‘antiparallel at e’; and consider the ‘parallel’ strand s1 and antistrand s2
both moving into t from e. See Fig. 8 for examples.

Lemma 3.7 (‘Lensing Lemma’) (I) Let strand segments s1 and s2 be antiparallel at
an edge e of a tile t in a polygon tiling T . Traversing the two segments in the direction
from e into the tile t , they do one of the following: (a) if t is a triangle the segments cross
in t and do not meet again; (b) if t is a quadrilateral the segments leave t antiparallel
in the opposite edge; (c) if |t | > 4 they leave t in different edges and the strands do
not cross thereafter.
(II) In any polygon tiling T , two strands cross at most twice. If two strands cross twice
then (i) they pass through a common edge e; (ii) the crossings occur in triangles, on
either side of e, with only quadrilaterals between.

Proof (I) See the Fig. 8. Note that in cases (a) and (c) the strands pass out of t through
different edges and hence into different subpolygons. Now use Lemma 3.3. (II) Every
crossing has to occur in a tile. If two strands enter a tile across different edges, they
have not crossed before entering into the tile (Lemma 3.1). The claim then follows
from (I). 
�
Lemma 3.8 Let T be a tiling of an n-gon and σ = σ (T ). Then (a) σ has no fixed
points and (b) there is no i with σ(i) = i + 1.

Proof (a) Let i be a vertex of the polygon. If i is not simple, the claim follows from the
left-turning property. If i is simple, the strand starting at i follows the edge e = [i−1, i]
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Fig. 9 Schematic for two strands passing through diagonal e = [i, j]

before leaving this tile at a vertex different from i . By Lemma 3.3, it never returns
back to the tile. (b) Consider the tile with edge e = [i, i + 1]. The strand starting at
i and the strand ending at i + 1 have segments in the same tile and hence differ by
Corollary 3.4. 
�
Lemma 3.9 (‘Factorisation Lemma’) Let P be a polygon and T1, T2 two tilings of P.
Assume that there exists a diagonal e = [i, j] in T1 and T2. Denote by P ′ the polygon
on vertices {i, i + 1, . . . , j − 1, j}. We have:

σ (T1) = σ (T2) �⇒ σ (T1|P ′) = σ (T2|P ′).

Proof Consider Fig. 9. The only way a strand of −→
σ (T1) passes out of P ′ is through e,

and there is exactly one such strand (and one passing in). This strand is non-returning
by Lemma 3.3, so its endpoints are identifiable from σ = σ (T1) as the unique vertex
pair k, l withσ(k) = l andwith k in P ′ and l not. Apart from this and the corresponding
‘incoming’ pair with σ(k′) = l ′, all other strand endpoint pairs of −→

σ (T1|P ′) are as in−→
σ (T1) and hence agree with −→

σ (T2|P ′) if σ (T1) = σ (T2). Indeed, if σ (T1) = σ (T2)
then σ (T2) identifies the same two pairs k, l and k′, l ′. At this point it is enough to show
that the image of vertex k under −→

σ (T1|P ′), which is either vertex i or j , is the same
as for −→

σ (T2|P ′). But it is i in both cases since the strand passing out of P ′ through e
is at i . 
�

3.3 Properties of strands and tiles

We will say that a vertex in polygon P is simple in tiling T if it is not the endpoint of
a diagonal. We will say that an edge e = [i, i + 1] of P is a simple edge in T if both
vertices are simple.

Lemma 3.10 A strand i + 1 � i arises in σ (T ) if and only if the edge [i, i + 1] is
simple.
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Fig. 10 Tiles with complementary edges and their complements

Proof If [i, i + 1] is simple in T , the claim follows by construction. If i is not simple,
then the strand ending at i contains the strand segment of the diagonal [ j, i] of T with
j < i −1 maximal clockwise and has starting point in { j, j +1, . . . , i −2}. Similarly,
if i + 1 is not simple, the strand starting at i + 1 contains the strand segment of the
diagonal [i + 1, k] with k > i + 2 minimal anticlockwise. Its ending point is among
{i + 3, . . . , k}. 
�

In general a strand passes through a sequence of tiles. At each such tile it is parallel
to one edge and passes through the two adjacent edges. Any remaining edges in the tile
are called complementary to the strand. Each of these complementary edges defines
a sub-tiling—the tiling of the part of P on the other side of the edge. We call this the
complement to the corresponding edge. Note that the strand covers every vertex in this
sub-tiling. See for example Fig. 10. We deduce:

Lemma 3.11 (I) A strand i � i + 2 passes only through triangles.
(II) A strand i � i + 3 passes through one quadrilateral (with empty complement)

and otherwise triangles.
(III) A strand i � i + 4 passes through one quadrilateral (with a complementary

triangle) or two quadrilaterals or one pentagon (with empty complement), and
otherwise triangles.

(IV) A strand i � i + k passes through a tile sequence Qi such that

k − 2 ≥
∑

i

(|Qi | − 3)

(the non-saturation of the bound corresponds to some tiles having non-empty
complement).

Example 3.12 As an illustration for Lemma 3.11 consider Fig. 6. Both tilings have a
strand 6 � 9, illustrating the case k = 3.
In the tiling on the left, there is a strand 13 � 3 passing through one quadrilateral
with complementary triangle {14, 1, 2}.
Lemma 3.13 Let T ∈ An and σ = σ (T ). Then σ(i) = i + 2 if and only if there exists
T ′ ∈ [T ]� with a 3-ear at vertex i + 1.
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Proof If: T ′ has a strand direct from i to i + 2 in the given ear. Note that all other
tilings in [T ′]� have only triangles incident at i + 1 (since a neighbourhood of i + 1
lies in the triangulated part). One sees from the construction that these tilings all have
a strand from i to i + 2. See (a):

(a) (b)

(Note that Postnikov’s result [26, Corollary 14.2] and the strand/flip construction
in Sect. 2.1 also implies the “if” part. For self-containedness we will avoid assuming
Postnikov’s result.)
Only if: If there is no such T ′ in [T ]� then among the tiles incident at i + 1 is one
with order r > 3. The strand from i passes into P at the first tile incident at i + 1. If
this is a triangle then the strand passes into the second tile incident at i + 1, and so
on. Thus eventually the strand meets a tile of higher order—see (b) above. But then
by Lemma 3.11 we have i � i + k with k > 2. 
�

For given n let us write τ for the basic cycle element in �n : τ = (1, 2, . . . , n). The
following is implicit in [30], and is a corollary to Lemma 3.11.

Lemma 3.14 For T ∈ An, σ (T ) = τ 2 if and only if T is a triangulation.

Definition 3.15 A run is a subsequence of form i − 1, i − 2, . . . , i − r + 1 in a cycle
of a permutation of �n . A maximal subsequence of this form is an r -run at i .

In Fig. 6, both permutations have a 3-run at 9.

Lemma 3.16 Let T ∈ An, and σ = σ (T ). We have

(i) σ contains a cycle of length≥ r ,wherer ≥ 2, with anr-runat j ⇐⇒[ j−1, j−2],
[ j − 2, j − 3], . . . , [ j − r + 2, j − r + 1] is a maximal sequence of simple edges
in T ;

(ii) Assume σ is as in (i) and r < n − 1. Then TFAE
(a) [ j − r , j] ∈ T ; (b) { j − r , j − r + 1, . . . , j} is an (r + 1)-ear in T ; (c)
σ( j − r) = j .

