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Sensorless Estimation of the Planar

Distal Shape of a Tip-Actuated Endoscope

Piotr R. Slawinski1, Student Member, IEEE, Nabil Simaan1, Senior Member, IEEE,

Keith L. Obstein1,2, Pietro Valdastri3, Senior Member, IEEE

Abstract—Traditional endoscopes consist of a flexible body
and a steerable tip with therapeutic capability. Although prior
endoscopes have relied on operator pushing for actuation, recent
robotic concepts have relied on the application of a tip force
for guidance. In such case, the body of the endoscope can be
passive and compliant; however, the body can have significant
effect on mechanics of motion and may require modeling. As the
endoscope body’s shape is often unknown, we have developed an
estimation method to recover the approximate distal shape, local
to the endoscope’s tip, where the tip position and orientation are
the only sensed parameters in the system. We leverage a planar
dynamic model and extended Kalman filter to obtain a constant-
curvature shape estimate of a magnetically guided endoscope. We
validated this estimator in both dynamic simulations and on a
physical platform. We then used this estimate in a feed-forward
control scheme and demonstrated improved trajectory following.
This methodology can enable the use of inverse-dynamic control
for the tip-based actuation of an endoscope, without the need for
shape sensing.

Index Terms—Medical Robots and Systems, Kinematics

I. INTRODUCTION

THE use of magnetic fields for medical robot actuation has

been demonstrated for applications in gastroenterology,

opthamology, otolaryngology, and cardiology [1], [2]. Mag-

netic actuation has been used to control devices with [3] and

without [4] a tether, as well as continuum devices that include

flexible endoscopes, needles, catheters, and robots [5]–[8]. The
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modelling of continuum devices has been thoroughly investi-

gated where kinematic or mechanics-based computations rely

on computing the configuration of a device given a known

robot base, e.g. physical point where robot is at least partially

constrained, and applied loads [9]–[12]. Similar methods have

been applied for continuum devices that rely on magnetic

fields for actuation [5], [6], [13].

In the case of tip-actuated magnetically guided flexible

endoscopes that are not equipped with shape sensors [7], the

entire body of the endoscope is translated via the dragging of

the tip, i.e. where the internal magnet is mounted. This results

in a lack of knowledge of both the robot’s base and shape

which complicates modelling. Such device would thus require

sensors to facilitate robotic control which may increase system

complexity, potentially add calibration steps, and add cost to

a system that may otherwise be made single-use. This paper

addresses a need for a mechanics-compensation methodology

for tethered tip-actuated systems where the tether disturbs tip

motion and knowledge of tether configuration is unknown. The

development of a sensorless distal shape estimation method

may allow for computed-torque control of such devices.

The distal portion of a flexible endoscope may be mod-

elled if the shape is known. Shape sensing for continuum

devices has been widely used with primary methodologies

being fiber Bragg gratings (FBG), electromagnetic tracking,

and intraoperative imaging (fluoroscopy, ultrasound) [14];

however, these modalities cannot be trivially used in de-

vices. Shape estimation using FBG is expensive owing to

the need of an optical spectrum interrogator with multiple

channels [14]. Electromagnetic sensing cannot be used with

magnetic actuation systems unless the tracking and actuation

systems are compatible. The use of intraoperative imaging

contributes to system complexity and cost and can expose

patients to radiation. An ability to estimate the configuration

of the distal tip of a flexible endoscope would facilitate the

development of devices that contain the benefits of sensing but

are simpler and cheaper to produce; this is especially relevant

for the production of single-use devices. To our knowledge,

a sensorless local shape estimation technique for robots with

flexible bodies has not been investigated.

