

This is a repository copy of Designing biopolymer-coated Pickering emulsions to modulate in vitro gastric digestion: A static model study.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/149551/

Version: Accepted Version

Article:

Araiza-Calahorra, A and Sarkar, A orcid.org/0000-0003-1742-2122 (2019) Designing biopolymer-coated Pickering emulsions to modulate in vitro gastric digestion: A static model study. Food and Function, 10 (9). pp. 5498-5509. ISSN 2042-6496

https://doi.org/10.1039/C9FO01080G

© 2019, The Royal Society of Chemistry. This is an author produced version of an article published in Food and Function. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Supplementary Information

Designing biopolymer-coated Pickering emulsions to modulate in vitro gastric digestion: A static model study

Andrea Araiza-Calahorra and Anwesha Sarkar*

Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK

Corresponding author email*: <u>A.Sarkar@leeds.ac.uk</u> (A. Sarkar).

	WPN	WPN + DxS-40	WPN + DxS-500
D_h / nm	91.51 ± 0.55	-	-
PdI	0.236 ± 0.0	-	-
ζ – potential / mV	$+30.2 \pm 1.45$	-21.6 ± 2.67	-37.4 ± 3.30

Table S1: Mean hydrodynamic diameter (D_h), polydispersity index (PdI) and ζ -potential values for WPN, WPN + DxS-40 and WPN+DxS-500 after formation at pH 3.0.

		WPN		WPN + DxS-40	WPN + DxS-500
Gastric digestion time / min	D_h / nm	PdI	ζ – potential / mV	$\zeta - potential / mV$	ζ – potential / mV
0	93.58 ± 1.84	0.215 ± 0.03	19.13 ± 2.66	-11.51 ± 1.58	-19.26 ± 5.9
5	92.13 ± 3.35	$\begin{array}{c} 0.333 \pm \\ 0.01 \end{array}$	17.46 ± 2.20	-5.41 ± 2.67	-4.34 ± 0.52
30	110.16 ± 4.12	$\begin{array}{c} 0.350 \pm \\ 0.11 \end{array}$	17.73 ± 3.25	-1.71 ± 4.26	-9.38 ± 0.94
60	88.35 ± 2.66	$\begin{array}{c} 0.271 \pm \\ 0.02 \end{array}$	19.43 ± 1.43	-5.29 ± 1.48	-16.96 ± 1.05
90	89.88 ± 2.90	$\begin{array}{c} 0.291 \pm \\ 0.00 \end{array}$	18.2 ± 2.05	1.42 ± 0.56	-11.58 ± 1.24
120	90.22 ± 2.12	$\begin{array}{c} 0.308 \pm \\ 0.01 \end{array}$	17.03 ± 2.31	-4.20 ± 1.77	-14.33 ± 1.19
150	102.61 ± 7.09	0.334 ± 0.05	18.86 ± 0.70	0.67 ± 1.2	-8.89 ± 0.9

Table S2. Mean hydrodynamic diameter (D_h), polydispersity index (PdI) and ζ -potential values of control samples for WPN, WPN + DxS-40 and WPN + DxS-500 in an in vitro gastric model at pH 3.0 in presence of SGF without pepsin, respectively.

Figure S1. Mean ζ -potential values of aqueous dispersions of WPN, DxS-40 kDa and DxS-500 kDa as a function of pH, respectively.

Figure S2. Change in mean ζ -potential values of 1 wt% WPN without or with the addition of 0.2 wt% DxS-40 kDa or 0.2 wt% DxS-500 kDa in an in vitro gastric model at pH 3.0 in presence of SGF containing pepsin, respectively.

Figure S3. Droplet size distribution, mean d_{43} values and ζ -potential values of control samples for a) E_{WPN} b) DxS- E_{WPN} -40 and c) DxS- E_{WPN} -500 after in vitro gastric digestion in presence of SGF buffer without pepsin, respectively.

Figure S4. Confocal micrographs of initial FITC-DxS-E_{WPN}-40 and FITC-DxS-E_{WPN}-500 samples. Simultaneous recording of the emission of Fast Green and FITC-DxS dyes without the addition of Fast Green in the samples. Blue colour represents the FITC-labelled DxS.