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Decentralized Gathering of Stochastic, Oblivious Agents on a Grid:

A Case Study with 3D M-Blocks

Anıl Özdemir1,∗, John W. Romanishin2,∗, Roderich Groß1,2, and Daniela Rus2

Abstract— We propose stochastic control policies for gather-
ing a group of embodied agents in a two-dimensional square
tile environment. The policies are fully decentralized and can
be executed on anonymous, oblivious agents with chirality, but
no sense of orientation. The agents require only 4 ternary digits
of information. We prove that a group of agents, irrespective
of initial positions, will almost surely reach a Pareto optimal
configuration in finite time. For one of the control policies,
computer simulations show that groups of up to 20 agents con-
sistently reach Pareto optimal configurations, whereas groups
of 1000 agents, given the same amount of time, improve the
compactness of their configurations on average by 89.20%. The
policy also copes well with sensory noise up to a level of 50%.
We also present an experimental validation using 6 physical 3D
M-Block modules, demonstrating the feasibility of the stochastic
control approach in practice.

I. INTRODUCTION

Getting into physical proximity is often a prerequisite

for groups of autonomous robots that are collaborating to

accomplish a specific task. The underlying problem, referred

to as robot aggregation [1], gathering [2], or rendezvous [3],

is not only relevant for groups of loosely coupled robots, but

also for the units of modular reconfigurable systems that, by

physically assembling with each other, form larger connected

entities [4]. In the following we consider the situation that

all robots execute the same control policy, and that they are

not allowed to exploit any cues from the environment, such

as the intensity of ambient light [5], [6].

For gathering in continuous space, some solutions re-

quire that each robot determines the relative position of all

other robots in its local neighborhood. For example, Ji and

Egerstedt [7] present a solution that is guaranteed to solve

the gathering problem, provided that the visibility graph

corresponding to the robots’ initial spatial distribution is con-

nected. Other solutions require that each robot determines the

bearing of all other robots in its local neighborhood [2], again

assuming initial connectivity. For robots using a line-of-

sight sensor, it was shown that a single bit of information—

whether another robot is detected or not—could be sufficient

to solve the gathering problem, though only if the sensing

range is unlimited [8]. Ozsoyeller et al. [9] present a solution

guaranteeing that a pair of robots, operating in an environ-

ment with polygonal obstacles, is guaranteed to meet almost
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Fig. 1. Decentralized gathering in a 2D square tile environment. (a) Exper-
iments are conducted with the modules of the 3D M-Block reconfigurable
robotics platform. Each module has four sensor units, one per side, which
report whether other modules are in contact (i.e., physically connected)
and/or visible (i.e., their body lights are perceived). (b)–(c) Illustration of
the naive stochastic control policy (Algorithm 1). An agent can move into
any empty, adjacent cell if another agent is perceived in the corresponding
direction (e.g., see blue arrows for agent m1), or remain in its current cell.
The agent chooses uniformly random among all eligible actions. Parts (b)
and (c) show the situation immediately before and after agent m1’s move.
In this instance, the group’s spatial configuration became more compact—
the dimensions of the corresponding bounding box reduced from 5× 4 to
4× 4 (see green frames). The agents will almost surely reach in finite time
a Pareto optimal configuration, that is, a configuration with bounding box
dimensions 2× 3 or 3× 2.

surely. The solution involves repetitively tossing a coin to

decide whether to rest in place, or move in a way that covers

the environment. The strategy is extended to more than two

robots, provided they can communicate. Barel et al. [10]

propose a probabilistic algorithm for gathering agents with

1-bit, unlimited range sensors. At every time step, each agent

assumes a random orientation, and then moves forward if no

other agent is present in the half-plane behind it, and rests,

otherwise. The correctness of the algorithm is proven under

the assumptions that the agents act synchronously, can jump

instantaneously from one pose to another, and do not have

physical bodies. Moreover, to avoid deadlock situations, the

binary sensor is shown to require a half-disk blind region.

For gathering in discrete space, Cord-Landwehr et al. [11]

and Fischer et al. [12] present solutions for robots with

constant memory and no memory (oblivious), respectively.