Note that the case r = 2 occurs if j − 1 is simple, while the edge [ j − 1, j − 2] is
not simple—a triangular ear.

Proof (i) Follows from Lemma 3.10.
(ii) Observe that the the assumptions in (ii) are consistent with (b). (a)�⇒ (b) follows

from the assumptions. (b) �⇒ (c) follows from the construction.
To show (c) �⇒ (a) first note that by the assumptions, j and j − r are not simple.
Among the diagonals incident with j consider the diagonal [ j, q1]maximal clockwise
from j . Among the diagonals incident with j − r consider the diagonal [q2, j − r ]
maximal anticlockwise from j − r .
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If q1 = j − r (and hence q2 = j), we are done. So assume for contradiction that
j < q1 ≤ q2 < j − r < j . Both diagonals are edges of a common tile Q containing
the simple edges [ j − 1, j − 2], [ j − 2, j − 3], . . . , [ j − r + 2, j − r + 1]. Consider
the strand starting at j − r . It leaves the tile Q at an edge at q2. By Corollary 3.4 it
cannot return back into Q, and so its endpoint is different from j . 
�

4 Inductive proof of Theorem

One proof strategy for the main theorem (Theorem 2.1) is as follows. We assume the
theorem is true for orders m < n (the induction base is clear).

The ‘If’ part follows from the Factorisation Lemma (Lemma 3.9) and Lemma 3.14.
For the ‘Only if’ part proceed as follows. Consider T1, T2 with σ = σ (T1) = σ (T2).

Note that T1 has an ear, either triangular or bigger (Corollary 3.2). Pick such an ear
E . Consider the cases (i) |E | = 3; (ii) |E | �= 3.
(i) If E is triangular in T1 then σ = σ (T1) has i � i +2 at the corresponding position.
Thus so does σ (T2) = σ (T1), and hence there is a T ′

2 in [T2]� also with this ear, by
Lemma 3.13. Note that σ (T ′

2) = σ (T2) since T ′
2 ∼� T2.

Since T1\E and T ′
2\E are well defined we have σ (T1\E) = σ (T ′

2\E) by the
Factorisation Lemma (Lemma 3.9). That is, the Scott permutations σ (T1) and σ (T ′

2)

of T1 and T ′
2 agree on the part excluding this triangle.But then [(T1\E)]� = [(T ′

2\E)]�
(i.e. the restricted tilings agree up to triangulation) by the inductive assumption.Adding
the triangle back in we have [T1]� = [T ′

2]�. But [T ′
2]� = [T2]� and we are done for

this case.
(ii) If ear E is not triangular inT1 thenT2 has an ear in the sameposition byLemma3.16.
The argument is a direct simplification of that in (i), considering T1\E and T2\E . 
�

5 Geometric properties of tiles and strands

Definition 5.1 Fix n. Then an increasing subset Q = {q1, q2, . . . , qr } of {1, 2, . . . , n}
defines two partitions:

I (Q) = {[q1, . . . , q2), [q2, . . . , q3), . . . , [qr , . . . , q1)}
J (Q) = {(q1, . . . , q2], (q2, . . . , q3], . . . , (qr , . . . , q1]}

We denote the parts by Ii (Q) := [qi , . . . , qi+1) and Ji (Q) := (qi , . . . , qi+1], for
i = 1, . . . , r .

Such partitions arise from tilings: Let Q ∈ T ∈ An . Then the vertices of Q partition
the vertices of P in twoways. Consider the edge e = [qi , qi+1] of Q. In the subpolygon
on the vertices qi , qi + 1, . . . , qi+1, there are qi+1 − qi strands of

−→
σ (T ) starting at

vertices in Ii (Q) and the same number of strands ending at the vertices in Ji (Q).
Among them, qi+1 − qi − 1 remain in the subpolygon.

For an example, see Fig. 11.
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Fig. 11 Tile inducing partition and long strands for Q

Using this notation, we get an alternative proof for Corollary 3.4 stating that a strand
of a tiling can only use one strand segment of a given tile: Let Q be a tile of a tiling
T ∈ An and let q1, . . . , qr be its vertices, r ≥ 3, q1 < q2 < · · · < qr < q1. Assume
strand x � y involves a strand segment of Q, say parallel to the edge [qi−1, qi ].
By construction, this strand segment is oriented from qi to qi−1, comes from the
subpolygon on the vertices qi , qi + 1, . . . , qi+1 and then passes into the subpolygon
on the vertices qi−2, qi−2+1, . . . , qi−1.We claim that the strand then necessarily starts
in Ii (Q) and ends in Ji−2(Q), i.e. that x �= qi+1 and y �= qi−2. We show that it ends in
Ji−2(Q): Consider the subpolygon on the vertices qi−2, qi−2 + 1, . . . , qi−1, bounded
by the edge [qi−1, qi ]. From the orientation of strand segments in tiles, it is clear, that
the strand then leaves this subpolygon near z where z ∈ {qi−2 + 1, . . . , qi−1 − 1} is
the first vertex met when going from qi−2 towards qi−1 which has an edge [z, qi−1].
Hence y ∈ Ji−2(Q). A similar argument shows x ∈ Ii (Q).

Remark 5.2 Let T be a tiling of P , with tile Q inducing partitions as above. There
are two types of strands regarding these partitions. Let x � y be a strand starting in
Ii1(Q) and ending in Ji2(Q) for some i1, i2. Then we either have i1 = i2 or i1 = i2+2
(by the preceding argument or by Corollary 3.4). The case i1 = i2 + 2 is illustrated in
Fig. 11 for Q a pentagon.

Definition 5.3 Let Q be a tile of a tiling T of an n-gon. If a strand x � y of T uses a
strand segment of Q, we say that the strand x � y is a long strand for Q. If for the
partitions induced by Q, x ∈ Ii (Q), then y ∈ Ji−2(Q) if x � y is a long strand for
Q and y ∈ Ji (Q) otherwise, cf. Remark 5.2.
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Lemma 5.4 Let Q be an r-tile of a tiling of P with vertices q1 < · · · < qr < q1
clockwise. Then every long strand x � y with respect to Q covers exactly r − 2
vertices of Q and there are exactly two vertices qi−1, qi for every such strand with
y ≤ qi−1 < qi ≤ x < y (clockwise).

Proof If s is a long strand for Q with x � y, then there exists i such that x ∈ Ii (Q) =
[qi , . . . , qi+1) and y ∈ Ji−2(Q) = (qi−2, . . . , qi−1] (reducing the index mod n),
hence it covers qi+1, qi+2, . . . , qi−2. For an illustration, see Fig. 11. 
�

6 Geometric Proof of Theorem

We now use geometric properties of tilings to prove the “only if” part of Theorem 2.1.
The maximum tile size of tiling T is denoted r(T ). For two tilings T1, T2 and ri =
r(Ti ), the case r1 �= r2 is covered in Corollary 6.3; and r := r1 = r2 follows from
Lemma 6.4. We first prove an auxiliary result.

