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Remarks on input-to-state stability and non-coercive Lyapunov functions

Birgit Jacob, Andrii Mironchenko, Jonathan R. Partington and Fabian Wirth

Abstract— We consider an abstract class of infinite-
dimensional dynamical systems with inputs. For this class the
significance of noncoercive Lyapunov functions is analyzed. It
is shown that the existence of such Lyapunov functions implies
integral input-to-integral state stability. Assuming further reg-
ularity it is possible to conclude input-to-state stability. For a
particular class of linear systems with unbounded admissible
input operators, explicit constructions of noncoercive Lyapunov
functions are provided. The theory is applied to a heat equation
with Dirichlet boundary conditions.

I. INTRODUCTION

It is well-known that the existence of an ISS Lyapunov

function implies ISS. However, the construction of ISS

Lyapunov functions for infinite-dimensional systems is a

challenging task, especially in the nonlinear case. Already

for undisturbed linear systems over Hilbert spaces, ”natural”

Lyapunov function candidates constructed via solutions of

Lyapunov equations are of the form V (x) := 〈Px,x〉, where

〈·, ·〉 is a scalar product in X and P is a self-adjoint, bounded

linear, positive operator the spectrum of which may contain

0. In this case V is not coercive and satisfies only the weaker

property that V (x)> 0 for x 6= 0. Hence the question arises,

whether such ”non-coercive” Lyapunov functions can be

used to conclude that a given system is ISS. A thorough study

of a similar question related to characterizations of uniform

global asymptotic stability has recently been performed in

[1].

In [2, Section III.B] it was shown for a class of semilin-

ear equations in Banach spaces with Lipschitz continuous

nonlinearities that the existence of a non-coercive Lyapunov

function implies ISS provided the flow of the system has

some continuity properties with respect to states and inputs

at the origin and the finite-time reachability sets of the system

are bounded. However, this class of systems does not include

many important systems such as linear control systems with

admissible inputs operators, which are crucially important

for the study of partial differential equations with boundary

inputs.
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In this paper we extend the results from [2, Section

III.B] to a broader class of systems, which includes at least

some important classes of boundary control systems. The

characterizations of ISS developed in [2] will play a central

role in these developments.

It is insightful to define another ISS-like property which

we call integral-to-integral ISS. Its finite-dimensional coun-

terpart has been studied in [3] and it was shown that integral-

to-integral ISS is equivalent to ISS for systems of ordinary

differential equations. Further relations of ISS and integral-

to-integral ISS have been developed in [4], [5] and other

works.

We start by defining a general class of control systems

in Section II. This class covers a wide range of infinite-

dimensional systems. For this class several stability concepts

are defined which relate to the characterization of ISS, in

particular to the characterization with the help of noncoercive

Lyapunov functions. In Section III we show in Theorem 3.6

that integral-to-integral ISS implies ISS for a broad class

of infinite-dimensional systems provided the flow of the

system has some continuity properties w.r.t. states and inputs

at the origin and the finite-time reachability sets of the

system are bounded. The proof of this fact is performed

in 3 steps. The first one is to show that integral-to-integral

ISS implies a so-called uniform limit property. This result

has been already obtained in [2, Section III.B]. The second

(technically harder) step, is to show that integral-to-integral

ISS implies local stability of a control system provided the

flow of the system is continuous w.r.t. state and inputs at the

origin. This is done in Proposition 3.5. The third and final

step in the proof of Theorem 3.6 is the application of the

main result in [2].

In Section IV we derive a constructive converse ISS

Lyapunov theorem for certain classes of linear systems with

admissible input operators. In particular, our results can be

applied for a broad class of subnormal operators, as discussed

in Section V-B.

It is well-known that the classic heat equation with Dirich-

let boundary inputs is ISS, which has been verified by

means of several different methods: [6], [7], [8]. However,

no constructions for ISS Lyapunov functions have been

proposed. In Section V we show that using the constructions

developed in Proposition 4.1 one can construct a non-

coercive ISS Lyapunov function for this system. It is still

an open question, whether a coercive ISS Lyapunov function

for a heat equation with the Dirichlet boundary input exists

(note, that for the system with Neumann boundary input a

coercive ISS Lyapunov function can be constructed, see [9]).