In this work, we propose a method for estimating the distal

shape of a magnetic endoscope that is local to its tip whose

position and orientation is directly sensed. This estimator is

designed for tools that are used in the body, where no clear

line-of-sight with an operator exists. The key motivation of this

work is the development of a model estimate that can be used

for feed-forward control; thus, inaccuracies in shape sensing
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are acceptable in the case that the estimator can be used to

enhance control. This method provides model information that

would otherwise be unknown to the system. The proposed

method relies on the use of a two-link planar dynamic model

where the links are attached via torsion spring, and each link

is attached to a mass. We employ an extended Kalman filter

(EKF) for estimating the angle between the links that dictates

the estimated model’s shape. We validated the shape-sensing

method in both simulation and on platform experiments. We

then conducted a set of trajectory control trials in simulation

where the use of feed-forward control using the estimate is

demonstrated to enhance motion. This method is applicable

to tip-actuated tethered robots where a motion model can be

developed for tip actuation, thus it is not limited to magnetic

guidance.

II. SYSTEM OVERVIEW

The methods discussed in this work were validated on our

magnetic flexible endoscope (MFE) system, shown in Fig. 1,

that has been introduced and discussed in prior works [7]. The

MFE contains a permanent magnet at its tip, which we will

refer to as the “intracorporeal” permanent magnet (IM) as this

magnet will be inside a patient during an endoscopy. The IM

is actuated by the application of forces and torques via the

motion of an extracorporeal permanent magnet (EM) that is

housed at the end-effector of a six DoF serial robot (RV6SDL,

Mitsubishi, Inc., Japan). Both magnets have a remanence of

1.48 T. The MFE’s tip is rigid and contains a camera, LED,

irrigation channel, and a intervention channel for the passing

of endoscopic tools. The body of the MFE is a Pebax flexible

sleeve that houses channels and electrical wires. The MFE’s

body is over 1.5 m long and completely passive. The tip of

the MFE is localized in six DoF using a localization algorithm

that relies on magnetic fields and has been described in our

previous work [7]. The software for the system is written in

Python and C++ using the Robotic Operating System [15].

The estimation strategy we present in this work was first de-

veloped and tested in a simulation environment (Gazebo [16])

that was developed in our prior work [17]. We utilized a prior-

made custom-made magnetic interaction physics plugin [17]

for Gazebo as well as a continuum tether approximation

that consists of several small rigid links connected via uni-

versal joints. After validation in simulation, we conducted

experiments on our physical platform. As this work pertains

to the estimation of shape, we developed an image-based

tether-configuration measurement system. We used a webcam

(“Creative Live!”, Creative Labs, Singapore) to detect three

color markers on the tether. Processing of images was done

using OpenCV [18]. The conversion from pixels to positions

in the robot’s frame was achieved by registering the camera’s

output using a least-squares fitting [19]. We assume all color

markers were on a plane; this is an acceptable assumption as

the trajectory followed by the MFE was on the horizontal,

while the camera faced the vertical direction, as shown in

Fig. 1. The shape estimation can be updated at an approximate

rate of 28 Hz.

Fig. 1. The MFE system with a camera used for color-marker detection.

III. MAGNETIC ACTUATION

The magnetic actuation of the MFE relies on moving the

EM to impart field gradients and field direction-changes on

the IM that result in applied magnetic forces and torques.

We used the dipole model which has been shown to be a

valid field approximation for axially-magnetized permanent

magnets with a length-to-diameter ratio of 1 [20]. The mag-

netic actuation method is an extension of our group’s previous

work in [17]; certain concepts and definitions are repeated

here for completeness. The vectors that describe the positions

of the IM and EM, respectively are pi and pe. The relative

position between magnets is given by p = pi −pe. The point-

dipole magnetic field of the EM is represented using be.

The respective headings of the IM and EM are given by

m̂i and m̂e where m indicates the magnetization vector of a

dipole and the notation v̂ indicates that the vector v is of unit

length. The symbol δ indicates an infinitesimal change. The

magnetic force and torque are defined as fm = (mi ·∇)be and

τm = mi×be, respectively. The expression for the commanded

change in magnetic wrench, δwc, is shown in Eq. (1).

