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On mean-field GI/GI/1 queueing model: existence

and uniqueness ∗

A.Yu. Veretennikov†

December 4, 2018

Abstract

A mean-field extension of the queueing system GI/GI/1 is considered. The
process is constructed as a Markov solution of a martingale problem. Unique-
ness in distribution is also established under a bit different sets of assumptions
on intensities.
keywords: GI/GI/; mean-field; existence; weak uniqueness; Skorokhod lemma
MSC: 60-02; 60K25; 90B22

1 Introduction

Mean-field approach in the theory of queueing systems allows to take into consid-
eration large interacting ensembles of queues by using the idea of replacing these
interactions by a suitable “mean field”. This approach showed fruitful in systems
with countable and more general state spaces, see, for example, [1], [2], [3], [5], [6],
[11], and the references therein. However, to the best of the author’s knowledge,
so far there was no general method of constructing mean-field extensions of a basic
queueing model such as GI/GI/1 – or, more precisely, GI/GI/1/∞ – in the litera-
ture. In this work we propose such a method under certain restrictions on intensities
of arrivals and service, which intensities may both depend on the state as well as
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on the marginal distribution of the process. This kind of dependence is natural in
the study of limits of so-called multi-agent systems, or in other words, of a large
number of weakly interacting queues (cf. again the references [1], [2], [3], [5], [6],
[11]); in this paper we do not study such a setting because it seems reasonable to
separate the problem of convergence from the problem of existence of the limiting
process. Existence and weak uniqueness are discussed on the basis of compactness
of measures, Skorokhod’s unique probability space Lemma, total variation metric
and a Skorokhod–Girsanov’s density of measures theorem for jump processes. The
basis for the study in the sections 2.1 and 2.2 is a technique similar to the one de-
veloped in the preprint on McKean-Vlasov stochastic equations [16]. Note that in
some earlier papers and monographs intensities of transitions in queueing systems
were assumed to depend only on the number of customers in the system. This means
that the (conditional) distributions of the service times as well as the arrival times
are exponential. In some situations this is not realistic. In particular, it does not
allow heavy tails. Hence, motivation of our extension to a more general dependence
is simple: it should relax the assumption of exponential arrival and service times.
In the Theorem 1 below heavy tails of (conditional) service time distributions are
allowed. In the Theorem 2 currently heavy tails are not possible, although, both
service and arrival times still can be more general than exponential. Nevertheless,
the author’s belief is that this is a technical matter to include the case of heavy tails
in the conditions for uniqueness, too, which problem will be hopefully resolved in
the near future. It is likely that the established results may be useful in the area
of mathematical theory of reliability which is notably known to have the same basic
formulae as queueing theory, see [8].

The paper consists of Introduction, Main section and t So, we can rigorously
apply the principle of “complete probabilities” (or, better “complete expectation”)
taking a summation as earlier in the intuitive version:wo Appendices. The Main
section consists of two subsections related to the two topics shown in the title, with
one theorem in each and with the proof of this theorem. The Appendix 1 contains
the statement of Skorokhod’s Lemma about an equivalence of weak convergence of
a sequence of processes to a convergence in probability of processes with the same
distributions on a unique probability space, included for the reader’s convenience.
The Appendix 2 offers a strict version of a non-rigorous calculus in the middle of the
proof of the Theorem 1.
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2 Main section

The state space of the process under consideration is the union

X := (0, x) ∪
∞
⋃

k=1

(k, x, y), x, y ≥ 0.

The meaning of k here is the number of “customers” in the system; the value x
stands for the elapsed time from the last arrival, while y signifies the elapsed time of
the current service. There is only one server which works without breaks (if there is
at least one customer in the system) and it is always in a working state. All newly
arrived customers stand in a queue of the infinite capacity, and for simplicity only
we assume the FIFO discipline of service (First In First Out). It is assumed that at
any time t at any state X = (k, x, y) (or X = (0, x) for k = 0) there are intensities
of service Λ−[t, Xt, µt] and arrivals Λ+[t, Xt, µt], where µt is the distribution of the
random variable Xt itself. Note that occasionally we will be using notation (0, x, y)
where y is a “false” variable, i.e., we identify all such triples with any y with a couple
(0, x). It will be sometimes convenient to denote k = k(X), x = x(X), y = y(X) for
X = (k, x, y). For technical reasons it is convenient to define the distance between
two states X = (k, x, y) and X ′ = (k′, x′, y′) as

ρ(X, Y ) := |k − k′|+ |x− x′|+ |y − y′|.

The process is piecewise–linear Markov (PLMP, see [7]), which simply means that
between any two subsequent jumps the continuous components – (x, y) if k > 0, or
just x if k = 0 – grow linearly with rate 1, while the discrete component n remains
unchanged.

The assumptions:

(A1) There are Borel measurable, non-negative and bounded functions λ+(t, X, Y )
and λ−(t, X, Y ).

(A2)

Λ±[t, X, µ] =

∫

λ±(t, X, Y )µ(dY )

(NB: Automatically, both Λ± are Borel functions of (t, X).)