Notation: We use the following notation. The nonnegative
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reals are R+ := [0,∞). The open ball of radius r around

0 in X is denoted by Br := {x ∈ X : ‖x‖X < r}. Similarly,

Br,U := {u ∈ U : ‖u‖U < r}. By lim we denote the limit

superior. For any normed linear space X , for any S ⊂ X we

denote the closure of S by S.

For the formulation of stability properties the following

classes of comparison functions are useful:

K := {γ : R+ → R+ | γ is continuous, strictly

increasing and γ(0) = 0} ,
K∞ := {γ ∈ K | γ is unbounded} ,
L := {γ : R+ → R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0},
K L := {β : R+×R+ → R+ | β is continuous,

β (·, t) ∈ K , β (r, ·) ∈ L , ∀t ≥ 0, ∀r > 0} .

II. PRELIMINARIES

We begin by defining (time-invariant) forward complete

control systems evolving on a Banach space X .

Definition 2.1: Let (X ,‖·‖X ), (U,‖·‖U ) be Banach spaces

and U ⊂ { f : R+ → U} be a normed vector space which

satisfies the following two axioms:

Axiom of shift invariance: For all u ∈U and all τ ≥ 0 we

have u(·+ τ) ∈ U with ‖u‖U ≥ ‖u(·+ τ)‖U .

Axiom of concatenation: For all u1,u2 ∈ U and for all

t > 0 the concatenation of u1 and u2 at time t

u(τ) :=

{

u1(τ), if τ ∈ [0, t],

u2(τ − t), otherwise,
(II.1)

belongs to U . Assume φ : R+×X ×U → X .

The triple Σ = (X ,U ,φ) is called a forward complete

control system, if the following properties hold:

(Σ1) Identity property: for every (x,u) ∈ X ×U it holds that

φ(0,x,u) = x.

(Σ2) Causality: for every (t,x,u) ∈ R+×X ×U , for every

ũ ∈ U with u(s) = ũ(s) for all s ∈ [0, t] it holds that

φ(t,x,u) = φ(t,x, ũ).
(Σ3) Continuity: for each (x,u) ∈ X × U the map t 7→

φ(t,x,u) is continuous.

(Σ4) Cocycle property: for all t,h ≥ 0, for all x ∈ X , u ∈ U

we have φ(h,φ(t,x,u),u(t + ·)) = φ(t +h,x,u).

The space X ist called the state space, U the input space

and φ the transition map.

This class of systems encompasses control systems generated

by ordinary differential equations (ODEs), switched systems,

time-delay systems, evolution partial differential equations

(PDEs), abstract differential equations in Banach spaces and

many others.

Remark 2.2: Note however, that not all important systems

are covered by our definitions. In particular, the input space

C(R+,U) of continuous U-valued functions does not satisfy

the axiom of concatenation. This, however, should not be a

big restriction, since already piecewise continuous and Lp in-

puts, which are used in control theory much more frequently

than continuous ones, satisfy the axiom of concatenation.

Some authors consider more general concepts, in which

the systems fail to satisfy a cocycle property, see e.g. [10].

We single out two particular cases which will be of

interest.

Example 2.3: Let A be the generator of a strongly contin-

uous semigroup (T (t))t≥0 of bounded linear operators on X

and let f : X ×U → X . Consider the system

ẋ(t) = Ax(t)+ f (x(t),u(t)), u(t) ∈U, (II.2)

where x(0) ∈ X . We study mild solutions of (II.2), i.e.

solutions x : [0,τ]→ X of the integral equation

x(t) = T (t)x(0)+
∫ t

0
T (t − s) f (x(s),u(s))ds, (II.3)

belonging to the space of continuous functions C([0,τ],X)
for some τ > 0.

For system (II.2), we use the following assumption con-

cerning the nonlinearity f :

(i) f : X ×U → X is Lipschitz continuous on bounded

subsets of X , uniformly with respect to the second

argument, i.e. for all C > 0, there exists a L f (C) > 0,

such that for all x,y ∈ BC and for all v ∈ U , it holds

that

‖ f (x,v)− f (y,v)‖X ≤ L f (C)‖x− y‖X . (II.4)

(ii) f (x, ·) is continuous for all x ∈ X and f (0,0) = 0.