The solutions are guaranteed to converge in linear and

quadratic time, respectively. They require each robot to

determine the relative position of all other robots in its

local neighborhood, comprising more than 100 cells, and a

visibility graph that is initially connected. The robots are not

embodied; where multiple robots occupy the same cell, all

but one are removed.

In this paper, we propose stochastic control policies for

gathering a group of embodied agents in a two-dimensional

(2D) square tile environment, as illustrated by Figure 1.

The policies are fully decentralized and can be executed on



anonymous, oblivious agents with chirality, but no sense of

orientation. Unlike previous solutions to the gathering prob-

lem with such restricted agents, our policies are not limited

to specific initial positions, take the agent’s embodiment into

account, and require only four trits of sensory information,

though the latter comes at the expense of unlimited-range

sensing.

The stochastic control policies can be viewed as an exten-

sion of the “computation-free” swarming concept [8], [13].

In particular, each agent reactively chooses its action based

on a few bits of sensory information, though in the present

work the choice is stochastic, rather than deterministic.

The paper is organized as follows. Section II describes

the gathering problem. Section III presents a naive, stochastic

control policy and proves its correctness. Section IV presents

a refined variant of the naive control policy. Section V

evaluates both control policies by simulation. Section VI

presents an experimental validation using the physical mod-

ular robotics platform 3D M-Blocks [14]. Section VII con-

cludes the paper.

II. PROBLEM FORMULATION

A. Environment and Robot Model

Consider an unbounded, obstacle-free 2D square tile

environment, containing n mobile agents. The agents are

anonymous, that is, indistinguishable from each other, fully

autonomous, and execute an identical controller. Each agent

occupies a tile1, has no orientation, but can distinguish

between clockwise and counter-clockwise (chirality).

Each agent has four sensor units, one per side. Each unit

provides a tuple of binary values, s = (c, v). The first value

indicates whether another agent is in physical contact with

the sensor unit; c is true if another agent resides on the

corresponding adjacent cell, and false, otherwise. The second

value indicates if any other agent is visible from the sensor

unit; v is true if at least one agent resides within the half-

plane next to the unit, and false, otherwise. Formally,

c = true if ∃j : (xrel
j , yrelj ) = (1, 0), (1)

v = true if ∃j : xrel
j > 0, (2)

where (xrel
j , yrelj ) ∈ Z

2 denotes the position of agent j in the

reference frame that is (i) local to the sensing agent, and (ii)

has its x-axis parallel to the sensor unit’s sensing direction.2

Note that c = true implies v = true. In other words, the

sensor unit provides a ternary digit (i.e., trit) of information,

s ∈ {(false, false), (false, true), (true, true)}.
Time is assumed to be discrete. In each round, every agent

executes one action; the update order of agents is fixed.3

An agent can choose to remain in its current cell (ac-

tion a0), or move into any adjacent cell (actions A =
{a1, a2, a3, a4}), provided the latter is not occupied. The

1A tile can not be occupied by multiple agents.
2As the agent has no orientation, each of the four sensor units has its

own local reference frame.
3Our theoretical analysis is also valid if the order changes randomly.

sensor data, S = {s1, s2, s3, s4}, and actions A are pro-

vided in a counter-clockwise order. As the agents have no

orientation, the specific starting elements are irrelevant, as

long as consistent (e.g., s3 and a3).

B. Objective

A configuration of a group of n agents defines their

position in space. Formally, C = {(x1, y1), . . . , (xn, yn)},
∀i 6= j : (xi 6= xj)∨ (yi 6= yj), where (xj , yj) ∈ Z

2 denotes

the position of agent j in the global reference frame.

Given a configuration C, let b = (bx, by) denote the

dimensions of the corresponding bounding box. Formally,

bx = 1 +max
i,j
|xi − xj | ,

by = 1 +max
i,j
|yi − yj | .