Lemma 6.1 (a) Consider a tiling T in An with a diagonal e = [s1, s2]. For each vertex
q with s1 < q < s2 < s1, there exists a strand s : y � z in −→

σ (T ) covering q,
with s1 ≤ y < q < z ≤ s2 < s1.

(b) Consider T , q, s as in (a) and a further tiling T ′ of P containing a tile Q such
that dim(Q ∩ e) = 1 and q ∈ Q. If σ (T ′) contains a strand with y � z as in (a),
it is a long strand for Q (as defined in Definition 5.3).

Proof (a) Let e′ = [n1, n2] be the shortest diagonal in T lying above q. Note, s1 ≤
n1 < q < n2 ≤ s2 < s1. Consider the strand segment in σ (T ) following e′ from n1 to
n2 (see figure below). This induces a strand s with y � z, say. We claim n1 ≤ y < q
and q < z ≤ n2. To see this let [x, n1] be in T with n1 ≤ x < n2, x maximal
(x = n1 + 1 possibly). Then x ≤ q since e′ is the shortest diagonal above q and so s
has its starting point among {n1, n1 + 1, . . . , x − 1}. A similar argument proves the
claim for y.

(b) Given (a), this follows immediately from Definition 5.3. 
�
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Lemma 6.2 Let σ (T1) = σ (T2). If in T1 there exists an edge e = [s1, s2] and in T2 a
tile Q of size ≥ 4 with dim(Q ∩ e) = 1, then either e is an edge of Q or e separates
vertices of Q (s1 > qx > s2 > qy > s1 for some x, y) and |Q| = 4.

Proof If e is not an edge of Q, we find vertices qi and q j of Q with s1 < qi < s2 <

q j < s1. We can thus use Lemmas 5.4 and 6.1 for qi and again for q j to see that Q
has r − 2 vertices on the left side of e and r − 2 vertices to the right of e, and that they
all differ from s1 and from s2, where r = |Q|. So r = 2(r − 2) and r = 4. 
�
Corollary 6.3 Let T1 and T2 be two tilings of a polygon P with σ (T1) = σ (T2). Then
r1 = r2.

Proof Let r = r2. Assume that σ (T1) = σ (T2). In case r1 = 3, the claim follows
from Lemma 3.14: in this case, σ (T1) is induced by i �→ i + 2 and T2 has to be a
triangulation, too. Assume for contradiction that r1 < r . Since we can assume r1 > 3,
we have r > 4.We consider a tile Q of size r > 4 in T2, with vertices q1, . . . , qr . In T1,
we choose a tile S with dim(Q ∩ S) > 1. Then S has an edge e with dim(Q ∩ e) = 1
and so by Lemma 6.2, Q is a tile of T1, a contradiction to the maximal tile size in T1.


�
Lemma 6.4 Let T1 and T2 be two tilings of a polygon P with σ (T1) = σ (T2) and
assume r1 = r2 = 4. Then [T1]� = [T2]�.
Proof By Lemma 3.10 the positions of 4-ears in T1 and T2 agree, when r1 = r2 = 4.
By the Factorisation Lemma (Lemma 3.9) we can remove (common) ears of size 4,
to leave reduced tilings T ′

1 and T ′
2 of some P ′. These necessarily have ears, but by

Lemma 3.11, (up to equivalence) 3-ears can be chosen to be in the same positions in
each tiling. Now iterate. 
�
Proof of Theorem 2.1 If themaximum tile sizes of T1 and of T2 differ, the claim follows
from Corollary 6.3. So let r = r1 = r2 be the maximum tile size of T1 and of T2. If
r = 4, Lemma 6.4 proves the claim. So assume that there are tiles of size r > 4 and
consider such a tile Q in T2. By Lemma 6.2 there are no diagonals of T1 ‘intersecting’
Q, so in T1 we have a tile containing Q. Applying the same argument with the tilings
reversed we see that T1 and T2 agree on parts tiled with tiles of size > 4.

By the Factorisation Lemma (Lemma 3.9), we can remove all (common) ears of
size > 4. Among the remaining (common) tiles of size at least 5, we choose a tile Q
and a non-boundary edge e of Q, such that to one side of e, all tiles in T1 and in T2 have
size at most four. Let P ′ be the union of these tiles of size ≤ 4. By the Factorisation
Lemma we have σ (T1 |P ′) = σ (T2 |P ′) and by Lemma 6.4, [T1 |P ′ ]� = [T2 |P ′ ]�.
We can remove P ′ and repeat the above until Q is a (common) ear - which can be
removed, too. Iterating this proves the claim. 
�

7 On the image of the Scott map treated combinatorially

To give an intrinsic characterization of the image in�n of the Scott map σ : An → �n

for all n remains an interesting open problem. Note in particular that so far the map
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does not equip the image with a group structure (or indeed any algebraic structure).
Here we report on one invariant which Theorem 2.1 gives us access to, namely the
size of the image, which is given by |Æn|.

As an initial illustration we observe that:

Proposition 7.1 The number of permutations arising from tiling an n-gon using one
r-gon (r > 3) and triangles otherwise is

(n
r

)
.

Proof By the main Theorem this is the same as enumerating the classes in Æn of this
type. Since the details of the triangulated part are irrelevant, the class is determined
by choosing the vertices of the r -gon. Hence choosing r from n. 
�
Example 7.2 In total, there are 26 permutations arising from the 45 tilings of the
hexagon: one from the empty tiling; 6 from tilings with one pentagon and one triangle;
15 from tilings with one quadrilateral and two triangles; 3 from tilings using two
quadrilaterals; and 1 from the triangulation case.

Figure 2 contains examples of these tilings and the associated permutations.
In order to go further we will need some notation.

7.1 Notation and known results

Recall that an integer partition λ = (λ1, λ2, . . . ) has also the exponent notation:

λ = rαr (r − 1)αr−1 · · · 2α21α1

where αi is the number of parts in λ equal to i . A λ-tiling is a tiling with, for each d,
αd tiles that are (d + 2)-gonal.

Recall that An is the complex of tilings of the n-gon. Define an = |An|. Write
An(m) (with m ∈ {0, 1, 2, . . . , n − 3}) for the set (and an(m) the number) of tilings
with m diagonals. Write An(λ) (with λ an integer partition of n − 2) for the set of
λ-tilings (thus with a m-gonal face for each row λi = m − 2). Thus

An(m) =
⋃

λ�n−2 : λ′
1=m+1

An(λ) (2)

where λ′ denotes the conjugate partition to λ [21], so λ′
1 is the number of parts.

Similarly recall Æn is the set of classes of tilings under triangulated-part/flip equiv-
alence.WriteÆn(m) for the set An(m) under triangulated-part equivalence andÆn(λ)

the set An(λ) under triangulated-part equivalence.