(A3) The functions λ±(t, X, Y ) are continuous in all variables.
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(A4) The functions λ±(t, X, Y ) are uniformly bounded away from zero except for
λ−(t, (0, x), (n, y, y′)) = 0, for any x, y, y′ ≥ 0 (no jump down from any state
with zero customers).

Let us emphasize that neither Lipschitz nor any other regularity of the inten-
sities λ± is assumed, except for continuity in (A3). Probably continuity in t
may be relaxed. Note that functions of time and two state variables will be
denoted with round brackets, e.g., as λ±(t, X, Y ), while functions where the
third variable is a measure will be written with square brackets like Λ±[t, X, µ].

In particular, intensities Λ± may include additional (non-negative) terms not depend-
ing on the measure, say, λ±0 (t, X); this may be helpful so as to justify the assumption
(A4), as the terms λ±0 (t, X) can be reasonably assumed uniformly bounded away from
zero. Emphasize that (A4) will only be used in the Theorem 2, and as was mentioned
earlier, there is a plausible hypothesis that this assumption even in this theorem may
be relaxed; however, we postpone this issue till further investigations.

For X ∈ X let us denote

X+ := (k + 1, 0, y), for X = (k, x, y), k ≥ 0,

X− := (k − 1, x, 0), for X = (k, x, y), k ≥ 1,

X + δ := (k, x+ δ, y + δ), for X = (k, x, y), k ≥ 0,

Naturally, X− is not defined for X = (0, x).

2.1 Existence

The initial value X0 of the process may be distributed, which distribution is denoted
by µ0 (in particular, µ0 may be a delta-measure concentrated at one point).

Theorem 1 Let the assumptions (A1)–(A3) be satisfied. Then for any initial distri-
bution µ0 on X , on some probability space there exists a Markov process (Xt, t ≥ 0)
with marginal distributions µt and intensities Λ[t, Xt, µt], H [t, Xt, µt]; in other words,
such that for any bounded continuous function g(X) with bounded continuous deriva-
tives in (x, y), the expression

Mt := g(Xt)− g(X0)−

∫ t

0

L[s,Xs, µs]g(Xs) ds (1)
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is a martingale, where for X = (k, x, y), X ′ = (k′, x′, y′), k ≥ 0, t ≥ 0,

L[t, X ′, µ]g(X) := Λ+[t, X ′, µ](g(X+)− g(X))

+ 1(n > 0)Λ−[t, X ′, µ](g(X−)− g(X))

+
∂

∂x
g(k, x, y) + 1(k > 0)

∂

∂y
g(k, x, y).

Moreover, for any given measure-valued function (µs, s ≥ 0) in L[s,Xs, µs], the
martingale problem (see [10]) (1) has a (weakly) unique solution.

The processes (Xt, t ≥ 0), or later in the proof of the Theorem 1 (Xn
t , t ≥ 0) for

n ≥ 1 being constructed, let us introduce on some probability space independent
equivalent processes (ξt, t ≥ 0), or, respectively, (ξnt , t ≥ 0); let E′ stand in all cases
for the integration with respect to the third variable, e.g.,

E
′λ±(t, Xt, ξt) :=

∫

λ±(t, Xt, Y )µt(dY ),

or

E
′λ±(t, Xn

t , ξ
n
t ) :=

∫

λ±(t, Xn
t , Y )µ

n
t (dY ),

where µn
t is the distribution of Xn

t ; this will be repeated in the proof of the Theorem.

Recall that

Λ±[t, X ′, µ] =

∫

λ±(t, X ′, y)µ(dy) = E
′λ±(t, X ′, ξ),

where ξ has distribution µ. So, the operator L can be also presented in the form,

L[t, X ′, µ]g(X) = E
′L(t, X ′, ξ)g(X),

for X = (k, x, y), where

L(t, X ′, y)g(X) := λ+(t, X ′, y)(g(X+)− g(X))

+ 1(k > 0)λ−(t, X ′, y)(g(X−)− g(X))

+
∂

∂x
g(k, x, y) + 1(k > 0)

∂

∂y
g(k, x, y).
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Note that the (possibly extended) generator of the Markov process Xt (cf., for
example, [10]) is, of course, L[t, X, µt]; different variables X and X ′ in the defini-
tion above are needed only for the convenience of the proof. Equivalently, Dynkin’s
identity holds true for any function g(X) from the same class,

E0,X0
g(Xt) = g(X0) + E0,X0

∫ t

0

L[s,Xs, µs]g(Xs) ds. (2)

Moreover, equivalently, for any 0 ≤ t1 < t2 . . . < tm+1, and for any Borel bounded
functions φk(X), X ∈ X ,

E0,X0



g(Xtm+1
)− g(Xtm)−

tm+1
∫

tm

L[s,Xs, µs]g(Xs) ds





m
∏

k=1

φk(Xtk) = 0. (3)

Also note that for the validity of the equation (3) for any Borel bounded contin-
uous functions φk(X), X ∈ X it suffices to verify it for any bounded continuous
φk(X), X ∈ X , due to the property of measures on R

d which are uniquely deter-
mined by the values of their integrals with continuous bounded functions (see, e.g.,
[13, Theorem 1.2.4]). The latter formula (3) may be called one more version of
Dynkin’s identity; it will be the basis for establishing existence. With a bit of abuse
of the standard terminology, (3) may also be called a martingale problem. Note,
however, that weak uniqueness (= uniqueness in distribution) in this Theorem given
(µs, s ≥ 0) does not mean a total uniqueness in distribution of the process under
construction because there is no claim of uniqueness of (µs, s ≥ 0), not even talking
about a distribution in the space of trajectories.