(3)

Consider two configurations, C and C̄, of n agents, with

bounding box dimensions b and b̄, respectively. Configuration

C is said to be preferred to configuration C̄, denoted by C̄ ≺
C, if (bx < b̄x) ∧ (by ≤ b̄y) or (bx ≤ b̄x) ∧ (by < b̄y).
Configuration C is said to be Pareto optimal, if there exists

no other configuration of n agents that is preferred to C.

The agents start from arbitrary cells. Their objective is

to collectively reach, and remain indefinitely, in a Pareto

optimal configuration.

C. Mathematical Analysis

Lemma 1. A configuration of n agents contained in a

bounding box of dimensions (bx, by) is Pareto optimal, if

and only if bxby − n < min{bx, by}.
Proof. First, we consider the case that a Pareto optimal

configuration, C, is given. Without loss of generality, we

assume by ≤ bx. Let h = bxby − n, that is, h is the

total number of empty cells within the bounding box. If

h ≥ min{bx, by} = by , then bx > 1. Let h1 ≥ 0 and hr > 0
denote the number of empty cells within the first column and

the remaining columns of the bounding box, respectively.

We have h = h1 + hr. We can remove the by − h1 > 0
agents from the first column and insert them on some of the

hr = h−h1 ≥ by−h1 empty cells in the other columns. This

would produce a configuration C̄ that has at least one fewer

column and at most the same number of rows, that is, C ≺ C̄.

This however contradicts our assumption that C is Pareto

optimal. Consequently, h = bxby−n < min{bx, by}. Second,

we consider the case of a configuration with bxby − n <

min{bx, by}. The number of empty cells within the bounding

box is h = bxby − n < min{bx, by}. In other words, neither

of the dimensions of the bounding box can be reduced,

without increasing the respective other dimension. Therefore,

the configuration is Pareto optimal.

III. NAIVE STOCHASTIC CONTROL POLICY

Algorithm 1 describes the naive stochastic control policy,

hereafter referred to as PN . In each control cycle, the agent

chooses uniformly random from the following set of actions:

a0∪{ai ∈ A|i ∈ {1, 2, 3, 4}∧(¬ci∧vi)}. In other words, the

agent can rest in place, but may move in up to four directions



Algorithm 1 Naive Stochastic Control Policy, PN

1: while true do

2: Ae ← {a0} ⊲ initialize set of eligible actions

3: for all i ∈ {1, 2, 3, 4} do

4: update ci ⊲ probe Boolean contact sensor i

5: update vi ⊲ probe Boolean visibility sensor i

6: if ¬ci ∧ vi then

7: Ae ← Ae ∪ {ai} ⊲ add eligible action {ai}
8: end if

9: end for

10: a← select uniformly random from Ae

11: execute a

12: wait δ units of time

13: end while

(see Figure 1). It is prevented from moving into a direction

that is blocked by an adjacent agent (i.e., ci = true), or in

which no other agent is seen (i.e., vi = false). The control

cycle is here assumed to have some finite length δ. Note that

Algorithm 1 is fully reactive, as the agent does not store any

information from the previous cycle.

A. Mathematical Analysis

Lemma 2. Consider n agents using policy PN . Let C[k]
and C[k + 1] denote the configurations at time steps k and

k + 1, respectively, which is immediately before and after

one of the agents was considered. Then, bx[k + 1] ≤ bx[k]
and by[k + 1] ≤ by[k].

Proof. At time step k only one agent, say agent j1, was

considered. All other agents will not have moved, that is,

∀j2 6= j1 : xj2 [k + 1] = xj2 [k] and yj2 [k + 1] = yj2 [k]. The

x-coordinate of the “leftmost” agent at time k is given as

xleft = minj2{xj2 [k]}. If agent j1 was at the left boundary

(xj1 [k] = xleft), no agent would have been visible towards

the “left” (v = false), which would prevent the agent from

moving in that direction. Otherwise (xj1 [k] > xleft), agent

j1 may have moved, but at most by 1 cell. In both cases, we

have xj1 [k+1] ≥ xleft. The same argument can be used for

the lower, right and upper boundaries. From this, it follow

that bx[k + 1] ≤ bx[k] and by[k + 1] ≤ by[k].