(7.3)The sequence an is the little Schröder numbers (see e.g. [31] andOEISA001003).
It is related to the Fuss–Euler combinatoric as follows. By [28] the number of tilings
of the n-gon with m diagonals is

an(m) = 1

m + 1

(
n + m − 1

m

)(
n − 3

m

)
(3)
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(an(m) = qm(1, n) from [28]). Thus in addition to the usual generating function

∑

n≥0

anx
n = 1 + x − √

1 − 6x + x2

4x

we have

an =
n∑

m=0

1

m + 1

(
n + m − 1

m

)(
n − 3

m

)
(4)

7.2 Explicit construction of An

Of greater use than an expression for the size of An is an explicit construction of all
tilings. For this we shall consider a tiling in An to be as in the formal definition, i.e.
to be the same as its set of arcs. This is the set of diagonals in the present polygon
case, where we can represent an arc between vertices i, j unambiguously by [i, j].
In particular then we have an inclusion An−1 ↪→ An . The copy of An−1 in An is
precisely the subset of tilings in which vertex n is simple and there is no diagonal
[1, n − 1].

There is a disjoint image J (An−1) of An−1 in An given by J (T ) = T ∪ {[1, n −
1]}. The set An−1 � J (An−1) is the subset of An of elements in which n is simple.
Consider in the complement the subset of tilings containing [n − 2, n]. In this the
vertex n − 1 is necessarily simple. Thus this subset is the analogue Jn−1(An−1) of
J (An−1) constructed with n − 1 instead of n as the distinguished simple vertex. The
practical difference is that (i) the image tilings have all occurences of n − 1 replaced
by n; (ii) the ‘added’ diagonal is [n − 2, n].

There remain in An the tilings in which n is not simple but there is not a diagonal
[n − 2, n]. Consider those for which there is a diagonal [n − 3, n]. In the presence
of this diagonal any tiling ‘factorises’ into the parts in the two subpolygons on either
side of this diagonal. One of these has vertices 1, 2, . . . , n− 3 and n, and so its tilings
are an image of An−2 where vertex n − 2 becomes vertex n. The other has vertices
n − 3, n − 2, n − 1, n and so has tilings from a shifted image of A4, but has n simple
(since [n − 3, n] is the first diagonal in the original tiling). Since n is simple, it is
the part of that image coming from A3 � J (A3). We write 2.K (A3) for these two
shifted copied of A3. We write 2.K (A3) · An−2 for the meld with tilings from An−2
to construct the set of tilings of the original polygon.

There now remain in An the tilings inwhich n is not simple but there is not a diagonal
[n − 2, n] or [n − 3, n]. Consider those for which there is a diagonal [n − 4, n]. In the
presence of this diagonal any tiling ‘factorises’ into the parts in the two subpolygons
on either side of this diagonal. We have the obvious generalisation of the preceeding
construction in this case, written 2.K (A4) · An−3.

We may iterate this construction until all cases of diagonals from n are included.
We have established the following.
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Proposition 7.4 Consider the list defined recursively by A3 = (∅) and

An = An−1 ∪ J (An−1) ∪ Jn−1(An−1) ∪
n−3⋃

r=2

2.K (Ar+1) · An−r

where set operations on lists are considered as concatenation in the natural order;
2.− denotes the doubling as above; K () denotes the relabeling of all vertices so that
the argument describes a suitable subpolygon; and A · B denotes the meld of tilings
from subpolygons as above. Then this list is precisely a total order of An.

Proof Noting the argument preceding the Proposition, it remains to lift the construc-
tion from the set to the list. But this requires only the interpretation of union as
concatenation. 
�

7.3 Tables for An(�)

The class sets Æn are harder to enumerate than An . Practically, one approach is to
list elements of An and organise by arrangement of their triangulated parts, which
determines the class size. We first recall the numbers an(m) of tilings of an n-gon with
m diagonals: see Table 1. Themain diagonal enumerates the top dimensional simplices
in An . It counts triangulations and hence is the Catalan sequence Cn . The entries in
the next diagonal correspond to tilings with a single quadrilateral and triangles else.

We will give the number of elements of Æn(m) for small n in Table 2. In order to
verify this it will be convenient to refine Tables 1 and 2 by considering these numbers
for fixed partitions λ. Specifically we subdivide each case of m from the previous
tables according to λ, with the m-th composite entry written as a list of entries in
the form (λ1,λ2,...)

an(λ)
ranging over all λ with |λ| = m. Thus for example (32)

7 tells that
a7((3, 2)) = 7. We include Table 3 for An(λ) and Table 4 for Æn(λ). Neither table
is known previously. The an case is computed partly by brute force (and see below);
verified in GAP [32], and checked using identity (2)).

Table 1 Values of an(m), and hence an , in low rank

n � m = 0 1 2 3 4 5 6 7

3 1 1

4 3 1 2

5 11 1 5 5

6 45 1 9 21 14

7 197 1 14 56 84 42

8 903 1 20 120 300 330 132

9 4279 1 27 225 825 1485 1287 429

10 20,793 1 35 385 1925 5005 7007 5005 1430

n 1 n(n−3)
2

(n+1
2 )(n−3

2 )
3
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Table 2 Table of Æn sizes up to n = 10

n � m = 0 1 2 3 4 5 6 7

3 1 1

4 2 1 1

5 7 1 5 1

6 26 1 9 15 1

7 100 1 14 49 35 1

8 404 1 20 112 200 70 1

9 1691 1 27 216 654 666 126 1

10 7254 1 35 375 1660 3070 1902 210 1

For the purpose of computing Æn a better filtration is by the partition describing
the size of the connected triangulated regions. But this is even harder to compute in
general.

7.4 Formulae for |Æn(�)| for all n

In the λ notation Proposition 7.1 becomes

|Æn((r − 2)1n−r )| =
(
n

r

)
(5)

To determine the size of image of the Scott map for a polygon of a given rank,
one strategy is to compute Æn(λ) through An(λ). While An(λ) is also not known in
general, we have a GAP code [3,32] to compute any given case.

If in a tiling, there is at most one triangle, we have Æn(λ) ∼= An(λ). In the case of
two triangles, the following result determines |Æn(λ)| from tilings of the same type
and from tilings where the two triangles are replaced by a quadrilateral:

Proposition 7.5 Let λ = rαr (r − 1)αr−1 · · · 2α21α1 .

(i) If α1 < 2 then |Æn(λ)| = an(λ).
(ii) If α1 = 2 then

|Æn(λ)| = an(λ) − (α2 + 1)an(λ21
−2)

(iii) If α1 = 3 then

|Æn(λ)| = an(λ) − (α2 + 1)an(λ21
−2) + (α3 + 1)an(λ31

−3)

(iv) If α1 = 4 then

|Æn(λ)| = an(λ) − (α4 + 1)an(λ41
−4) + (α3 + 1)an(λ31

−3)

+
(

α2 + 2

2

)
an(λ221

−4) − (α2 + 1)an(λ21
−2)
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Proof (ii) Consider partitioning A = An(λ) into a subset A′ of tilings where the
triangles are adjacent, and A′′ where they are not. Evidently |Æn(λ)| = |A′|/2 +
|A′′| = |A| − |A′|/2. On the other hand in A′ the triangles form a distinguished
quadrilateral. For each element of An(λ21−2) we get α2 + 1 ways of selecting a
distinguished quadrilateral. There are two ways of subdividing this quadrilateral, thus
|A′| = 2(α2 + 1)an(λ21−2), and so (ii) is proved. 
�
Example 7.6 Proposition 7.5 determines |Æ8(2212)|. Here A8(2212) gives an over-
count because of the elements where the two triangles are adjacent. Only one
representative of each pair under flip should be kept. These are counted by mark-
ing one quadrilateral in each element of A8(23). There are three ways of doing this,
so we have

|Æ8(2
212)| = |A8(2

212)| − 3|A8(2
3)| = 180 − 36

from Table 3. Similarly |Æ8(412)| = |A8(412)| − |A8(42)| = 36 − 8.