δwc =

[

δ fm

δτm

]

=

[

∂ fm
∂p

∂ fm
∂m̂e

∂ fm
∂m̂i

∂τm
∂p

∂τm
∂m̂e

∂τm
∂m̂i

]





δp

δm̂e

δm̂i





= JF









δpi

0

δm̂i



+





−I3 0 0

0 I3 0

0 0 0









δpe

δm̂e

0









= JF





δpi

0

δm̂i



+JF Ii

[

I3 0

0 S(m̂e)
T

]

JRδq

= JF





δpi

0

δm̂i



+JFAδq

(1)

The serial robot’s geometric Jacobian is indicated via JR, In

indicates an identity matrix ∈ IRn×n, S(·) denotes the skew-

symmetric form of the cross-product operation, Ii indicates

the matrix of I3 terms in the expression prior, and δq is the
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vector of infinitesimal changes in joint positions. To actuate

a magnetic device we wish to determine the joint rates that

will induce a desired wrench. The commanded wrench is

determined by applying a velocity and position controller as

defined in Eq. (2).

δwc =

[

Kpvel
ev t̂+Kposepn̂

Korienteo

]

(2)

Here, t̂ and n̂ indicate the tangent and normal directions, on the

horizontal, to the desired trajectory, respectively. The velocity

error is depicted via ev = ṗidesired
− ṗi, orientation error via

eo = m̂i × t̂ where t̂ is the tangential direction to the desired

path, and position error via ep = pi − pi. The commanded

trajectory is made via a Bezier curve. This commanded wrench

step is not a function of tether mechanics in any way; rather,

it is the same relation one would use when commanding an

untethered device. Given a desired step in wrench, we define

an optimization relation that favors achieving the commanded

wrench, managing joint rates and joint-limit proximity [21],

and maintaining a desired height of the EM; this relation is

shown in Eq. (3). This is not a constrained minimization and

relies on the subjective tuning of constants to give preference

to the optimization of certain parameters over others.

min
δq

(

‖Ww (δwc −JFAδq)‖2 +α
∥

∥W−1
q δq

∥

∥

2
...

+β ‖(zd −WzJRδq)‖2
)

(3)

Here, Ww is a diagonal weight matrix that allows for tuning

the preference of achieving desired magnetic forces or torques,

Wq is a weight matrix that punishes joint motion as joints

approach their limits, zd = [0,0, pez−des
,0,0,0]T where pez−des

is the desired EM height, and Wz is a matrix of zeros ∈ IR6×6

apart from its (3,3) index which is set to 1.0. Here, the use

of constants α and β facilitates giving relative optimization

preference between EM height control and joint rate minimiza-

tion. The constant β may be set to unity; however, it is used

as a variable here for conceptual clarity. Finally, JR ∈ IR6×6 is

the geometric Jacobian of the serial manipulator. The resultant

joint rate is computed analytically and the command is sent

to the robot controller.

IV. ESTIMATION METHOD

Our proposed method for the 2D local shape estimation

of the MFE relies on fusing the following elements: (1) the

sensed position and orientation of the MFE’s tip, (2) the

magnetic wrench that is applied on the MFE’s tip, which is

estimated using the dipole model, and (3) a dynamic model

of the MFE’s tip and body in a near vicinity of the tip

(approximately 15 cm). We chose to use a variant of the

Kalman filter as it is a recursive Bayesian estimator that

requires a single integration of dynamics per time step. We

note that we found this dynamic model to be a good fit for

our application; however, it is not the only model that can be

used. We begin by describing the dynamic model, then the

EKF, and finally we discuss the choice of model parameters.

Fig. 2. Schematic of a dynamic two-link and two-mass model with a best-fit
curve of constant curvature.

A. Dynamic Modelling

The proposed dynamic model consists of two disks, each

rigidly connected to a link, with the links connected via a

torsion spring; shown in Fig. 2. The following are descriptions

of parameters used for dynamic modelling: mi indicates the

respective mass of disks where the pose of mass 1 corresponds

to the pose of the MFE’s tip, Ii indicates the moment of inertia

of a respective disk, ks is the torsion spring constant, Li is the

respective length of a link connected to mass mi, bi is a linear

damping coefficient, and Di is an angular damping coefficient.