Corollary 1. Consider n agents using policy PN . Let C[k]
denote the configuration at time step k. Then, ∀l > k :
bx[l] ≤ bx[k] and by[l] ≤ by[k].

Theorem 1. Using policy PN , n agents almost surely reach

a Pareto optimal configuration in finite time.

Proof. Let for all k ≥ 0, h[k] = bx[k]by[k] − n denote the

number empty cells within the bounding box at time step k.

We prove the theorem by induction.

Base case: h[k] = 0. As h[k] = bx[k]by[k] − n = 0 <

min{bx, by}, from Lemma 1 it follows that the configuration

is Pareto optimal. From Corollary 1 it follows that the

configuration remains Pareto optimal indefinitely.

Induction step: h[k] > 0. Without loss of generality,

we assume by[k] ≤ bx[k]. Moreover, bx[k] > 1, as oth-

by
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Fig. 2. Example configuration of 9 agents with a 4×3 bounding box. The
configuration is not Pareto optimal, as the same number of agents could be
contained in a 3 × 3 bounding box. The numbers indicate the Manhattan
distance between the corresponding cell and the reference agent, m, of the
first column. The blue arcs illustrate one of the shortest paths from the
reference agent to the empty cell in the last column. If the four agents on
this path choose to move in the indicated direction, whereas all other agents
choose not to move, the empty cell is pushed into the first column, causing
the new configuration to be Pareto optimal.

erwise, h[k] = 0. If h[k] = bx[k]by[k] − n < by[k] =
min{bx[k], by[k]}, then it follows from Lemma 1 and Corol-

lary 1 that the configuration is Pareto optimal and remains

so indefinitely. For the case h[k] ≥ by[k], as in the proof

of Lemma 1, we consider that the agents of the leftmost

column all relocate to the other columns (see Figure 2). We

obtain a positive lower bound for the probability for this to

happen in constant time. We assume that every round one

agent chooses to move, while all others choose not to move.

The probability for this to happen in a given round is at least

ǫn, where ǫ = 1
5 is a lower bound for the probability for any

eligible action to be chosen (note that actions are chosen

uniformly random). Let us consider the shortest path from

an arbitrary agent of the leftmost column to an empty cell in

one of the other columns (see Figure 2). The length of path

candidates are determined by the Manhattan distance, and

thus reflecting how the agents may move. Multiple shortest

paths may exist, but in any case only the last cell of a path is

an empty cell. At any round let only the agent that is closest

to the empty cell (but part of the remaining path) move. At

most d rounds are required for the empty cell to reach the

leftmost column, where d is the length of the shortest path.

As d is bounded by bx[k] + by[k] − 2, the probability for

the agent relocation to have occurred after bx[k] + by[k]− 2
rounds is at least ǫ(bx[k]+by [k]−2)n. As there could be up to

by[k] agents in the leftmost column, the probability to reach

the preferred configuration after U = by[k](bx[k]+by[k]−2)
rounds is at least p = ǫby [k](bx[k]+by [k]−2)n. From Lemma 2,

it follows that the bounding box dimensions, bx and by , are

monotonically decreasing with time, k. In other words, our

lower bound, p, monotonically increases with time, k, and the

number of rounds, U , required for an improvement to occur

with at least probability p, monotonically decreases with

time, k. If an improvement occurred, the new configuration

would have at least by ≥ 1 fewer empty cells, resulting in

h[k + Un] ≤ h[k] − by[k] ≤ h[k] − 1. The probability that

an improved (preferred) configuration is found within τU

rounds is at least pτ = 1−(1−p)τ . We have limτ→∞ pτ = 1.

In other words, a preferred configuration is found almost

surely in finite time, reducing h by at least 1. As ∀k : h[k] ≥



0, only a finite number of improvements are possible. A

Pareto optimal configuration is hence obtained almost surely

in finite time.

IV. OPTIMIZED STOCHASTIC CONTROL POLICY

In the previous section, we showed that a group of agents

almost surely reach a Pareto optimal configuration in finite

time when using the naive stochastic control policy, PN . The

policy determines the set of eligible actions and then chooses

uniformly random from this set.