Let U = PC(R+,U). Then our assumptions on f ensure

that mild solutions of initial value problems of the form (II.2)

exist and are unique locally, according to [11, Proposition

4.3.3]. If these mild solutions exist on [0,∞) for every x(0)∈
X and u ∈ PC(R+,U), then (X ,PC(R+,U),φ), defines a

forward complete control system, where φ(t,x(0),u) denotes

the mild solution at time t.

Example 2.4: (Linear systems with admissible control op-

erators) We consider linear systems of the form

ẋ(t) = Ax(t)+Bu(t), x(0) ∈ X , t ≥ 0, (II.5)

where A is the generator of a strongly continuous semigroup

(T (t))t≥0 on a Banach space X and B ∈ L(U,X−1) for some

Banach space U . Here X−1 is the completion of X with

respect to the norm ‖x‖X−1
= ‖(β −A)−1x‖X for some β in

the resolvent set ρ(A) of A. The semigroup (T (t))t≥0 extends

uniquely to a strongly continuous semigroup (T−1(t))t≥0 on

X−1 whose generator A−1 is an extension of A, see e.g.

[12]. Thus we may consider Equation (II.5) on the Banach

space X−1. For every x0 ∈ X and every u ∈ L1
loc([0,∞),U),

the function x : [0,∞)→ X−1,

x(t) := T (t)x0 +
∫ t

0
T−1(t − s)Bu(s)ds, t ≥ 0,

is called mild solution of Equation (II.5). The operator

B ∈ L(U,X−1) is called an q-admissible control operator for

(T (t))t≥0, where 1 ≤ q ≤ ∞, if
∫ t

0
T−1(t − s)Bu(s)ds ∈ X

for every t ≥ 0 and u ∈ Lq([0,∞),U).
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If B is ∞-admissible and for every initial condition x0 ∈ X

and every input function u ∈ L∞([0,∞),U) the mild solution

x : [0,∞)→X is continuous, then (X ,L∞([0,∞),U),φ), where

φ(t,x0,u) := T (t)x0 +
∫ t

0
T−1(t − s)Bu(s)ds,

defines a forward-complete control system as defined in

Definition 2.1.

We note that, ∞-admissibility and continuity of all mild

solutions x : [0,∞)→ X , where x0 ∈ X and u ∈ L∞([0,∞),U)
is implied by each of the following conditions:

• B is q-admissible for some q ∈ [1,∞) [6],

• B is ∞-admissible, dimU < ∞, X is a Hilbert space and

A generates an analytic semigroup which is similar to a

contraction semigroup [13].

Within this article different stability concepts of forward

complete control systems are needed.

Definition 2.5: Consider a forward complete control sys-

tem Σ = (X ,U ,φ).

1) We call 0 ∈ X an equilibrium point (of the undisturbed

system) if φ(t,0,0) = 0 for all t ≥ 0.

2) We say Σ has the CEP property, if 0 is an equilibrium

and for every ε > 0 and for any h > 0 there exists a

δ = δ (ε,h)> 0, so that

t ∈ [0,h], ‖x‖X ≤ δ , ‖u‖U ≤ δ ⇒ ‖φ(t,x,u)‖X ≤ ε.(II.6)

3) We say that Σ has bounded reachability sets (BRS), if

for any C > 0 and any τ > 0 it holds that

sup
{

‖φ(t,x,u)‖X : ‖x‖X ≤C, ‖u‖U ≤C, t ∈ [0,τ]
}

<∞.

4) System Σ is called uniformly locally stable (ULS), if

there exist σ ∈ K∞, γ ∈ K∞ ∪{0} and r > 0 such that

for all x ∈ Br and all u ∈ Br,U :

‖φ(t,x,u)‖X ≤ σ(‖x‖X )+ γ(‖u‖U ) ∀t ≥ 0. (II.7)

5) We say that Σ has the uniform limit property (ULIM),

if there exists γ ∈ K ∪{0} so that for every ε > 0 and

for every r > 0 there exists a τ = τ(ε,r) such that for

all x with ‖x‖X ≤ r and all u ∈ U there is a t ≤ τ such

that

‖φ(t,x,u)‖X ≤ ε + γ(‖u‖U ). (II.8)