The states of the system consist of the MFE tip (m1) position,

linear velocity, orientation, and angular velocity, as well as the

orientation and angular velocity of Mass 2 (m2). Feedback is

available on the tip’s pose and twist, but not on the state of

m2. These states are defined explicitly in Eq. (4) and Eq. (5).

x = [p1, ṗ1,θ1, θ̇1,θ2, θ̇2]
T ∈ IR8 (4)

y = [p1, ṗ1,θ1, θ̇1]
T ∈ IR6 (5)

The dynamic model was written by deriving the system’s

Lagrangian that is shown in Eq. (6).

L = K −V =
1

2

(

m1ṗT
1 ṗ1 +m2ṗT

2 ṗ2

+ I1θ̇ 2
1 + I2θ̇ 2

2 − ks(θ2 −θ1)
2
)

(6)

where

p2 = p1 −L1

[

cos(θ1)
sin(θ1)

]

−L2

[

cos(θ2)
sin(θ2)

]

(7)

The Lagrangian expression in Eq. (6) was computed symbol-

ically using Matlab (Mathworks Inc., USA) via Eq. (8) and

compiled into a Python library, which was then interfaced-with

using a ROS node.

d

dt

∂L

∂ ġci

−
∂L

∂gci

−n.c.= 0 (8)

Here, gci
denotes the ith of the four generalized coordinates

(p1x, p1y, θ1, θ2, where p1 = [p1x, p1y]
T), and “n.c.” denotes

the non-conservative forces applied on the system that include

linear and angular viscous friction (each applied on both

masses) and externally applied magnetic forces and torques.
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Eq. (8) was then solved for each g̈ci
to write a nonlinear state-

transition expression as shown in Eq. (9). Here, wm indicates

the applied magnetic wrench that is estimated via the dipole

model; this is possible owing to localization feedback of IM

pose and kinematic feedback of the serial manipulator that is

used to obtain EM pose. The complete expression for g̈ci
is

omitted here for brevity. The nonlinear state-transition matrix

is indicated using g(xk−1,wm); the complete expression is

omitted for brevity. This state transition equation dictates how

system state is updated based on time and input parameters,

i.e. magnetic wrench.

xk = xk−1 + ẋk−1δ t = g(xk−1,wm) (9)

The expression for the measurement model, h(xk−1), is shown

in Eq. (5). The measurement, zk, is identical to the measure-

ment model and is obtained using a magnetic localization

method described in Ref. [7] that provides six DoF pose

feedback; velocities are obtained via discrete low-pass-filtered

differentiation. As our estimation is in 2D, we utilize 2 DoFs

of position feedback and 1 DoF of orientation feedback. The

objective of this estimator is to recover the value of θ2 and to

use it to make a continuum-shape estimate. The functionality

of the estimator can be conceptualized with the following

question: “what is the state of the model that would result

in the deflection that was observed?”. The possibility of this

estimation is contingent on the observability of the state vector.

As this system is nonlinear, we resort to determining local

observability via linearizing the state-transition and measure-

ment models. We verified the rank of the observability matrix

O, Eq. (10), to be equal to the number of system states [22],

where “n” denotes the number of system states. We found this

model to be locally observable and remains observable when

the only feedback information is the location of p1.

O(x,u) =













∂h
∂x
(x)

∂h
∂x
(x) ∂g

∂x
(x,u)

...
∂h
∂x
(x) ∂g

∂x
(x,u)n−1













(10)

The prediction step of the EKF relies on using the dynamic

model to obtain an a priori state and state error covariance;

these are marked via x̄k and P̄k, respectively. These relations

are shown in Eq. (11) and Eq. (12), where Qk is the process

noise covariance and Pk−1 is the state error covariance.

x̄k = g(xk−1,wm) (11)

P̄k =
∂g(xk−1)

∂x
Pk−1

∂g(xk−1)

∂x

T

+Qk (12)

The correction step of the EKF relies on using a priori state

as predicted via dynamic model and fusing the prediction with

sensory information to obtain an a posteriori state update.

These relations are shown in Eq. (13), Eq. (14), and Eq. (15),

where Rk is the measurement covariance. The Kalman gain,

Kk, acts as a weight of confidence between the dynamic model

and state measurement.