In this section, we consider an alternative stochastic con-

trol policy, PO, which is not restricted to using uniform

distributions, but rather takes into account an agent’s context.

An agent can be in any of 18 contexts (see Figure 3), which

is fully defined by the agent’s eight sensor reading values

(c1, c2, c3, c4, v1, v2, v3, v4). Depending on the context, an

agent can choose between 1 and 5 actions (note that an

agent can always choose the option to rest, that is, a0). An

agent in context A can either remain in its current position

(action a0) or move into any direction (a1, a2, a3, a4). As the

agent has no orientation, it has to choose either direction with

equal probability. An agent in context B has four possible

options to choose from, and, due to chirality, for each option

a dedicated probability can be chosen. In the following, we

optimize the probabilities of choosing the eligible actions for

each specific context.

We choose ǫ to be the lowest probability of the PO

controller. If ǫ 6= 0, then the proof for Theorem 1 directly

extends to PO.

A. Representation of Candidate Solutions

A candidate solution is represented by 27 real-valued

parameters in range [0, 1], which, following normalization,

determine the motion probabilities. For example, for context

A, all five actions are possible. However, a single parameter

is sufficient, as the probabilities, p1, p2, p3, and p4, for

choosing actions a1, a2, a3, and a4 must be identical (due

to the lack of orientation). Moreover, the probability of

choosing a0 must be 1− p1 − p2 − p3 − p4.

B. Evolutionary Algorithm

We employ an evolutionary algorithm for the optimization

process, namely Covariance Matrix Adaptation Evolution

Strategy (CMA-ES) [15]. CMA-ES is a derivation-free,

black-box optimization method. It starts with a random pop-

ulation of λ candidate solutions, and uses a fitness function

to select promising solutions for producing the subsequent

generations.

We define the compactness of the configuration in round r

as the number of empty cells in the corresponding bounding

box, if the configuration is not Pareto optimal, and 0,

otherwise. Formally, compactness H[r] is given as,

H[r] =

{

h[r], if h[r] ≥ min{bx[r], by[r]};
0, otherwise.

(4)

In each generation, every candidate solution is tested

against the same set of T = 20 starting configurations. A new

set of configurations is produced at the beginning of every

generation. For each configuration, the number of agents is

chosen as n = 2+m, where m is generated randomly using

the exponential cumulative distribution function given by,

F (m;λ) =

{

1− e−λm, if m ≥ 0;

0, otherwise,
(5)

where 1
λ
= 6 represents the expected value, E[m]. Hence,

the expected number of agents is E[n] = 2+E[m] = 8. The

agents are all placed in random positions within a grid size

of L = 2
⌈√

n
⌉

and are assigned a randomly generated fixed

update order.

The fitness function to be minimized by the evolutionary

algorithm is,

f =

R
∑

r=1

rH[r], (6)

where R = 100 is the maximum number of rounds. The

performance measure H[r] is multiplied by round number r

to promote faster solutions.

C. Controller Selection

We conducted 100 evolutionary runs with a population size

of λ = 30. Each run was terminated after 3000 generations.

Figure 4 shows the fitness of the highest-rated candidate

solution per run.

To select the best solution, we considered the solutions

that exhibited the lowest fitness value in the final generation

of each run. Each of these 100 solutions was post-evaluated

on T = 200 random configurations using a grid size of L =
100 and R = 10000 rounds. In the following, we refer to

the solution that exhibited the best mean performance as the

optimized stochastic control policy, PO.4

V. SIMULATION STUDIES

In this section, we analyze the performance of the control

policies, PN and PO, through computer simulations using

measure H[r], as defined in Eq. (4).

A. Scalability Study

We investigate the scalability of the control policies. We

consider a 2D square tile environment of size L = 100
containing n ∈ N = {2, 5, 10, 20, 50, 100, 200, 500, 1000}
agents. In the beginning of a simulation trial, the agents

are uniformly randomly placed. For each n ∈ N and each

control policy (PN and PO), 100 trials of R = 10000 rounds

are performed.