Proof of Theorem 1. For any n ≥ 1 consider a process (Xn
t ), with initial data

Xn
0 = X0 and intensities of jumps up and down, respectively,

Λ+[t, Xn
(t−1/n)+

, µn
(t−1/n)+

], Λ−[t, Xn
(t−1/n)+

, µn
(t−1/n)+

].

The process (Xn
t ) for each n is constructed by induction successfully on the intervals

[0, 1/n], [1/n, 2/n], etc. Due to the boundedness assumption on both intensities,
there is no blow up and the processes for any n are defined for any t ≥ 0 as càdlàg
processes without any point of jump accumulating. Moreover, for any t probability
of jump exactly at time t for any Xn equals zero.

Recall that the processes (Xn
t , t ≥ 0) for n ≥ 1 being constructed, we introduce

on some probability space independent equivalent processes (ξnt , t ≥ 0), and that E′
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stands in all cases for the integration with respect to the third variable, e.g.,

E
′λ±(t, Xn

t , ξ
n
t ) :=

∫

λ±(t, Xn
t , Y )µ

n
t (dY ).

It can be checked that the assumptions of the Lemma 1 from the Appendix are
satisfied.

Indeed, given ǫ > 0, let us firstly choose c0 > 0 so that

P0,µ0
(|X0| > c0) < ǫ/2.

On the event (|X0| ≤ c0) we have for any n,

sup
0≤t≤T

(|x(Xn
t )|+ |y(Xn

t )|) ≤ c0 + 2T.

Further, since the intensity of jump up Λ+ is bounded, say, Λ+ ≤ λ̄, then the number
of jumps up on [0, T ] is bounded in probability, that is, uniformly with respect to n
(recall that Xn

0 = X0),

P( sup
0≤t≤T

k(Xn
t )− k(X0) > c) → 0, c→ ∞.

Hence, the first condition (9) of the Lemma 1 for the family of processes (Xn) follows.

To check the second condition (10), note that

P(|k(Xn
t )− k(Xn

s )| > 0) ≤ P(at least one jump on [s, t])

≤ 1− exp(−λ̄|t− s|) ≤ λ̄|t− s|.

Next, for ǫ > 2h ≥ 2|t− s|,

P(|x(Xn
t )− x(Xn

s )|+ |y(Xn
t )− y(Xn

s )| > ǫ; no jumps on [s, t]) = 0.

So, the equality (10) for the family of processes (Xn) follows as required.

Hence, on some new probability space there exist equivalent processes (X̃n
t , ξ̃

n
t ),

and a limiting pair (X̃t, ξ̃t) such that for some subsequence (X̃n′

t , ξ̃
n′

t )
P
→ (X̃t, ξ̃t), n

′ →
∞, for each t. It follows due to the boundedness of all intensities that the limiting
process (X̃t, ξ̃t) is also stochastically continuous. More than that, with probability
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one the pair (X̃t, ξ̃t) is a process with a finite number of jumps on any bounded
interval. Moreover, the property limh↓0 supn supt,s≤T ; |t−s|≤h P(|X̃

n
t − X̃n

s | > ǫ) = 0
implies that for any ǫ > 0 there is a following convergence in probability,

X̃n′

(t−1/n′)+

P
→ X̃t, n′ → ∞.

For the sequel, denote by F̃n
t the sigma-algebra σ(X̃n

s : 0 ≤ s ≤ t), and again slightly
abusing notations we will drop the upper index n here.

The analogue of Dynkin’s formula (3) for the pair (X̃n′

t , ξ̃
n′

t ) reads,

E0,X0







g(X̃n′

tm+1
)− g(X̃n′

tm)−

tm+1
∫

tm

E
′L(s, X̃n′

(s−1/n′)+ , ξ̃
n′

(s−1/n′)+)g(X̃
n′

s ) ds





(4)

×

m
∏

k=1

φk(X̃
n′

tk
)

]

= 0, t1 < . . . < tm < tm+1.

The formula (4) follows straightforward from the “complete expectation” arguments
(cf., for example, [18]) and from the definition of intensities.