(7.7) Proof of (iii): For α1 = 3 partition A = An(λ) into subset A′ of tilings with
three triangles together; A′′ with two together; and A′′′ with all separate. We have
|Æn(λ)| = |A′′′| + |A′′|/2 + |A′|/5. That is,

|Æn(λ)| = |A| − |A′′|/2 − 4|A′|/5. (6)

Considering the triangulated pentagon in a tiling T in A′ as a distinguished pentagon
we have

|A′| = 5(α3 + 1)an(λ31
−3). (7)

Next aiming to enumerate A′′, consider λ21−2, somewhat as in the proof of (ii), but
here there is another triangle, which must not touch the marked 4-gon. Let us write
(α2 +1)A(λ21−2) to denote a version of A(λ21−2)where one of the quads is marked.
There are twoways of triangulating themarked quad, giving X = 2(α2+1)A(λ21−2),
say. Consider the subset B of X of tilings where the marked quadrilateral and triangle
are not adjacent.

Claim: B ∼= A′′.

Proof The construction (forgetting the mark) defines a map B → A′′. Marking the
adjacent pair of triangles in an element of A′′ gives a map A′′ → B that is inverse to
it. 
�

The complementary subsetC of X has quadrilateral and triangle adjacent. Elements
map into A′ by forgetting the mark.

Claim: C double counts A′, i.e. the forget-map is surjective but not injective.

Proof There are 5 ways the quadrilateral and triangle can occupy a pentagon together,
and two ways of triangulating the quad. The cases can be written out, and this double-
counts the triangulations of the pentagon.
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Altogether A′′ = B = X − C = X − 2A′ so

Æ(λ) = A(λ) − ((1/2)X − A′) − (4/5)A′ = A(λ) − (X/2) + A′/5
= A(λ) − (α2 + 1)A(λ21−2) + (α3 + 1)A(λ31−3)


�
(7.8) Proof of (iv): For α1 = 4 partition A = A(λ) by A = A4 + A31 + A22 +

A211 + A1111 so that

Æ = A4/C4 + A31/C3 + A22/C2
2 + A211/C2 + A1111 = A − 13

14
A4

−4

5
A31 − 3

4
A22 − 1

2
A211

By direct analogy with (7) we claim

A4 = 14(α4 + 1)A(λ41−4)

Next consider X = 5(α3 + 1)A(λ31−3), marking one 5-gon, and then triangulating
it. We have a subset B where the 5-gon and triangle are not adjacent; and complement
C .

Claim: B ∼= A31. This follows as in the proof of part (iii).
The complement C maps to A4 by forgetting the mark.
Claim: 14|C | = 30|A4|.

Proof There are 6 ways the 5-gon and triangle can occupy a hexagon together, and 5
ways to triangulate the 5-gon. This gives 30 marked cases, which pass to 14 triangu-
lations.

So far we have that

A31 = B = X − C = 5(α3 + 1)A(λ31−3) − 30

14
A4

It remains to determine A22 and A211. 
�
(7.9) Next consider Y = 4

(
(α2+2)

2

)
A(λ221−4), marking two 4-gons, and then triangu-

lating them. Subset D has the 4-gons non-adjacent; and E is the complement.
Claim: D ∼= A22. This follows similarly as the statement on B.
The complement E maps to A4 by forgetting the marks.
Claim: 14|E | = 12|A4|.

Proof There are 3 ways the 4-gons can occupy a hexagon together, and 4 ways to
triangulate them. (NB the map is not surjective—not every triangulation of a hexagon
resolves as two quadrilateral triangulations—but we only need to get the count right.
We always get 12 out of 14 possible in each case.)
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So far we have

A22 = Y − E = 4

(
α2 + 2

2

)
A(λ221−4) − 12

14
|A4|

Next we need A211. 
�
(7.10) Next consider Z = 2(α2 + 1)A(λ21−2), marking a 4-gon and triangulating
it. Subset F has the three parts non-adjacent. Subset G has the 4-gon and one trian-
gle adjacent. Subset G ′ has the two triangles adjacent. Subset H has all three parts
adjacent:

Z = F + G + G ′ + H

Claim: F ∼= A211. This follows similarly as the statements on B and on C .
The set G maps to A31, and G ′ to A22, and H to A4, by forgetting the marks.
Claim: (a) |G| = 2|A31| and (b) |G ′| = 2|A22| and (c) 14|H | = 42|A4|.

Proof (a) Elements of G pass to tilings with triangulations of a 5-gon and a separate
triangle. The collection of them triangulating a given 5-gon and triangle has order
10 (5 ways to mark a quadrilateral in the 5-gon, then two ways to triangulate it).
On the other hand the number of triangulations of the same region in A31 is 5.

(b) Elements of G ′ pass to tilings with triangulations of two 4-gons. The collection
of such gives all these triangulations. Each one occurs twice in G ′ since the
triangulation of the two 4-gon regions can arise in G ′ with one or the other
starting out as the marked 4-gon.

(c) Elements of H pass to tilings with triangulations of a hexagon. The collection
of such gives A6(212) = 21 ways of tiling the hexagon with quadrilateral and
two triangles, then two ways of tiling the quad. On the other hand there are 14
triangulations of this hexagon in A4.

We have A211 = Z−(G+G ′+H) = 2(α2+1)A(λ21−2)−( 21 A
31+ 2

1 A
22+ 42

14 A
4).

Altogether now

Æ(λ) = A − 13

14
A4 − 4

5
A31 − 3

4
A22 − 1

2
A211

= A(λ) − 13

14
A4 − 4

5

(
5(α3 + 1)A(λ31−3) − 30

14
A4

)

−3

4

(
4

(
α2 + 2

2

)
A(λ221−4) − 12

14
|A4|

)

−1

2

(
2(α2 + 1)A(λ21−2) −

(
2

1
A31 + 2

1
A22 + 42

14
A4

))

= A(λ) + −13 + 21

14
A4 + 1

5

(
5(α3 + 1)A(λ31−3) − 30

14
A4

)

+1

4

(
4

(
α2 + 2

2

)
A(λ221−4) − 12

14
|A4|

)
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−1

2

(
2(α2 + 1)A(λ21−2)

)

= A(λ) + −13 − 6 − 3 + 21

14
A4+(α3 + 1)A(λ31−3) +

(
α2 + 2

2

)
A(λ221−4)

−(α2 + 1)A(λ21−2)

= A(λ) − (α4 + 1)A(λ41−4) + (α3 + 1)A(λ31−3) +
(

α2 + 2

2

)
A(λ221−4)

−(α2 + 1)A(λ21−2)


�
Remark 7.11 In [2] we prove the following generalisation of Proposition 7.5

|Æn(λ)| =
∑

μ�α1

(−1)α1−μ′
1
∏

i≥2

(
αi + αi (μ)

αi (μ)

)
an(λμ1−α1)

where μ = rαr (μ)(r − 1)αr−1(μ) . . . 2α2(μ)1α1(μ).

