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Transcriptomic classification of primary melanoma reveals 1 

molecular signatures which add prognostic value to 2 

current staging systems including stage I disease 3 

 4 

Rohit Thakur
1,2

, Jonathan P. Laye
1
, Martin Lauss

3
, Joey Mark S. Diaz

1
, Sally Jane O’Shea4,5

, Joanna 5 

PoĨniak
1,6,7

, Anastasia Filia
8
, Mark Harland

1
, Joanne Gascoyne

1
, Juliette A. Randerson-Moor

1
, May 6 

Chan
1
, Tracey Mell

1
, Göran Jönsson

3
, D. Timothy Bishop

1
, Julia Newton-Bishop

1,$
, Jennifer H. 7 

Barrett
1,$

 and Jérémie Nsengimana
1,$,

*
 

8 

 
9 

1
University of Leeds School of Medicine, Leeds, LS97TF, United Kingdom  10 

2
Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA, 77054 11 

3
Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, 12 

Lund University, Lund, 22381, Sweden
 

13 

4
Mater Private Hospital Cork, Mahon, Cork, T12 K199, Ireland 14 

5
School of Medicine, University College Cork, College Road, Cork, T12 AK54, Ireland 15 

6
Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, 16 

Belgium 17 

7
Department of Oncology, KU Leuven, Leuven, Belgium

 
18 

8 
Centre for Translational Research, Biomedical Research Foundation of the Academy of Athens 19 

(BRFAA), Athens, Greece 
 

20 

 21 

Running title: Prognostic gene signature in stage I melanoma 22 

Keywords: Consensus clustering, Sentinel Node Biopsy, EMT, JUN, AXL  23 

 24 

The authors have declared no conflicts of interest. 25 

$
 These authors contributed equally to the work 26 

*Correspondence: Dr Jérémie Nsengimana, Saint James University Hospital, Clinical Sciences 27 

Building room 6.6, Beckett Street, Leeds, LS9 7TF, United Kingdom, J.Nsengimana@leeds.ac.uk, 28 

Phone: +44 113 2068974 29 

mailto:J.Nsengimana@leeds.ac.uk


 
2 

 30 

This work was funded by Cancer Research UK C588/A19167, C8216/A6129, and C588/A10721 and 31 

NIH CA83115. RT, JMSD and JP are supported by Horizon 2020 Research and Innovation 32 

Programme no. 641458 (MELGEN). Copy number data were generated using AICR grant 12-0023. 33 

 34 

 35 

Total number of words (Introduction, Methods, Results and Discussion): 4120 36 

Abstract: 245 words 37 

Total number of figures: 5 38 

Total number of tables: 1 39 

Supplementary files: 2 40 

  41 



 
3 

Translational relevance:  42 

The introduction of adjuvant but toxic therapies for primary melanoma has highlighted the need to 43 

stratify patients based on improved prognostic and predictive biomarkers. We report a six-class 44 

transcriptomic signature generated from primary melanomas which predicted prognosis, notably in 45 

stage I disease. The signature demonstrated comparable prognostic value to that of sentinel node 46 

biopsy. When the six classes were applied to published transcriptomic datasets from patients treated 47 

with immunotherapy, one class consistently predicted poor outcome. This class was characterised by 48 

expression of JUN and AXL, both known determinants of poor therapeutic response in advanced 49 

melanoma. These findings suggest that the six-class signature should be applied to larger datasets as 50 

they become available, in order to further validate its clinical relevance as a prognostic/predictive 51 

biomarker in the adjuvant setting.  52 
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Abstract 53 

Background 54 

Previously identified transcriptomic signatures have been based on primary and metastatic 55 

melanomas with relatively few AJCC stage I tumors given difficulties in sampling small tumors. The 56 

advent of adjuvant therapies has highlighted the need for better prognostic and predictive biomarkers 57 

especially for AJCC stage I and II disease.  58 

Patients and Methods 59 

687 primary melanoma transcriptomes were generated from the Leeds Melanoma Cohort (LMC). The 60 

prognostic value of existing signatures across all the AJCC stages was tested. Unsupervised 61 

clustering was performed and the prognostic value of the resultant signature was compared with that 62 

of sentinel node biopsy (SNB) and tested as a biomarker in three published immunotherapy datasets. 63 

Results  64 

Previous Lund and TCGA signatures predicted outcome in the LMC dataset (P=10
-8

 to 10
-4

) but 65 

showed a significant interaction with AJCC stage (P=0.04) and did not predict outcome in stage I 66 

tumors (P=0.3 to 0.7). Consensus-based classification of the LMC dataset identified six classes which 67 

predicted outcome, notably in stage I disease. LMC class was a similar indicator of prognosis when 68 

compared to SNB and it added prognostic value to the genes reported by Gerami et al. One particular 69 

LMC class consistently predicted poor outcome in patients receiving immunotherapy in two of three 70 

tested datasets. Biological characterisation of this class revealed high JUN and AXL expression and 71 

evidence of epithelial to mesenchymal transition.  72 

Conclusion 73 

A transcriptomic signature of primary melanoma was identified with prognostic value, including in 74 

stage I melanoma and in patients undergoing immunotherapy. 75 

 76 

  77 
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Introduction 78 

Cutaneous melanoma continues to increase in incidence worldwide. Although earlier diagnosis has 79 

been documented with correspondingly better outcomes, the rising incidence of thinner tumors means 80 

that, counterintuitively, one fifth of deaths now occur in patients presenting initially with early disease 81 