Indeed, irrespectively on whether or not the intensities depend on the current
state of the process (X̃t), or on some past values with a delay, they intuitively mean
that for δ > 0 we have,

P

(

X̃n
t+δ=(k + 1, x′, y + δ),0≤x′≤δ)|F̃n

t ; X̃
n
t =(k, x, y), X̃n

(t−1/n)+ =(k′, x′, y′)
)

= E
′Λ+(t, (k′, x′, y′), ξ̃n(t−1/n)+)δ + o(δ),

and if k(X̃n
(t−1/n)+

) > 0,

P

(

X̃n
t+δ=(k − 1, x+ δ, y′), 0≤y′≤δ|F̃n

t ; X̃
n
t =(k, x, y), X̃n

(t−1/n)+
=(k′, x′, y′)

)

= E
′Λ−(t, (k′, x′, y′), ξ̃n(t−1/n)+

)δ + o(δ),

and finally,

P

(

X̃n
t+δ = (k, x+ δ, y + δ)|F̃n

t ; X̃
n
t = (k, x, y), X̃n

(t−1/n)+ = (k′, x′, y′)
)

= 1− E
′(Λ+ + Λ−)(t, (k′, x′, y′), ξ̃n(t−1/n)+)δ + o(δ).
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Continuity of the intensities were implicitly used here; later this assumption will be
dropped.

Hence, we can write for any bounded function g in the domain of the operator L,

E

(

g(X̃n
t+δ)|F̃

n
t

)

= g(X̃n,+
t )E′Λ+(t, X̃n

(t−1/n)+ , ξ̃
n
(t−1/n)+)δ

+g(X̃n,−
(t−1/n)+

)E′Λ−(t, X̃n
t , ξ̃

n
(t−1/n)+)δ

+g(X̃n
t + δ)

(

1− E
′(Λ+ + Λ−)(t, X̃n

(t−1/n)+
, ξ̃n(t−1/n)+

)δ
)

+ o(δ),

as δ ↓ 0. Therefore,

E

(

g(X̃n
t+δ)− g(X̃n

t )|F̃
n
t

)

= g(X̃n,+
t )E′Λ+(t, X̃n

(t−1/n)+ , ξ̃
n
(t−1/n)+)δ

+g(X̃n,−
t )E′Λ−(t, X̃n

(t−1/n)+
, ξ̃n(t−1/n)+

)δ

+g(X̃n
t + δ)

(

1− E
′(Λ+ + Λ−)(t, X̃n

(t−1/n)+ , ξ̃
n
(t−1/n)+)δ

)

− g(X̃n
t ) + o(δ)

= E
′L(t, X̃n

(t−1/n)+ , ξ̃
n
(t−1/n)+)g(X̃

n
t )δ + o(δ).

Applying now still intuitively the principle of “complete probabilities” (here more
accurately it could be called “complete expectation”), that is, taking a summation
we can obtain the equation (4). Indeed, let us split the interval [tm, tm+1] into N
equal small sub-intervals, tm = s0 < . . . < sN = tm+1 so that (si+1 − si) =: δ and

9



write down,

E

(

g(X̃n
tm+1

)− g(X̃n
tm)|F̃

n
tm

)

=

N−1
∑

i=0

E

(

E

(

g(X̃n
si+1

)− g(X̃n
si
)|F̃n

si

)

|F̃n
tm

)

=

N−1
∑

i=0

[

E

(

E
′L(si, X̃

n
(si−1/n)+ , ξ̃

n
(si−1/n)+)g(X̃

n
si
)||F̃n

tm

)

δ + o(δ)
]

= E

(∫ tm+1

tm

E
′L(s, X̃n

(s−1/n)+
, ξ̃n(s−1/n)+

)g(X̃n
s ) ds|F̃

n
tm

)

+ o(1), (5)

which implies the equation (4) (recall that we dropped prime at n to simplify nota-
tions). This intuitive calculus may be made strict; for the convenience of the reader
we provide such a rigorous version in the Appendix 2.

However, another easier way is just to recall the definition of intensity via the
martingale property. In our particular case – with jumps of the first component of X
just up or down – the term intensity is applied to the random variable Λ = Λ±(t, ω) if
and only if for any bounded measurable function g(X) (X = (n, x, y)) with bounded
derivatives with respect to x and y and for any t0 ≥ 0, the process defined by the
expression

Mn
t := g(X̃n

t )− g(X̃n
t0)−

∫ t

t0

E
′L(s, X̃n

(s−1/n)+ , ξ̃
n
(s−1/n)+)g(X̃

n
s ) ds, t ≥ t0,

is a martingale: see, e.g., [15, Sec.3.III.5.5] for pure jump processes and for indicator
functions, which extends straightforward to our case and to Borel measurable func-
tions; the intuition behind this definition has been offered in the little calculus above
(see also the Appendix 2). So,

E



g(X̃n
tm+1

)−g(X̃tm)−

tm+1
∫

tm

E
′L(s, X̃n

(s−1/n)+
, ξ̃n(s−1/n)+

)g(X̃n
s ) ds|F̃

n
tm



=0 (a.s.).