7.5 Tables for Æn

Proposition 7.12 The numbers Æn for n < 11 are given in Table 2.

Proof The numbers an(λ) are given in Table 3 by a GAP calculation [3]. The num-
bers in Table 4 then follow from formula (5) and Proposition 7.5. Table 2 follows
immediately. 
�

7.6 On asymptotics

We determined in Tables 2, 4 the sizes of the image of the Scott map in low rank.
Of course the ratio of successive sizes of the formal codomains grows with n as
|�n|/|�n−1| = n. In the next table we consider the ratios of two consecutive entries
of the sequence |Æn|n .

n 3 4 5 6 7 8 9 10

|Æn | 1 2 7 26 100 404 1691 7254
|Æn |/|Æn−1| 2 3.5 3.71 3.85 4.04 4.19 4.29

(7.13) A paradigm for this is the Catalan combinatoric Cn (see e.g. [31]), which can
also be equipped with an inclusion in the permutations �n—see e.g. [19,29] (NB this
inclusion is not related to the inclusion in An already noted). It is straightforward in
this case to verify that the asymptotic growth rate is 4.
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n 3 4 5 6 7 8 9 10

|Cn | 1 2 5 14 42 132 429 1430
|Cn |/|Cn−1| 2 2.5 2.8 3 3.14 3.25 3.33

This raises the question: Is there a limit rate in the Æn case?

8 On enumerable classes of strand diagrams and plabic graphs

Let Pbn be the set of reduced plabic graphs [26, §11] of rank-n; and Pon be the set
of alternating strand diagrams as in [26, §14]. (See also Sects. 8.1 and 8.5.) Their
relationship with An can be summarized as follows:

An
−→
σG

Ptn Pbn
D

Pon
D′

Xn

Here G is as in Sect. 1, −→σ as in Sect. 2.1, and D, D′ as in Sect. 8.2. In this section
we apply Theorem 2.1 to corresponding subsets of plabic and strand diagrams. We
define the sets Xn of minimalist strand diagrams, see Sect. 8.1; and Ptn of rhombic
(plabic) graphs, see (8.5). We will show that these sets are in bijection with An .

For the sake of brevity we refer to Postnikov’s original paper for motivations behind
the constructions of plabic and strand diagrams themselves. These are large and com-
plex classes of objects, and canonical forms for them would be a useful tool. The
rigid/canonical nature of An induces canonical forms for (the restricted cases of) the
other constructions.

We start by characterizing the image of −→
σ in Theorem 8.4 as the set of minimalist

strand diagrams and hence show that −→σ is injective. In Sect. 8.2 we recall Postnikov’s
bijections between alternating strand diagrams and plabic graphs. (An illustration of
the connection between plabic graphs and strand diagrams is given by Fig. 12b.) This
allows us to characterize the image ofG in Sect. 8.3 as the set of rhombic plabic graphs,
Theorem 8.19. Finally we determine the images of flip equivalence in the two other
realisations.

8.1 On
−→
� and strand diagrams

An absolute strand diagram on (S, M) is a Jordan diagram such that: (i) strands
crossing a given strand must alternate in direction; (ii) if two strands cross twice such
as to cut out a simple disk then the resultant loop is oriented; (iii) if a strand is self-
crossing then no resultant loop is a simple disk; (iv) no strand is a closed loop cutting
out a simple disk.
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Fig. 12 a A tiling T (black) with strand diagram −→
σ (T ) of T ; b the plabic graph D′(−→σ (T )) (green)

Fig. 13 A Jordan diagram in X8 and its image under f

Note that this agrees with the ordinary definition of alternatingstranddiagram
[4,26] for S a simple disk. Here rank n = |M∂ | = |M |.

For any directed planar graph we classify the faces as clockwise, counterclockwise,
alternating or other.

(8.1) Let Xn be the subset of rank-n alternating strand diagrams whose faces are as
follows: (i) n clockwise faces at the boundary, labelled 1, 2, . . . , n going clockwise
around the boundary; (ii) alternating faces with four sides; (iii) oriented faces in the
interior that are counterclockwise and have at least 3 sides.

Wecall the elements ofXn minimalist stranddiagrams. SeeFig. 13 for an example.

(8.2) Note that an element of Xn (as every alternating strand diagram) has a che-
querboard colouring of faces (see e.g. [26]). If a clockwise face is black (say) then
all oriented faces are black and all alternating faces white. Also the faces around an
alternating face alternate clockwise/counterclockwise.
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Fig. 14 Strands partition a tile
into vertex, edge and face parts

(8.3) We define a ‘shrink’ map f : Xn → An as follows: Let d ∈ Xn . Note from
(8.2) that in d regarded as an isotopy class of concrete diagrams there are cases in
which all the edges of clockwise faces are arbitrarily short. Thus the clockwise faces
are arbitrarily small neighbourhoods of n points; and alternating faces have two short
edges and two edges that pass between the clockwise faces (and hence are not short).
The paths of non-short edges are not constrained by the ‘shrinking’ of the clockwise
edges. Thus each pair may be brought close to each other, and hence form an arbitrarily
narrow neighbourhood of a line between two of the n points. Since no two alternating
faces intersect, these lines cannot cross, and so they form an element of An .

Theorem 8.4 The map f : Xn → An is the inverse to a bijection
−→
σ : An → Xn.

Proof It will be clear that fmakes sense on −→
σ (T ) since it even makes sense tile by tile

(cf. Fig. 14). Indeed it recovers the tile, so f inverts −→
σ . The other steps have a similar

flavour. 
�
Remark. One can prove more generally, that −→

σ is injective on tilings of (S, M) and
that the image of any tiling of (S, M) is an absolute strand diagram.

8.2 Maps D,D′ between strand diagrams and plabic graphs

(8.5)A plabic graph γ is a planar, disk-embedded undirected graph with two ‘colours’
of vertices/nodes, considered up to homotopy [26, Definition 11.5]. Vertices are
allowed on the disk boundary. The rank of γ is the number of these ‘tagged’ ver-
tices. In rank n they are labelled {1, 2, . . . , n} clockwise.

Postnikov defines ‘moves’ on plabic graphs in [26, §12]:

with M2-3 also for black nodes. In M2 any number of incoming edges is allowed.
Postnikov also defines reductions on plabic graphs:
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and similarly with colours reversed. The move-equivalence class of γ is its orbit
under (M1-3). A plabic graph of rank n is reduced if it has no connected component
without boundary vertices; and if there is no graph in its move-equivalence class to
which (R1) or (R2) can be applied. See [26, §12] for details.

We write Pbn for the set of reduced plabic graphs of rank n.
Recall the map G on An to plabic graphs from Sect. 1. If T is a tiling of an n-gon,

we draw a white node at each vertex of the polygon and a black node in each tile,
connecting the latter by edges with the white nodes at the vertices of the tile. One can
see that the graph produced has no parallel bicoloured edges and no internal leaves
with bicoloured edges. Thus G : An → Pbn .