6) System Σ is called (uniformly) input-to-state stable

(ISS), if there exist β ∈ K L and γ ∈ K such that

for all x ∈ X , u ∈ U and t ≥ 0 it holds that

‖φ(t,x,u)‖X ≤ β (‖x‖X , t)+ γ(‖u‖U ). (II.9)

7) We call Σ integral-to-integral ISS if there are α ∈ K

and ψ ∈ K∞, σ ∈ K∞ so that for all x ∈ X , u ∈ U and

t ≥ 0 it holds that

∫ t

0
α(‖φ(s,x,u)‖X )ds ≤ ψ(‖x‖X )

+
∫ t

0
σ(‖u(s+ ·)‖U )ds. (II.10)

Example 2.6: (Linear systems with admissible control op-

erators) We continue with Example 2.4, that is, we con-

sider again Equation (II.5) and assume that A generates

a C0-semigroup, B ∈ L(U,X−1) is ∞-admissible and for

every initial condition x0 ∈ X and every input function u ∈
L∞([0,∞),U) the mild solution x : [0,∞)→ X is continuous.

These assumption guarantee that (X ,L∞([0,∞),U),φ), where

φ(t,x0,u) := T (t)x0 +
∫ t

0
T−1(t − s)Bu(s)ds,

defines a forward-complete control system. The system has

the following properties

1) 0 ∈ X an equilibrium point due to the linearity of the

system,

2) (X ,L∞([0,∞),U),φ) has the CEP property, and bounded

reachability sets (BRS) [14],

3) If (T (t))t≥0 is exponentially stable, then

(X ,L∞([0,∞),U),φ) has the uniform limit property

(ULIM) [14], is uniformly locally stable (ULS) [14]

and input-to-state stable (ISS) [6],

4) (T (t))t≥0 is exponentially stable if and only if

(X ,L∞([0,∞),U),φ) is ISS [14].

5) If (X ,L∞([0,∞),U),φ) is integral-to-integral ISS, then

(X ,L∞([0,∞),U),φ) is ISS [6].

Remark 2.7: To the best of the knowledge of the authors it

is unknown, whether or not the converse statement to item 5)

of Example 2.6 holds for every linear system (II.5).

III. NON-COERCIVE LYAPUNOV THEOREM

Lyapunov functions are a powerful tool for the investi-

gation of ISS. Let x ∈ X and V be a real-valued function

defined in a neighborhood of x. The (right-hand upper) Dini

derivative of V at x corresponding to the input u along the

trajectories of Σ is defined by

V̇u(x) = lim
t→+0

1

t

(

V (φ(t,x,u))−V (x)
)

. (III.1)

Definition 3.1: A continuous function V : X → R+ is

called a non-coercive ISS Lyapunov function for a system

Σ = (X ,U ,φ), if there exist ψ2,α ∈ K∞ and σ ∈ K such

that

0 <V (x)≤ ψ2(‖x‖X ), ∀x ∈ X (III.2)

and the Dini derivative of V along the trajectories of Σ

satisfies

V̇u(x)≤−α(‖x‖X )+σ(‖u‖U ) (III.3)

for all x ∈ X and u ∈ U .

Moreover, if (III.3) holds just for u = 0, we call V a (non-

coercive) Lyapunov function for the undisturbed system Σ. If

additionally there is ψ1 ∈ K∞ so that the following estimate

holds:

ψ1(‖x‖X )≤V (x)≤ ψ2(‖x‖X ), ∀x ∈ X , (III.4)

then V is called a coercive ISS Lyapunov function for Σ.

The next proposition shows that integral-to-integral ISS

property naturally arises in the theory of ISS Lyapunov

functions:
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Proposition 3.2: Let Σ= (X ,U ,φ) be a forward complete

control system. Assume that there exists a (noncoercive)x

ISS Lyapunov function for Σ. Then Σ is integral-to-integral

ISS.

Proof: Assume that V is an ISS Lyapunov function for

Σ with corresponding ψ2,α,σ . Integrating (III.3) from 0 to

t, we obtain using [1, Lemma 3.4]:

V (φ(t,x,u))−V (x)

≤−
∫ t

0
α(‖φ(s,x,u)‖X )ds+

∫ t

0
σ(‖u(·+ s)‖U )ds.