10



Therefore, it follows that

E0,X0



g(X̃n′

tm+1
)−g(X̃n′

tm)−

tm+1
∫

tm

E
′L(s, X̃n′

(s−1/n′)+ , ξ̃
n′

(s−1/n′)+)g(X̃
n′

s ) ds





m
∏

k=1

φk(X̃
n′

tk
)

= E0,X0

(

m
∏

k=1

φk(X̃
n′

tk
)

)

E

[

g(X̃n
tm+1

)

−g(X̃tm)−

tm+1
∫

tm

E
′L(s, X̃n′

(s−1/n′)+
, ξ̃n

′

(s−1/n′)+
)g(X̃n

s ) ds|F̃
n
tm



 = 0,

as required. This justifies the equation (4).
Further, by continuity of λ and h, and due to the stochastic continuity of the

processes X̃ and ξ̃, and since all integrand expressions are bounded, and by virtue
of Lebesgue’s bounded convergence Theorem, we obtain from (4) in the limit with
continuous bounded functions (φk),

E0,X0



g(X̃tm+1
)− g(X̃tm)−

tm+1
∫

tm

E
′L(s, X̃s, ξ̃s)g(X̃s) ds





m
∏

k=1

φk(X̃tk
) = 0. (6)

Since the distribution of the random variable ξ̃t is the same as the one of X̃t – let us
denote it by µ̃t – then (6) can be equivalently written as

E0,X0



g(X̃tm+1
)− g(X̃tm)−

tm+1
∫

tm

Lg(s, X̃s, µ̃s) ds





m
∏

k=1

φk(X̃tk
) = 0. (7)

As was mentioned earlier, due to the properties of measures on R
d the formula (7)

holds true for any Borel bounded functions (φk), too. Due to [9], solution of the
“martingale problem” (7) – or, more precisely, of the martingale problem

Mt := g(X̃t)− g(X̃0)−

t
∫

0

Lg(s, X̃s, µ̃s) ds, t ≥ 0, is a martingale, (8)
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with a given family of marginal measures (µ̃s, s ≥ 0) is unique. Hence, according
to [12], or [10, Theorem 4.4.2] the limiting process X̃ is Markov. The form of its
generator with the required intensities Λ± follows from (7). This finishes the proof
of the Theorem 1.

2.2 Weak uniqueness

Emphasize that we will use essentially boundedness of all intensities and the condi-
tion that they are (uniformly) bounded away from zero. While it is clear that the
boundedness from above may be relaxed for the purpose of establishing existence –
e.g., under Lyapunov type conditions, or under a linear growth, or otherwise, – and
that boundedness away from zero is not required for the existence at all, yet for the
uniqueness both boundedness from above and from below seems essential (although
also could be, apparently, slightly relaxed). On the other hand, continuity of the
intensities in this section is not necessary and they are not assumed.

Theorem 2 Let the assumptions (A1)–(A2) and (A4) be satisfied. Then, for any
fixed distribution L(X0), there exists no more than one distribution of the process
(Xt, t ≥ 0) with required intensities Λ+[t, X, µt] and Λ−[t, X, µt].

Recall that no Lipschitz assumptions on the intensities are assumed. In the calculus
the total variation metric will be used.

Let Λ̄[t, X, µ] := Λ+[t, X, µ] + Λ−[t, X, µ].

Proof of Theorem 2 is based on Skorokhod–Girsanov’s change of measure formula
for jump processes (see, e.g., [14]). Suppose there are two solutions, (X1

t , µ
1
t ) and

(X2
t , µ

2
t ). Denote by Ωn the event that the trajectory X has precisely n jumps on

[0, T ]. Recall – see, e.g., [14], [17] – that on the interval of time [0, T ] the density of
one distribution with respect to the other – we denote them by P

µi

, i = 1, 2 – on a
typical trajectory ω = (t±1 , . . . , t

±
n ) with overall n ≥ 0 jumps up (t+i ) or down (t−j )

reads,

ρT :=
dPµ2

dPµ1
(ω)|Ωn

=

n
∏

i=1

Λ±[t±i , Xti , µ
2
ti
]

Λ±[t±i , Xti , µ
1
ti]

exp

(

−

∫ T

0

(Λ̄[t, Xt, µ
2
t ]− Λ̄[t, Xt, µ

1
t ]) dt

)

,

12



where X = (Xs, 0 ≤ s ≤ T ) and (t±i ) are the moments of jumps of the trajectory
X , up or down, respectively; we keep the same sign at Λ, too, i.e., Λ+[t+, . . .] or,
respectively, Λ−[t−, . . .]. The usual convention

∏0
i=1 . . . = 1 is assumed. Note that,

of course, the number of jumps n is random – i.e., it is a function of the trajectory
– but in any case it is almost surely finite due to the boundedness of the intensities.
Note also that the expression ρT above is a probability density. We have,

E
µ1

n
∏

i=1

Λ±[t±i , Xti , µ
2
ti
]

Λ±[t±i , Xti , µ
1
ti]

exp

(

−

∫ T

0

(Λ̄[t, Xt, µ
2
t ]− Λ̄[t, Xt, µ

1
t ]) dt

)

=

∞
∑

n=0

E
µ1

1(Ωn)

n
∏

i=1

Λ±[t±i , Xti, µ
2
ti
]

Λ±[t±i , Xti, µ
1
ti ]

exp

(

−

∫ T

0

(Λ̄[t, Xt, µ
2
t ]−Λ̄[t, Xt, µ

1
t ]) dt

)

=
∞
∑

n=0

E
µ2

∫

· · ·

∫

0<t1<···<tn<T

n
∏

i=1

Λ±[t±i , Xti , µ
2
ti
] exp

(

−

∫ T

0

Λ̄[t, Xt, µ
2
t ] dt

) n
∏

i=1

dti

=

∞
∑

n=0

P
µ2

(Ωn) = 1.