Figure 5 reports the average performance over the number

of rounds. Groups of n ∈ {2, 5, 10} agents consistently

reached a Pareto optimal configuration using either of the

control policies. For these group sizes, the optimized con-

troller, PO, took on average 39.50%, 26.97% and 30.07%

less time to reach a Pareto optimal configuration. For larger

group sizes, it became increasingly unlikely for the agents

to reach a Pareto optimal configuration in the provided

4The parameters can be found in the online supplementary material [16].



Fig. 3. Overview of the 18 unique contexts in which the focal agent (white cell) can move. A gray agent represents an agent on an adjacent cell, that
is, an agent in physical contact (c = true), or an agent that is visible (v = true, for at least one of the focal agent’s sides). Arrows indicate possible
directions of movement. In addition, an agent may remain in its current position. An agent can also be in one of eight contexts (not shown), where the
only possible action is to remain in its current position (action a0). Contexts A, D1, and F1 are rotation symmetric; the modules, which have chirality
but no sense of orientation, have to choose every direction of movement with equal probability.

Fig. 4. Fitness dynamics showing the performance of 100 evolutionary
runs over 3000 generations. The blue envelope represents the minimum and
maximum average fitness values of λ = 30 solutions for each run, and the
blue line represents the median fitness values.

time period. However, for groups of n = 1000 agents, the

compactness, H[r], still improved during the trial, on average

by 9.26% and 89.20% for PN and PO, respectively.

B. Sensory Noise Study

Our analysis in Section III assumed the absence of

sensory noise. As a consequence, it could be shown that

the modules’ bounding box dimensions were monotonically

decreasing with time. We now investigate the effect of

sensory noise on the performance of both control policies.

As mentioned in Section II-A, each of the module’s four

sensor units provides one ternary digit of information: s ∈
{(false, false), (false, true), (true, true)}. In the following,

we assume that each sensor unit reports a uniformly ran-

domly chosen ternary digit with probability pn, and reports

the original reading value otherwise. We increase the noise-

level from 0% to 100% by 10% increments. For each level

of noise and control policy, 100 trials are performed with

n = 100 agents in a 100 × 100 grid environment. When a

module decides to move onto an occupied cell, no action is

taken for the corresponding round. Each trial is run for a

constant duration of R = 10000 rounds.

Figure 6 shows the performance measure H[r] for all

levels of noise and both policies. For a 10% noise-level, the

compactness, H[r], improved during the trial, on average

by 93.68% and 99.63% for PN and PO, respectively. The

system improved its compactness by at least 90% for any

noise level up to 20% and 50% for PN and PO, respectively.

For a noise-level of 100%, implying purely random sensor

readings, the system diverged.

(a)

(b)

Fig. 5. Results of the scalability study with up to 1000 agents in a
100 × 100 environment. Dashed and solid lines show, respectively, the
performance using the naive (PN ) and optimized (PO) control policies.
Each line represents the average, across 100 trials, of H[r], which is 0 for
Pareto optimal configurations, and otherwise equals the number of empty
cells in the bounding box. (a) and (b) plot the compactness using logarithmic
and linear axes, respectively.

VI. EXPERIMENTS

The 3D M-Blocks are ~50 mm side length cubic modular

robots which move on a cubic lattice using pulses of angular

momentum from an internal reaction wheel. Each module

includes a main processor, a set of IMUs, and circuit boards

on each face which can (i) turn on several white LEDs (ii)

identify the presence of directly adjacent modules, and (iii)

measure ambient light in the half-plane of the face.

In the experiments, we evaluate the performance of the

naive stochastic control policy. We specifically designed a

6 × 6 testing environment, using the modular components

shown in Figure 7. All experiments were conducted as

follows: (i) six modules are placed at computer-generated

random configurations on a 6× 6 grid; (ii) each experiment

runs for 5 minutes; (iii) if a module disconnects from the

grid its position is counted as the closest position to the

module’s center; (iv) in contrast to the simulations, modules

that are connected to more than one neighbor do not attempt

to move. This limitation was added as the torque required to



Fig. 6. Impact of sensory noise on the performance at the end of 100
simulation trials (H[R], defined in Eq. (4), in logarithmic scale). With
probability pn, each sensor unit provides a purely random reading value.
Dashed and solid lines represent, respectively, the naive (PN ) and optimized
(PO) control policies. The error bars show the standard deviation. The
dotted line represents a baseline which corresponds to no movement (H[0]).