Kk = P̄k

∂h(x̄k)

∂x

T

(
∂h(x̄k)

∂x
P̄k

∂h(x̄k)

∂x

T

+Rk)
−1 (13)

xk = x̄k +Kk(zk −h(x̄k)) (14)

Pk = (I−Kk

∂h(x̄k)

∂x
)P̄k (15)

Finally, a curve with a constant radius is fitted to the masses

such that it is tangent to the heading of Mass 1, and passes

through the position of Mass 2. An arc with a constant curva-

ture, which results in a pure and constant bending assumption,

was used in this work as it is sufficient for obtaining an

approximate shape that can be used in feed-forward control.

The constant-curvature assumption is not necessarily a valid

one; however, it may provide information that is useful for

control which is more valuable than no estimate at all.

B. Model Parameters

The selection of parameter values for the proposed dynamic

model presents a unique problem owing to the disconnect

in the mechanics of our model and the physical system.

Typically continuum robots are modelled with a known base,

while our system consists of a known tip onto which an

actuating wrench is applied. Our model does not accurately

depict the phenomenon of a long tether being dragged, but

rather can usefully depicts local mechanics. We began with

choosing a torsional spring constant. We conducted a set

of 10 experiments where a serial arm with a force sensor

at its end-effector was used to deflect the tip of the MFE;

this resulted in a torsional spring constant of 0.033 ± 0.005

Nm/rad. This value over-estimates the true constant as the

tether would translate when a force would be applied at the

tip. We thus scaled this constant by 0.5 in simulations and by

0.3 in platform experiments; values that were chosen based on

observed performance. The rest of dynamic parameters were

subjectively chosen based on observing the estimated state:

disk-radii r1 = 0.02 and r2 = 0.02, link lengths L1 = 0.02 and

L2 = 0.08, masses m1 = 0.05kg and m2 = 0.4kg, linear damp-

ing coefficients b1 = 0.005 and b2 = 0.001 N · s/m, angular

damping coefficients D1 = 0.005 and D2 = 0.05 N ·m · s.

The measurement covariance matrix Rk was defined based

on localization error variance as computed in Ref. [7]; the

linear position noise was up to 5 mm while the angular position

noise was up to 6.0◦. The process noise covariance was set

to an diagonal matrix with identical components of 0.2. We

found that a low value of process noise resulted in a lag in

the estimate. The estimator does not appear to be sensitive

to process noise when a larger value is chosen. The state

covariance was initialized to be a diagonal matrix with small

values.

C. Feed-Forward Magnetic Control

Feed forward magnetic control is implemented by augment-

ing Eq. (2) to Eq. (16) such that a torque compensation term

is applied. The torque compensation is a proportional control

that is a function of the torsion spring angle. This proposed

controller may apply a feed-forward torque when the heading

error of endoscope is null.
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δw f f = δwc +δwspring

=

[

Kpvel
ev t̂+Kposepn̂

Korienteo

]

+[0,0,0,0,0,−Kpsks(θ2 −θ1)]
T

(16)

V. EXPERIMENTAL VALIDATION

The experimental validation in this work consists of shape

estimation validation experiments as well as feed-forward

control validation experiments. The shape estimation exper-

iments were conducted both in simulation and a physical

platform. Feed-forward control experiments were conducted

in simulation.

A. Validation of Shape Estimation

To validate the proposed shape estimation technique, we

conducted experiments in simulation, as well as on a physical

platform. The position-sensor points in simulation and on

the physical platform were placed in approximately the same

position on the MFE: at 6 cm, 10 cm, and 14.5 cm along

the tether length. As the number of position sensors available

to us on the physical platform was limited, we developed an

error metric that relies on measuring the distance between each

sensor point and the nearest point on our estimated curve. We

define the error metric eest in Eq. (17).

eest =
1

y

y

∑
i=2

‖psi
−pmi

‖

di

(17)

where psi
is the sensor position, pmi

is the nearest model

point to psi
, y is the number of position sensor points (1

localization sensor at tip, 3 position sensors along tether shape,

4 total); the sensor points start at 2 as the tip of the model is

a known sensory feedback, while the rest of the model shape

is unknown. The error term contains a normalization that is

implemented via a quotient of di; as a point closer to the tip

has a smaller error (model tip is given via pose sensor), a small

error near the tip may carry the same amount of information

as a much larger error farther away from the tip. The value of

di is the nominal distance of the sensed point along the body

of the endoscope.