Note that given the initial state X0, the value without expectation E
µ2

here equals,
actually,

∞
∑

n=0

∫

· · ·

∫

0<t1<···<tn<T

n
∏

i=1

Λ±[t±i , Xti, µ
2
ti
] exp

(

−

∫ T

0

Λ̄±[t, Xt, µ
2
t ] dt

) n
∏

i=1

dti,

which itself equals identically one, while expectation E
µ2

relates to integration of
each term over X0 if it is random. It is worthwhile to recall that the rule of the
evolution of the trajectory X between the moments of jumps ti is deterministic and
linear with rate one for the continuous components, and the discrete component does
not change between any two consequent jumps.

Now, we want to estimate the distance in total variation between two probability
measures in the space of trajectories, µ1

[0,T ] and µ
2
[0,T ] and then to use the inequality

that the distance between the marginals of any two measures does not exceed the
distance of the measures themselves,

ϕT := ‖µ1
T − µ2

T‖TV ≤ ‖µ1
[0,T ] − µ2

[0,T ]‖TV = 2− 2Eµ1

(ρT ∧ 1) =: ψT .

Now, the idea is to estimate the right hand side in the last term via ϕ and, hence,
to show that, at least, for small values of T > 0 this value equals zero. If this is

13



realized, then the claim that ϕt = 0 for t ≤ T , t ≤ 2T , etc., and, eventually, for
all t ≥ 0 would follow by induction. In fact, we will be able to estimate the right
hand side via another expression with ψT itself. Note, by the way, that although
normally marginal distributions of any process may not determine the distribution
in the space of trajectories, in our case with intensities it is, of course, the case which
follows from [9], as mentioned already in the proof of the Theorem 1.

The first goal is to find a suitable lower bound for the value E
µ1

(ρT ∧ 1) from
below. Let us split it as follows:

E
µ1

(ρT ∧ 1) =

∞
∑

n=0

E
µ1

1(Ωn) (ρT ∧ 1) .

Further, we have for n = 0,

E
µ1

1(Ω0) (ρT ∧ 1)

= E
µ1

1(Ω0) exp

(

−

∫ T

0

(Λ̄[t, Xt, µ
2
t ]− Λ̄[t, Xt, µ

1
t ]) dt

)

∧ 1

≥ exp(−

∫ T

0

‖λ‖‖µ2
t − µ1

t‖TV dt)E
µ1

1(Ω0)

≥ exp(−‖λ‖ TψT )E
µ1

1(Ω0).

All norms like ‖λ‖ are sup-norms (except for the total variation norm, which is
always shown explicitly). We used the fact that |Λ̄[t, X, µ]| ≤ ‖λ‖, and that

|Λ̄[t, Xt, µ
2
t ]− Λ̄[t, Xt, µ

1
t ]| ≤ ‖λ‖|µ1

[0,t] − µ2
[0,t]|TV ≤ ‖λ‖|µ1

[0,T ] − µ2
[0,T ]|TV , 0 ≤ t ≤ T.

14



Similarly for n ≥ 1, with a notation Λ̃±[t±, . . .] := lnΛ±[t±, . . .],

E
µ1

1(Ωn) (ρT ∧ 1)

= E
µ1

1(Ωn)

{

n
∏

i=1

Λ±[t±i , Xti , µ
2
ti
]

Λ±[t±i , Xti , µ
1
ti]
×

× exp

(

−

∫ T

0

(Λ̄[t, Xt, µ
2
t ]− Λ̄[t, Xt, µ

1
t ]) dt

)}

∧ 1

≥ E
µ1

1(Ωn) exp(−

n
∑

i=1

|Λ̃[t±i , Xti, µ
2
ti
]− Λ̃[t±i , Xti , µ

1
ti
]|)

× exp

(

−

∫ T

0

|Λ̄[t, Xt, µ
2
t ]− Λ̄[t, Xt, µ

1
t ]| dt

)

.

Minimum with 1 here was dropped after all multipliers were estimated from below
by the values less than one. Further, since the derivative of ln x is bounded on any
interval 0 < a ≤ x ≤ b, say, by a constant K, we have with a = inf λ(. . .) =: λ and
b = ‖λ‖,

|Λ̃±[t±i , Xti , µ
2
ti
]− Λ̃[t±i , Xti , µ

1
ti
]| ≤ K|Λ±[t±i , Xti, µ

2
ti
]− Λ±[t±i , Xti, µ

1
ti
]|

≤ K‖Λ‖‖µ2
ti
− µ2

ti
‖TV .