Postnikov’s plabic networks are generalisations of the above including faceweights.
Here it will be convenient to consider another kind of generalisation.

(8.6) For any planar graph L there is amedial graphm(L) (see e.g. [5, §12.3]), which
is a planar graph distinct from but overlaying L . We obtainm(L) by drawing a vertex
m(e) on each edge e of L , then whenever edges e, e′ of L are incident at v and bound
the same face we draw an edge m(e)-m(e′).

(8.7) Form(L) we note the following. (1)m(L) has a polygonal face pv around each
vertex v of L . (2) Monogon and digon faces are allowed—see Fig. 15 (so edges may
not be straight). (3) The faces of m(L) are of two types: containing a vertex of L , or
not. Given an asignment of a colour (black/white) to each vertex of L then we get a
digraph−→m (L) by asigning an orientation to each polynomial face: counterclockwise if
v is black and clockwise otherwise. (4) If L is bipartite and indeed 2-coloured then for
this asignment the orientations in −→m (L) have the property that we may reinterpret the
collection of meeting oriented polygons as a collection of crossing oriented strands,
denoted DL .

(8.8) Suppose L has some labelled exterior vertices. A ‘half-edge’ or ‘tag’ may be
attached to any such vertex v (specifically one usually thinks of L bounded in a disk
in the plane, and the tag as an edge passing out through the boundary) whereupon

Fig. 15 Constructing the D-map
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there is a medial vertexm(v) on the half-edge, and the (exterior) medial edge around
v becomes two segments incident at m(v). In this case, if v is labelled in L then we
say that m(v) inherits this label inm(L).

(8.9) Noting (8.7) and (8.8), the map

D : Pbn → Pon

may be defined by D(L) = DL . (8.10)A fully reduced plabic graph is a reduced plabic

graph without non-boundary leaves; and without unicolored edges. In particular it is a
connected 2-coloured planar graph.Write Pfn for the set of fully reduced plabic graphs
of rank n.

Postnikov’s Corollary 14.2(1) can now be summarized as: L �→ DL restricts to a
bijection D : Pfn → Pon .

(8.11) Postnikov gives a map

D′ : Pon → Pfn

as follows, that inverts D. Let d be an alternating strand diagram. Then D′(d) = γd is
the plabic graph we obtain by drawing a white vertex in each clockwise oriented face
and a black vertex in each counterclockwise face. Two vertices are connected by an
edge if and only if their faces are opposite each other at the crossing point of a pair of
crossing strands. (Example: Fig. 12.)

8.3 Properties of themapG

We note that G is the composition D′ ◦ −→
σ . Since D′ is a bijection and −→

σ is injective
(Theorem 8.4), G is injective. In this section, we give an intrinsic characterization of
the image of G.

(8.12) Let u and v be two black nodes in γ ∈ Pfn that are on a common quadrilateral.
If u has degree r +2 and is incident with r ≥ 1 leaves, we say that γ has an r -bouquet
at u or a bouquet at u. The subgraph on the quadrilateral and on the r leaves is the
bouquet at u.

The first figure below is a bouquet at u with 4 leaves. The second figure shows two
(non-disjoint) bouquets, one at u and one at v. The second graph has two bouquets. It
satisfies the conditions for Ptn of Definition 8.13.

Definition 8.13 The set Ptn of rhombic graphs is
the set of connected fully reduced plabic graphs γ in Pfn containing at least one

black node and such that
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Fig. 16 Ptn in ranks n = 3, 4, 5

(a) the tagged nodes (in the sense of (8.5)) are white and all other nodes are black,
(b) every black node has degree ≥ 3,
(c) every closed face is a quadrilateral,
(d) in the fan of edges coming out of a white node every adjacent pair is part of a
quadrilateral.

(8.14)We observe that conditions (a) and (b) imply: (e) Two faces of a rhombic graph
share at most one edge.

For n = 3, 4, 5, Ptn has 1,3,11 elements respectively, cf. Fig. 16.

Lemma 8.15 If γ ∈ Ptn, γ not a star, then γ has at least two bouquets.

Proof Forget the leaves for a moment, so we have graph of quadrilaterals. (Cf. [24].)
Nowconsider the exterior ‘face‘ subgraph - a 2-coloured loop.Wesee (e.g. by induction
on number of faces, using (8.14)) that this must have at least 2 black corners (black
nodes touching only 1 quadrilateral). 
�

We note that G(An) ⊆ Ptn . Our next goal is to get an inverse to the map G, going
from rhombic graphs to tilings. One ingredient is the following lemma which says
that if we split an element of Ptn at a bouquet at node u, we obtain a star graph and an
element γu of Ptn .

(8.16) Let γ be a plabic graph containing a bouquet at vertex u, with u of degree r +2.
Define γu as the full subgraph on the vertex set excluding u and its leaves. We denote
by γs the full subgraph on u and all white nodes incident with u.

For example here γs is the upper graph on the right and γu is the lower graph on
the right.

Lemma 8.17 Let γ ∈ Ptn, γ not a star. If γ has a bouquet at u then γu ∈ Ptn.
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Proof Note that γu inherits (a) and (b) of Definition 8.13 from γ . Denote the second
black node of the bouquet at u by v. When splitting, the quadrilateral face involving
u and v becomes a boundary face of γu . All other faces of γu are faces of γ . So (c)
also holds.

It remains to see that (d) holds for γu . The only vertices to check are i and i +r +1.
In γ , every adjacent pair of edges at i (or at i + r + 1 respectively) are part of a
quadrilateral. When going to γu , one extremal edge of the fan is removed, so the
remaining edges still satisfy (d). 
�
(8.18) Let γ ∈ Ptn . Consider the set

{[i, j] | iand j are white nodes in a quadrilateral ofγ }

Note (by 8.13(a) and the construction) that this forms a collection of pairwise non-
crossing diagonals of an n-gon. We denote this tiling T = G′(γ ).

Theorem 8.19 The map G′ is the inverse to a bijection G: An → Ptn.

Proof We will show that GG′(γ ) = γ for every γ ∈ Ptn .
We use induction on n. If n = |γ | = 3, by Definition 8.13, γ does not contain any

quadrilaterals, hence is a star, and G′(γ ) is the untile T of a triangle, with G(T ) = γ .
So assume that the claim is true for Ptn−1. Take γ ∈ Ptn . If γ is a star, T = G′(γ ) is
the untile of the n-gon and G(T ) = γ . So assume γ is not a star. By Lemma 8.15, it
then contains at least two bouquets, say an r -bouquet for some 1 ≤ r < n − 2.

We split γ at the bouquet and obtain a star γs and the graph γu . Let the white nodes
of this star be i, i +1, . . . , i + r +1 (reducing mod n). Then the white nodes of γu are
i + r + 1, i + r + 2, . . . , i (reducing mod n). Graphs γs and γu are elements of Ptr+2
(with r+2 < n) and Ptn−r respectively by Lemma 8.17. So by induction for the tilings
Ts = G′(γs) and Tu = G′(γu) of polygons we have G(Ts) = γs and G(Tu) = γu .