(a) (b)

Fig. 7. Modular testing environment used in the experiments: (a) design,
and (b) implementation of the lattice cells. Each cell includes 8 small
magnets arrayed in a way matching that of the 3D M-Blocks connectors, as
well as magnets at the boundary to serve as a temporary hinge when moving
to adjacent lattice positions (which proved more effective than the rotating
magnets described in [17]). Metal spheres (purple circles) are embedded
which align with holes in the face of each module to attempt to minimize
alignment errors.

move a module, when connected to multiple other modules,

could not be reliably generated by the current version of

the hardware; (v) no attempt was made to synchronize

the modules’ movements. All trials were recorded using a

camera for post-analysis.

t = 0 s t = 20 s t = 90 s

t = 150 s t = 270 s t = 300 s

Fig. 8. In this experiment, six modules are placed at uniformly random
positions on the 6×6 testing environment. They execute the naive stochastic
control policy (PN ). During the trial, the compactness of the configuration
improved from H[0] = 24 to H[R] = 2, yielding a 92% reduction of area,
which is the largest reduction of area among the trials conducted.

Figure 8 shows a sequence of snapshots taken from one

of the trials. Table I presents the results of 10 experimental

trials, showing how the initial compactness, H[0], reduced to

the final compactness, H[R]. Successful moves are defined as

moves where an agent begins in one lattice position and ends

in another. Disconnected modules refer to modules which

end up in non-lattice positions, including those that leave

the grid entirely.

All but two experiments resulted in more compact config-

urations than those they had begun with. The experiments

TABLE I

EXPERIMENTAL RESULTS USING SIX 3D M-BLOCK MODULAR ROBOTS.

Naive (PN )

Experiments conducted 10
Initial compactness, H[0] 22.2± 6.4
Final compactness, H[R] 14.6± 7.4
Area reduction percentage 33%± 30%
Modules disconnected 1.1± 0.9
Successful moves 6.2± 2.2

where this was not the case involved modules which moved

incorrectly and left the lattice. While the experiments do val-

idate the concept of the algorithm, the 3D M-Block hardware

presents several practical limitations which diverges from the

simulation results. Lessons learned include:

• A modules may experience difficulties moving when

there is a module in a cell diagonally across from it

due to the edges “catching” each other.

• The current hardware system does not have closed loop

control over the actuation torque and manufacturing

tolerances lead to a certain percentage of moves to

fail—either by moving with too much power and dis-

connecting from the grid, or not being able to move.

• The face LEDs were not designed for long distance

illumination and only reach roughly 3 grid cells (given

an ambient light level that is typical for an office

environment).

The algorithms are challenging to implement on modular

robotic systems due to need to constrain the motion on a

regular lattice. However, insights from these experiments

suggest several hardware and algorithmic improvements

which could help guide future work aggregating grid based

modular robots.

VII. CONCLUSIONS

This paper presented two control polices for gathering

oblivious, embodied agents in a 2D square tile environment.

The agents used binary sensors that indicate whether other

modules are physically in contact or otherwise visible. The

agents were proven to assume a Pareto optimal spatial

arrangement almost surely in finite time. Simulations ex-

amined the performance for different number of agents, or

in the presence of sensory noise. Experiments, conducted

with six modules of 3D M-Blocks, a self-reconfigurable

robotic system, showed the overall feasibility of the con-

cept, and provided insights into possible improvements that

could increase the effectiveness of the control policies in

practical situations. Future work directions include testing

the optimized stochastic control policy on 3D M-Blocks,

upgrading the capabilities of the physical modules in regards

to movement precision and light projection, or studying more

complex tasks, such as assembling 3D shapes.
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