Hence,

E
µ1

1(Ωn) (ρT ∧ 1)

≥ E
µ1

1(Ωn) exp(−
n
∑

i=1

K‖Λ‖ ‖µ2
ti
− µ1

ti
‖TV )

× exp(−

∫ T

0

‖λ‖‖µ2
t − µ1

t‖TV dt).

(Here by definition t0 = 0.) Here the infimum λ is positive by the assumption.
Thus, using the bound 1 − exp(−a) ≤ a and estimates E

µ1

1(Ω0) ≤ exp(−λT ) and

15



E
µ1

1(Ωn) ≤
(‖λ‖T )n

n!
exp(−λT ), n ≥ 1, we get,

1

2
ψT = 1−

∑

n

E
λ1

1(Ωn) (ρT ∧ 1)

≤ (1− exp(−‖λ‖ TψT ))E
λ1

1(Ω0)

+

∞
∑

n=1

E
λ1

1(Ωn)

(

1− exp

(

−K

n
∑

i=1

‖Λ‖ ‖µ2
ti
− µ1

ti
‖TV

)

×

× exp

(

−

∫ T

0

‖λ‖‖µ2
t − µ1

t‖TV dt

))

≤ ‖λ‖TψTE
µ1

1(Ω0)

+
∞
∑

n=1

E
µ1

1(Ωn) (1− exp (−nK‖Λ‖ψT − T‖λ‖ψT ))

≤ ψT exp(−λT )

(

‖λ‖T +

∞
∑

n=1

(nK‖Λ‖ + T‖λ‖)
(‖λ‖T )n

n!

)

= TψT exp(−λT )

(

‖λ‖+

∞
∑

n=0

((n+ 1)K‖Λ‖ + T‖λ‖)
(‖λ‖)n+1T n

(n+ 1)!

)

.

The series in the right hand side here converges and does not exceed some constant,
say, C > 0, if T ≤ 1. Hence, overall, we obtain,

0 ≤
1

2
ψT ≤ CTψT , T ≤ 1.

This implies that
ψT = 0, T < (2C)−1 ∧ 1,

and, therefore, also
ϕT = 0, T < (2C)−1 ∧ 1,

as required. In other words, we have shown that the two marginal measures µ1
t and

µ2
t coincide for all t < (2C)−1 ∧ 1.
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Further, note the constant C in this calculus does not depend on the initial
distribution of the process. Hence, using the Markov property of the process and
repeating the same arguments on [T, 2T ], [2T, 3T ], etc., by induction we conclude
that

ψt = 0, t ≥ 0,

and, therefore, also
ϕt = 0, t ≥ 0,

as required. So, the two measures µ1 and µ2 on the space of trajectories are equal.
The Theorem 2 is proved.

Appendix 1

The following celebrated Lemma is stated for the convenience of the reader.

Lemma 1 (Skorokhod [17, Ch.1, §6]) Let ξnt (t ≥ 0, n = 0, 1, . . .) be some d-
dimensional stochastic processes defined on some probability space and let for any
T > 0, ǫ > 0 the following hold true:

lim
c→∞

sup
n

sup
t≤T

P(|ξnt | > c) = 0, (9)

lim
h↓0

sup
n

sup
t,s≤T ; |t−s|≤h

P(|ξnt − ξns | > ǫ) = 0. (10)

Then there exists a subsequence n′ → ∞ and a new probability can be constructed
with processes ξ̃n

′

t , t ≥ 0 and ξ̃t, t ≥ 0, such that all finite-dimensional distributions
of ξ̃n

′

· coincide with those of ξn
′

· and such that for any ǫ > 0 and all t ≥ 0,

P(|ξ̃n
′

t − ξ̃t| > ǫ) → 0, n′ → ∞.
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Appendix 2

Let us show how the intuitive calculus leading to (5) may be performed more rigor-
ously. We have,

P

(

X̃n
t+δ=(k + 1, x′, y + δ),0≤x′≤δ)|F̃n

t ; X̃
n
t , X̃

n
(t−1/n)+

)

|X̃n
t
=(k,x,y)

= P

(

X̃n
t+δ=(k + 1, x′, y + δ), 0≤x′≤δ);

precisely one jump up on [t, t + δ]|F̃n
t ; X̃

n
t , X̃

n
(t−1/n)+

)

+ o(δ)

=

∫ t+δ

t

E
′Λ+(s, X̃n

(s−1/n)+
, ξ̃n(s−1/n)+

)

× exp

(

−

∫ t+δ

t

E
′Λ̄(r, X̃n

(r−1/n)+
, ξ̃n(r−1/n)+

) dr

)

ds+ o(δ)

=

∫ t+δ

t

E
′Λ+(s, X̃n

(s−1/n)+
, ξ̃n(s−1/n)+

) ds+ o(δ);
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if k(X̃n
(t−1/n)+

) > 0,

P

(

X̃n
t+δ = (k − 1, x+ δ, y′), 0 ≤ y′ ≤ δ|F̃n

t ; X̃
n
t , X̃

n
(t−1/n)+

)

|X̃n
t
=(k,x,y)

= P

(

X̃n
t+δ = (k − 1, x+ δ, y′), 0 ≤ y′ ≤ δ;

precisely one jump down on [t, t+ δ]|F̃n
t ; X̃

n
t , X̃

n
(t−1/n)+

)