This immediately implies that

∫ t

0
α(‖φ(s,x,u)‖X )ds

≤V (x)−V (φ(t,x,u))+
∫ t

0
σ(‖u(·+ s)‖U )ds

≤ ψ2(‖x‖X )+
∫ t

0
σ(‖u(·+ s)‖U )ds. (III.5)

This shows integral-to-integral ISS of Σ.

In [3, Theorem 1] it was shown that for ODE systems

with Lipschitz continuous nonlinearities the notions of ISS

and integral-to-integral ISS are equivalent. Next we show that

integral-to-integral ISS implies ISS for a class of forward-

complete control systems satisfying the CEP and BRS prop-

erties. In order to prove this, we are going to use the

following characterization of ISS, shown in [2]:

Theorem 3.3: Let Σ = (X ,U ,φ) be a forward complete

control system. The following statements are equivalent:

(i) Σ is ISS.

(ii) Σ is ULIM, ULS, and BRS.

In [2, Proposition 8] it was shown (with slightly different

formulation, but the same proof) that

Proposition 3.4: Let Σ= (X ,U ,φ) be a forward complete

control system. If Σ is integral-to-integral ISS, then Σ is

ULIM.

Next we provide a sufficient condition for the ULS prop-

erty.

Proposition 3.5: Let Σ= (X ,U ,φ) be a forward complete

control system satisfying the CEP property. If Σ is integral-

to-integral ISS, then Σ is ULS.

Now we combine the derived results to state a relationship

between ISS and integral-to-integral ISS.

Theorem 3.6: Let Σ be a forward complete control system,

which is CEP and BRS. If Σ is integral-to-integral ISS, then

Σ is ISS.

Proof: Propositions 3.4 and 3.5 imply that Σ is ULIM

and ULS. Since Σ is assumed to be BRS, Theorem 3.3 shows

that Σ is ISS.

We may now state our main result on noncoercive ISS

Lyapunov functions.

Theorem 3.7: Let Σ be a forward complete control system,

which is CEP and BRS. If there exists a (noncoercive) ISS

Lyapunov function for Σ, then Σ is ISS.

Proof: Follows from a combination of Proposition 3.2

and Theorem 3.6.

Remark 3.8: Note that forward complete ODE systems

with locally Lipschitz nonlinearities are BRS (see [15, Propo-

sition 5.1]) and CEP. Hence for this special class of systems

we recover the result of Sontag that integral-to-integral ISS

implies ISS (which is a part of [3, Theorem 1]).

One of the requirements in Theorem 3.6 is that the CEP

property holds. If this property is not available, we can still

infer input-to-state practical stability of Σ, using the main

result in [16]. The notion of input-to-state practical stability,

a relaxation of the ISS concept has been proposed in [17].

This concept is very useful for control under quantization

errors [18], [19], sample-data control [20] to name a few

examples.

Definition 3.9: A control system Σ = (X ,U ,φ) is called

(uniformly) input-to-state practically stable (ISpS), if there

exist β ∈ K L , γ ∈ K∞ and c > 0 such that for all x ∈ X ,

u ∈ U and t ≥ 0 the following holds:

‖φ(t,x,u)‖X ≤ β (‖x‖X , t)+ γ(‖u‖U )+ c. (III.6)

Theorem 3.10: Let Σ be a forward complete control sys-

tem, which is BRS. If Σ is integral-to-integral ISS, then Σ is

ISpS.

Proof: Proposition 3.4 implies that Σ is ULIM. Since

Σ is also BRS, [16, Theorem III.1] shows that Σ is ISpS.

IV. LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS WITH

ADMISSIBLE OPERATORS

In this section we return to systems of the form (II.5),

which we call Σ(A,B) for short. We show how non-coercive

ISS Lyapunov functions can be constructed for systems

Σ(A,B) with an admissible input operator B provided the

operator A has some additional properties.

Here we generally assume that X is a Hilbert space and

that the input space is given by U := L∞([0,∞),U).
Our main result in this section is a constructive converse

ISS Lyapunov theorem for certain classes of linear systems

with admissible input operators.

Proposition 4.1: Let A be the generator of a C0-semigroup

(T (t))t≥0 on a Hilbert space X and let B ∈ L(U,X−1) and

assume that the system Σ(A,B) is ISS.