To evaluate the performance of our estimate, we compare

our estimated shape to an assumption that the tether is straight

behind the MFE’s tip; we refer to this as the “baseline

estimate”. We used this baseline comparison since a crucial

aspect of our approach is ensuring that the estimated shape is

on the correct side of the baseline estimate. Knowing which

side of the IM the tether is on gives insight into the direction

of wrench disturbance it will induce on motion. The precise

knowledge of the exact shape is not critical, nor do we expect

to recover it. For this baseline estimate, we also compute the

error metric as defined in Eq. (17); we refer to this error via

ebaseline. The success criteria for this validation is the estimate

outperforming the baseline estimate.

Fig. 3. Trajectories that the MFE was commanded to follow during simulation
experiments. Trajectory 1 (a,b) consists of two-bend path, and trajectory 2
(a,b) consists of a sinusoidal path.

1) Simulation Study: We conducted two experiments, 10

trials each, in simulation. In each experiment, the MFE was

commanded to autonomously follow a trajectory using velocity

control in the tangential direction to the path, and position

control in the normal direction to the path. The total length

of the tether used in simulation was 45 cm and the length of

the sensed portion of the tether was 14.6 cm. The trajectory in

the first experiment was a double-bend curve (segment lengths:

13, 18, 20 cm) and in the second, it was a sinusoidal (0.4 m

length, 0.05 amplitude, single period). In Fig. 3 we show these

trajectories along with the measured, estimated, and baseline

shapes. The double-bend-trajectory experiment resulted in

ebaseline = 0.95±0.03 and eest = 0.26±0.02. The sinusoidal-

trajectory experiment resulted in ebaseline = 0.54 ± 0.01 and

eest = 0.21±0.01. The results are shown in Fig. 4 and Fig. 5

using box plots. The regions of higher error correspond to

regions of tether deflection caused by the MFE passing through

a bend. To validate the evaluate the effect of environmental

friction on the method, the friction of the simulation model

was increased by a factor of 5 (from 0.1 to 0.5) while all

other model parameters were unchanged which resulted in the

following errors: ebaseline = 1.00±0.04 and eest = 0.37±0.03.

For reference, Terry et al. reported a coefficient of friction of

0.016±0.002 in vivo between tissue and polycarbonate [23].

2) Experiments on a Physical Platform: The physical plat-

form trials were conducted with the MFE being teleoperated

along a single-bend trajectory (segments: 11 cm, 10 cm).

Teleoperation here refers to a the EM being directly com-

manded via joystick and it was used rather than autonomous

control owing to the high-friction environment of the acrylic

tube that resulted in the autonomous controller applying too

much vertical force. The use of sufficient lubricant resulted in

difficulties with visual detection of color-markers. The use of

this teleoperation is not clinically relevant but it allowed for

the evaluation of our estimation algorithm. In the case of a

color marker being occluded, the measurement node did not
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Fig. 4. Experimental results for the double-bend simulation trajectory. The
green indicates ebaseline results and the blue indicates eest results.

Fig. 5. Experimental results for the sinusoidal simulation trajectory. The green
indicates ebaseline results and the blue indicates eest results.

send a data update.

As our estimation algorithm is a stand-alone program in-

dependent of magnetic closed-loop control, shape estimation

was carried out in the same manner as during simulation trials.

As a human was in-the-loop, the estimated shape of the MFE

was not displayed during the recording of data to prevent a

bias in attempting to steer the estimate. An example camera-

view and trajectory path is shown in Fig. 6. The experiment

resulted in ebaseline = 1.06±0.05 and eest = 0.87±0.07. The

results are shown using box plots in Fig. 7. The region of

high error in the latter portion of the trajectory is likely due

to the unrealistically high friction in the experimental setup

where sufficient lubrication could not be used owing to camera

occlusion of markers on the tether. This limitation could

be overcome by using a non-visual localization technique;

however, this is non-trivial owing to our inability to use

magnetic tracking and difficulty in integrating FBG sensors.