+ o(δ)

=

∫ t+δ

t

E
′Λ−(s, X̃n

(s−1/n)+ , ξ̃
n
(s−1/n)+)

× exp

(

−

∫ t+δ

t

E
′Λ̄(r, X̃n

(r−1/n)+ , ξ̃
n
(r−1/n)+) dr

)

ds+ o(δ)

=

∫ t+δ

t

E
′Λ−(s, X̃n

(s−1/n)+ , ξ̃
n
(s−1/n)+) ds+ o(δ);

and finally,

P

(

X̃n
t+δ = (k, x+ δ, y + δ)|F̃n

t ; X̃
n
t , X̃

n
(t−1/n)+

)

|X̃n
t
=(k,x,y)

= P

(

X̃n
t+δ = (k, x+ δ, y + δ); no jumps on [t, t+ δ]|F̃n

t ; X̃
n
t , X̃

n
(t−1/n)+

)

+ o(δ)

= exp

(

−

∫ t+δ

t

E
′Λ̄(r, X̃n

(r−1/n)+ , ξ̃
n
(r−1/n)+) dr

)

+ o(δ)

= 1−

∫ t+δ

t

E
′Λ̄(r, X̃n

(r−1/n)+ , ξ̃
n
(r−1/n)+) dr + o(δ).

Note that unlike in the intuitive calculus earlier, we did not use any regularity condi-
tions on the intensities here and that up to o(δ) the formulae above are all exact, not
approximate as in the earlier intuitive version. Hence, we can write for any bounded
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function g in the domain of the operator L (in particular, continuous in the second
and third components of the state variable),

E

(

g(X̃n
t+δ)|F̃

n
t

)

= g(X̃n,+
t )

∫ t+δ

t

E
′Λ+(s, X̃n

(s−1/n)+ , ξ̃
n
(s−1/n)+) ds

+g(X̃n,−
(t−1/n)+

)

∫ t+δ

t

E
′Λ−(s, X̃n

(s−1/n)+ , ξ̃
n
(s−1/n)+) ds

+g(X̃n
t + δ)

(

1−

∫ t+δ

t

E
′Λ̄(r, X̃n

(r−1/n)+
, ξ̃n(r−1/n)+

) dr

)

+ o(δ),

as δ ↓ 0. Therefore, it follows rigorously that

E

(

g(X̃n
t+δ)− g(X̃n

t )|F̃
n
t

)

=

∫ t+δ

t

E
′L(s, X̃n

(s−1/n)+
, ξ̃n(s−1/n)+

)g(X̃n
s ) ds+ o(δ).

So, we can rigorously apply the principle of “complete probabilities” (or, better
“complete expectation”) taking a summation as earlier in the intuitive version: let
us split the interval [tm, tm+1] into N equal small sub-intervals, tm = s0 < . . . < sN =
tm+1 so that (si+1 − si) =: δ; then we get similarly to (5),

E

(

g(X̃n
tm+1

)− g(X̃n
tm)|F̃

n
tm

)

=
N−1
∑

i=0

E

(

E

(

g(X̃n
si+1

)− g(X̃n
si
)|F̃n

si

)

|F̃n
tm

)

= E

(
∫ tm+1

tm

E
′L(s, X̃n

(s−1/n)+
, ξ̃n(s−1/n)+

)g(X̃n
s ) ds|F̃

n
tm

)

+ o(1),

which rigorously implies the equation (4).
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with D. Šiska, and L. Szpruch. S. Pirogov, A. Rybko, and G. Zverkina helped to
find some (quite a few) technicalities to be corrected in the earlier versions of the
text. The author is sincerely thankful to all these colleagues and to two referees
for very useful advice. The deepest gratitude is to Professor Alexander Dmitrievich
Solovyev (06.09.1927 – 06.04.2001) who was the author’s supervisor at BSc and MSc
programmes at Moscow State University.

References

[1] Aghajani, R., Li, X., Ramanan, K.: Mean-field Dynamics of Load-Balancing
Networks with General Service Distributions, https://arxiv.org/abs/1512.05056

[2] Baccelli, F., Karpelevich, F.I., Kelbert, M.Ya. et al.: A Mean-Field Limit for a
Class of Queueing Networks, Journal of Statistical Physics, 66(3/4), (1992)

[3] Baccelli, F., Rybko, A.N., Shlosman, S.B.: Queueing networks with mobile
servers: the mean-field approach, Problems Inform. Transmission, 52(2), 178-199
(2016)

[4] Billingsley, P.: Convergence of Probability Measures. New York, NY: John Wiley
& Sons (1999)

[5] Borovkov, K.A.: Propagation of chaos for queueing networks, Theory of Proba-
bility and its Applications, 42:3, 385-394 (1998)

[6] Dawson, D.A., Tang, J., Zhao, Y.Q.: Balancing Queues by Mean Field Interac-
tion, Queueing Systems 49, 335-361 (2005)

[7] Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queueing Theory, 2nd ed.,
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