Further, assume that D(A)⊆ D(A∗) and the inequality

Re〈A∗A−1x,x〉X +δ‖x‖2
X ≥ 0 (IV.1)

holds for some δ < 1 and every x ∈ X , and Re〈Ax,x〉X < 0

for every x ∈ D(A)\{0}.

Then

V (x) :=−Re〈A−1x,x〉X (IV.2)

is an ISS Lyapunov function satisfying

V̇u(x)≤−(1−δ − ε)‖x0‖2
X

+

(

(‖A∗A−1‖L(X)+1)2‖A−1
−1B‖2

4ε
+‖A−1

−1B‖κ(0)

)

‖u‖2
∞

for ε ∈ (0,1−δ ), x0 ∈ X and u ∈ L∞([0,∞),U). Here κ(0) =
limtց0 κ(t), where κ(t)> 0 satisfies
∥

∥

∥

∥

∫ t

0
T−1(t − s)Bu(s)ds

∥

∥

∥

∥

X

≤ κ(t)‖u‖∞, u ∈ L∞([0, t),U).
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Remark 4.2: Inequality (IV.1) is equivalent to the exis-

tence of a constant δ ′ < 1 satisfying

‖(A+A∗)x‖2
X +δ ′‖Ax‖2

X ≥ ‖A∗x‖2
X , x ∈ D(A).

If A generates a strongly continuous contraction semigroup,

then (IV.1) implies that the semigroup (T (t))t≥0 is 2-

hypercontractive [21]. In particular, subnormal and normal

operators whose spectrum lie in a sector satisfy (IV.1), see

Proposition 5.2.

Corollary 4.3: Let A generate an exponentially stable

analytic semigroup on a Hilbert space X and assume that

A is a normal operator. Further, let B ∈ L(Cn,X−1) be ∞-

admissible. Then

V (x) :=−Re〈A−1x,x〉X (IV.3)

is an ISS Lyapunov function satisfying

V̇u(x)≤−c1‖x0‖2
X + c2‖u‖2

∞

for some constants c1,c2 > 0 and all x0 ∈ X and u ∈
L∞([0,∞),U).

Proof: Section V-B shows that the assumption of

Proposition 4.1 are satisfied.

Remark 4.4: By Section V-B normality in Corollary 4.3

can be replaced by subnormality.

V. APPLICATIONS OF PROPOSITION 4.1

A. ISS Lyapunov functions for a heat equation with Dirichlet

boundary input

It is well-known that a classical heat equation with Dirich-

let boundary inputs is ISS, which has been verified by means

of several different methods: [6], [7], [8]. However, no con-

structions for ISS Lyapunov functions have been proposed.

In the next example we show that using Proposition 4.1 one

can construct a non-coercive ISS Lyapunov function for this

system.

Example 5.1: Let us consider the following boundary

control system given by the one-dimensional heat equation

on the spatial domain [0,1] with Dirichlet boundary control

at the point 1,

xt(ξ , t) = axξ ξ (ξ , t), ξ ∈ (0,1), t > 0,

x(0, t) = 0, x(1, t) = u(t), t > 0,

x(ξ ,0) = x0(ξ ),

where a > 0.

We choose X = L2(0,1), U = C,

A f = f ′′, f ∈ D(A),

D(A) =
{

f ∈ H2(0,1) | f (0) = f (1) = 0
}

.

and B = aδ ′
1. Clearly, A is a self-adjoint operator on X

generating an exponentially stable analytic C0-semigroup on

X . Moreover, B∈X−1 = L(U,X−1) is ∞-admissible, for every

x0 ∈ X and u ∈ L∞(0,∞) the corresponding mild solution is

continuous and κ(0) = 0 [6]. Further, in [6] the following

ISS-estimates has been shown:

‖x(t)‖L2(0,1) ≤ e−aπ2t‖x0‖L2(0,1)+
1√
3
‖u‖L∞(0,t),

‖x(t)‖L2(0,1) ≤ e−aπ2t‖x0‖L2(0,1)+ c

(

∫ t

0
|u(s)|pds

)1/p

,

for every x0 ∈ X , u ∈ L∞(0,∞), p > 2 and some constant c =
c(p) > 0. Due to the self-adjointness of A, Equation (IV.1)

holds for every δ ≥−1. Then we may compute that

V (x) = −〈A−1x,x〉X

=
∫ 1

0

(

∫ 1

ξ
(ξ − τ)x(τ)dτ

)

x(ξ )dξ

is a non-coercive ISS Lyapunov function for the one-

dimensional heat equation on the spatial domain [0,1] with

Dirichlet boundary control at the point 1.