Tiling Ts is the untile of the polygon Ps on the vertices i, i + 1, . . . , i + r + 1;
Tu = G′(γu) a tiling of the polygon Pu on the vertices i + r + 1, i + r + 2, . . . , i .

We glue the two polygons Ps and Pu along the boundary edges [i + r + 1, i] and
[i, i + r + 1] to obtain an n-gon P with vertices 1, 2, . . . , n and tiling T given by the
union of the diagonals of Ts , Tu and diagonal [i, i + r + 1].

Since T contains a diagonal exactly for every quadrilateral in γ , T = G′(γ ). By
construction, G(T ) = γ . 
�

8.4 Ptn and equivalence classes under moves

(8.20) We define ‘moves’ ρ� on elements of Ptn as in Fig.17 (these moves are a
particular combination of M1 and M2 from Sect. 8.2).

Lemma 8.21 Under the bijection G′ : Ptn → An, a move ρ� corresponds to a flip in
a tiling.

Proof Consider γ ∈ Ptn , let T = G′(γ ). Any quadrilateral � in γ corresponds to a
diagonal [p1, p3] in T . Now assume that two black nodes u1, u2 of the quadrilateral
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Fig. 17 Move ρ� in Ptn

Fig. 18 Classes Ptn/ ∼ in ranks n = 3, 4, 5

� have degree three and let p2, p4 be the other two white nodes adjacent to the black
nodes of �. Then the four full subgraphs pi , u j , pi+1 (with i, j appropriate) of γ are
either boundary paths or part of quadrilaterals. In the former case, the image of γ under
G′ has a boundary segment [pi , pi+1]; in the latter case, it has a diagonal [pi , pi+1]. In
any case, T contains a triangulated quadrilateral p1, p2, p3, p4 with diagonal [p1, p3]
and the move ρ� corresponds to the exchange [p1, p3] ←→ [p2, p4] in T . 
�

Given Lemma 8.21 we can then define move-ρ� equivalence classes Ptn/∼ on Ptn .
Furthermore, the number of equivalence classes are the same as |Æn|.

For n = 3, 4, 5, one can readily confirm 1, 2, 7 classes respectively using Fig. 18.
(Although this does not provide any obvious new method to compute in higher ranks,
cf. Sect. 7.)

(8.22) On strand diagrams, flip corresponds to a combination of moves from Fig. 19
(recalled from [26, §14])—the combination given in Sect. 2.1.

(8.23) There are many beautiful set sequences in the little Schröder combinatoric [31]
(An is a standard one, to which we have now added Ptn andXn). It is one nice problem
for future consideration to recast flip equivalence into cases such as Schröder’s original
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Fig. 19 Postnikov’s moves of alternating strand diagrams

bracket sequences (the set �n is the set of properly nested bracketings on a word of
length n− 1, where there is always an (undrawn) outer bracketing and otherwise each
bracket pair must contain at least two symbols—the bijection with An is elementary
via rooted versions of the dual trees of Sect. 3). As a taste of this game, the first few in
this case are as follows: �3 = {ab}, �4 = {abc, (ab)c, a(bc)}, and in A-complex
form

�5 = ((ab)c)d a((bc)d) (ab)(cd) (a(bc))d a(b(cd))

(ab)cd a(bc)d ab(cd) (abc)d a(bcd)

abcd

Here flip equivalence collapses the entire first row to a point.
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Appendix A. The number of ‘Scott permutations’

Max Glick1 (as interpreted by KB, PPM)

Here we will determine a generating function for the number of polygon tilings up
to flip equivalence and hence compute the asymptotic growth rate. As a warm-up we
first recall the case for all tilings—the little Schröder numbers.

1 Department of Mathematics, Ohio State University, Columbus, OH, USA.
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By Xn we denote the set of tilings of an (n+2)-gon, a (convex) polygon with n+2
vertices. By xn we denote the number |Xn|. Define X = X(z) = ∑∞

n=0 xnz
n, with

x0 = 1.
Fix a ‘base’ edge of the (n + 2)-gon. Then we can decompose Xn according to the

number r of edges in the tile that meets this edge. Writing Xn,r for the subsets, xn,r

for their sizes, and X (r) for the generating functions, we have

X (r) = zr−2Xr−1 (r ≥ 3) (8)

sincewemay construct a tiling by attaching a tiling (by its base) to each of the non-base
edges of the base tile.

Thus we obtain the standard results:

X = 1 +
∑

r≥3

X (r) = 1 + zX2 + z2X3 + z3X4 + · · · = 1 + zX2

1 − zX
(9)

and hence

X(z) =
∑

n≥0

xnz
n = z + 1 − √

z2 − 6z + 1

4z

Now we turn to Æn . Write dn = |Æn+2| and D(z) = ∑
n dnz

n . We continue to
hold fixed a base edge of the (n+2)-gon. Note that an element of Æn+2 is now a class
of tilings, but the number r of edges of the tile incident to the base continues to be
well-defined. Thus we can partition Æn+2 into subsets Æn+2,r according to r . Write
dn,r and D(r) as above. We have

D(r) = zr−2Dr−1 (r ≥ 4)

by an analogous argument to the A-case in (8). However, the case r = 3 is made
more complicated by the equivalence relation. For convenience let bn = dn,3 and
cn = dn − bn . The corresponding generating functions are B = D(3) and

C = 1 +
∑

r≥4

D(r) = 1 + z2D3 + z3D4 + · · · (10)

so that
D = B + C (11)

We may then write
B = zDC (12)

Proof of (12) Consider a class of tilingswhose base tile is a triangle and a representative
therein. Here the base triangle lies in some connected triangulated part. Note that we
can always choose a representative so that this triangle is the rightmost triangle in
this connected triangulated part. (This choice breaks an overall symmetry in the set,
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but this need not concern us.) The result now follows on noting that we may attach
a (representative) tiling with any base on the left, and one from the subset with non-
triangle base on the right. 
�

To illustrate (12) schematically: take a triangle with a distinguished base edge, glue
tilings to the left hand edge and tilings with a tile of size ≥ 4 to the right hand edge.

Example: This gives b4 = d3c0 + d2c1 + d1c2 + d0c3 (note that c1 = 0), or, in
tilings, with the base triangle shaded:

Eliminating B,C from our formulae we obtain a quartic for D:

Y 4 + Y 3 + Y 2(1 − z) − Y + z = 0 (13)

where Y = zD. Computing the discriminant yields a dominant singularity of D at
0.19448…. Thus the asymptotic ratio of coefficients is the reciprocal

lim
n→∞

dn+1

dn
= 5.1418 . . . .

(Finer details of the asymptotic behaviour can be determined—see for example [10].)
One can compare this with the asymptotic ratio for the little Schröder numbers which
is famously 3 + 2

√
2 = 5.8284 . . .; and of course to the asymptotic ratio of sizes of

the sets of all permutations, which is unbounded.
Equation (13) gives rise to a recurrence for the dn making it possible to compute

several terms easily. Here, we list the first 15 terms:
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n 1 2 3 4 5 6 7 8 9 10

dn 1 2 7 26 100 404 7254 31,726 140,964 634,506

n 11 12 13 14 15

dn 2,887,168 13,258,914 61,373,864 286,053,987 1,341,325,126
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