B. Feed-Forward Control Validation

The following simulation experiments demonstrate the use

of the estimated state in the magnetic control loop as described

Fig. 6. (a) A sample view from the camera used for tether shape measurement
and (b) the trajectory followed by a teleoperated MFE.

Fig. 7. Experimental results for the single-bend platform trajectory. The green
indicates ebaseline results and the blue indicates eest results.

in Eq. (16). The spring angle was used to pass an additional

torque term to the magnetic controller and the influence of this

term on heading error was evaluated. The key benefit of this

controller is that it applies a torque to compensate for tether

disturbance even when the IM heading error is null. The MFE

is tasked with traversing the double-bend curve (Fig. 3(1a,1b)).

The torque compensation term, δwspring, was only applied

when the spring torque would reduce heading error. This

expression is then used in Eq. (3) to compute robot joint

commands. Instances occurred where the estimator predicted

the tether to be on the wrong side of the true measurement.

Adding a torque in such a case may result in error divergence.

It should be noted that simply increasing heading-control gains

may demonstrate similar improvements; however, increasing

heading control gains influences the ability to control position

as, in terms of control, the position and orientation of the

IM are coupled. In other words, constantly applying high

orientation control gains will induce a system preference for

reducing heading error, at the expense of position control.

Ten simulation experiments were conducted with δwspring,

and ten without this torque-compensation term. The mean

heading errors without and with compensation, respectively,

were 11.8±1.7◦ and 7.6±1.0◦; a 35% improvement. The

respective position errors, normal to the path, were 3.8±0.5◦

and 4.6±0.5◦. The position errors were small in both cases

considering the total trajectory length was approximately 0.5
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m. The slight increase in position error when using torque-

compensation is likely due to the magnetic controller giving

preference to applying magnetic torque over force which has

a slight adverse effect on translation control. Further work is

needed to investigate the possibility of force-compensation.

VI. DISCUSSION

The proposed local shape estimation method successfully

performs better than a baseline estimate. This means that

the estimated shape is on the correct side of the rear of the

MFE’s tip, which is crucial for enabling the formulation of

an estimated wrench disturbance that the tether is inducing on

MFE motion. Our estimation algorithm operates at 28 Hz, thus

providing rapid configuration updates. The estimator does not

perfectly track the local tether shape as: (1) the dynamic model

is not an exact representation of tether mechanics, (2) we use a

constant-curvature assumption when generating the local shape

when the real device shape does not necessarily form a local

constant curve, and (3) our model captures disturbances that

result from mechanics, while in reality, the MFE is also subject

to disturbances from friction and environmental interaction;

such effects cannot be captured using a dynamic model. A

shortcoming of this work is the lack of a robust methodology

for choosing dynamic model parameters. A system-specific

subjective choice of parameters may be acceptable as this pa-

rameter choice must occur only once per estimated device, the

parameters have physical meaning, and there are less than 20

of them. A more precise approach may involve the recording

of a large data set of measured shape changes as induced

via known applied wrenches. Given these same wrenches, a

regression approach may be used to fit the dynamic model’s

parameters. This may be useful for reducing estimation error,

but is not necessary for using our proposed method. Future

work is necessary to evaluate the performance of our proposed

approach in a colonic simulator as well as in vivo.

VII. CONCLUSION

We have proposed an algorithm for the sensorless shape es-

timation of the distal end of a flexible endoscope. Our method

uses information that was previously treated as disturbance

noise to the path of the endoscope’s tip, and computes the

most probable configuration of the flexible body of the en-

doscope. This is akin to computing simple inverse-kinematics

by observing the deviation of the tip’s path. The method is

applicable for dynamic models where a curvature parameter

is observable. Our results suggest feasibility of the method and

a potential for a future application in applying inverse-dynamic

control to control the motion of tip-actuated endoscopes.
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