B. An inequality for subnormal A

In this section we would like to argue that the inequality

(IV.1), which is one of the central assumptions in Proposi-

tion 4.1, holds for a broad class of subnormal operators over

Hilbert spaces.

Let A be closed, densely-defined and subnormal operator

on a Hilbert space X . Here A is called subnormal, if A = N|X
where N is a normal operator on a Hilbert space Z and X is

an invariant subspace for N, that is, N(D(N)∩X) ⊆ X . We

write P for the orthogonal projection from Z onto X . That is,

up to unitary equivalence N = Mφ , a multiplication operator

on some L2(µ) space, and A f = φ f , A∗ f = P(φ f ). See,

for example [22, Th. X.4.19]. Moreover, a closed, densely-

defined and subnormal operator A satisfies D(A) ⊂ D(A∗),
since D(N) = D(N∗) [22, Prop. X.4.3].

For θ ∈ [0,π/2) we define

Σθ := {s ∈ C | |arg(−s)| ≤ θ}.

Proposition 5.2: Let A be closed, densely-defined and

subnormal operator on a Hilbert space X satisfying σ(A)⊆
Σθ , for some θ ∈ [0,π/2). Then for δ ≥ 1−2cos2 θ we have

Re〈x,A2x〉X +δ‖Ax‖2
X ≥ 0, f ∈ D(A). (V.1)

Proof: Expanding (V.1) we obtain the equivalent asser-

tion

Re〈φ f ,Pφ f 〉+δ‖φ f‖2 ≥ 0, (V.2)

and we note that 〈φ f ,Pφ f 〉= 〈φ f ,φ f 〉= 〈φ 2 f , f 〉. The left

hand side of (V.2) is

〈(Reφ 2 +δ |φ |2) f , f 〉= 〈(2(Reφ)2 +(δ −1)|φ |2) f , f 〉.

Now, since the essential range of φ lies in σ(A), we have

by sectoriality

2(Reφ)2 ≥ 2cos2 θ |φ |2

and hence

〈(2(Reφ)2 +(δ −1)|φ |2) f , f 〉 ≥ 0,

for δ ≥ 1−2cos2 θ .
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Proposition 5.3: Let A be closed, densely-defined and

subnormal operator on a Hilbert space X satisfying σ(A)⊆
Σθ , for some θ ∈ [0,π/2). Then A generates a analytic C0-

semigroup of contractions.

Example 5.4: 1) Clearly, every normal operator on a

Hilbert space is subnormal.

2) Symmetric operators on Hilbert spaces are subnormal.

3) Isometries are subnormal, and hence a right shift oper-

ator on L2(0,∞) is subnormal.

4) Multiplication operators (analytic Toeplitz operators Tg)

on the Hardy space H2(D) are subnormal, and Tg is

sectorial if g(D)⊆ Σθ for some θ ∈ [0,π/2).

VI. CONCLUSION

In this paper we have investigated the question to what

extent the existence of a noncoercive ISS Lyapunov function

implies that a forward complete system is ISS. It was shown

that the property of integral-to-integral ISS follows from the

existence of such Lyapunov functions for a large class of

systems. In order to arrive at ISS in its own right further

assumptions were necessary. These further assumptions, the

CEP property and the BRS property relate to questions of

the richness of the possible dynamics both close to the origin

and in the large.

The construction of noncoercive Lyapunov functions is to

some extent natural in infinite dimesions. Already for Datko’s

construction of quadratic Lyapunov functions for exponen-

tially stable linear systems on Hilbert space it sometimes

cannot be avoided to use a noncoercive version. Also we have

seen in this paper for some classes of linear systems with

unbounded input operators the construction of Lyapunov

functions using the resolvent at 0 is a natural choice and

one that leads to noncoercive Lyapunov functions.

In future work we plan to extend the class of systems for

which explicit constructions are possible and to deepen our

understanding of noncoercive ISS Lyapunov functions.
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