(1). In the UK, 91% of melanomas are diagnosed at AJCC stage I to II (2). Therefore, better 82 

prognostic biomarkers are needed to identify early stage disease requiring adjuvant therapies, as well 83 

as predictive biomarkers of response to checkpoint blockade. 84 

Previous transcriptomic analyses of cutaneous melanoma have generated gene signatures with a 85 

prognostic value independent of AJCC stage (3-7). The prognostic signature developed by Jonsson et 86 

al. (3) classifies metastatic melanomas into four classes (Lund 4-classes), later simplified into two 87 

classes (Lund 2-grades, (4)), and the signature developed by the TCGA (The Cancer Genome Atlas) 88 

consortium classified melanomas into three classes (TCGA 3-classes) (8). The prognostic 89 

significance of the Lund 4-class and TCGA 3-class signatures have been replicated in relatively small 90 

datasets, notably with few AJCC stage I patients (5,9). Another transcriptomic signature based on 27 91 

genes was developed by Gerami et al. (6) to classify primary melanoma patients into tumors which 92 

were high or low-risk for metastasis. 93 

 94 

In this study, the first aim was to test the prognostic value of the Lund and TCGA signatures, as well 95 

as the gene list of Gerami et al’s signature (6) in a large population-based cohort of primary 96 

melanomas with a good proportion of stage I patients and extensive phenotypic annotations (Leeds 97 

Melanoma Cohort, LMC). Since the dataset was well powered for discovery of novel tumor subtypes, 98 

unsupervised clustering of the tumor transcriptomes of the LMC was performed and the prognostic 99 

value of the resultant signature was compared with that of SNB in analyses stratified by AJCC stage. 100 

Finally, the association between the Leeds signature and outcome was tested in published data from 101 

patients receiving immunotherapy (10-12). 102 
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Materials and Methods 103 

Leeds Melanoma Cohort  104 

As described previously (13), 2184 primary melanoma patients were recruited to the Leeds Melanoma 105 

Cohort (LMC) in the period of 2000-2012. This was a population-ascertained cohort which therefore 106 

recruited patients treated at multiple clinical centres (recruitment rate 67%). During this period SNB 107 

was neither offered nor accepted universally. The study was ethically approved (ethical approval 108 

MREC 1/3/57, PIAG 3-09(d)/2003) and in accordance with the Declaration of Helsinki. Participants 109 

were consented to sampling of their FFPE (formalin fixed paraffin embedded) tumor blocks which 110 

were stored in the NHS (UK National Health Service) histopathology departments of the respective 111 

hospitals. Haemotoxylin and eosin (H&E)-stained slides were generated and examined to facilitate 112 

subsequent sampling of the blocks using a 0.6mm diameter tissue microarray needle as previously 113 

reported (5,13). Prior to sampling, all the tumor blocks were reviewed, and if there was only a small 114 

amount of tumor left in the block then the block was not sampled, lest a clinically important block be 115 

destroyed. Up to two cores were sampled from each block, and, to increase the comparability 116 

between tumors, the samples were consistently extracted from the least inflamed, least stromal 117 

regions of the invasive front of the tumor. The tumor infiltrating lymphocytes were scored using Clark 118 

et al.’s classification system (14). As previously reported (13), 703 tumor transcriptomes were profiled 119 

and in the current study 16 samples were removed in quality control leaving a cohort of 687 patients, 120 

henceforth referred to as the whole LMC dataset. The dataset contained 251 patients who had a SNB 121 

test (Supplementary table S10), and only 16 patients are known so far to have been treated with 122 

checkpoint blockade. The LMC patients were assigned an AJCC stage based on the AJCC staging 123 

8th edition (15). Where patients did not have a SNB, the AJCC staging used was derived from clinical 124 

staging and pathological examination of the wide local excision sample. 125 

mRNA extraction and expression data generation 126 

Both mRNA and DNA were extracted from the tumor samples derived from cores following a 127 

previously described protocol (5,13). The whole genome mRNA expression profiling was carried out 128 

using Illumina’s DASL-HT12-v4 array. As described previously, for quality control, the mRNA was 129 
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extracted from up to 2 cores for a number of patients (117 duplicates in total); gene expression data 130 

from only one extraction per patient was used in subsequent analyses (13). The raw transcriptomic 131 

data were extracted from the image files using GenomeStudio (Illumina Inc., San Diego) and were 132 

pre-processed as previously reported (13). Briefly, after background correction and quantile 133 

normalisation (R package LUMI (16)), singular value decomposition (SVD) was used to remove the 134 

batch effect (R package SWAMP (17)) (13). 135 

Quality control in LMC 136 

The array included 29,262 probes corresponding to 20,715 unique genes. For genes with multiple 137 

probes, the probe detected in the largest number of tumors was retained, and two additional filters 138 

were applied: genes had to be detected with P<0.05 in at least 40% of tumors and had to have a 139 

standard deviation (SD)>0.40. This SD threshold was chosen based on the overall distribution across 140 

the 20,715 genes on the log2 scale. The median SD was 0.68. The data were standardized to give 141 

each gene a mean of 0 and SD of 1.  142 

Procedures  143 

The LMC tumors were classified into the Lund 4-classes, Lund 2-grades and TCGA 3-classes using 144 

the supervised nearest centroid classification (NCC) as previously described (5). All the 27 genes of 145 

the Gerami et al. gene signature (6) were present in LMC dataset and were analysed using a 146 

univariable survival analysis in the whole LMC dataset and stage I tumors. Unsupervised clustering 147 

was performed using the consensus Partitioning Around Medoids clustering method in the R-package 148 

ConsensusClusterPlus (18,19) with Euclidean distance as the dissimilarity measure and a resampling 149 

fraction of 0.8 for both genes and samples in 1000 iterations (Supplementary methods). 150 

Statistical analysis  151 

Cox proportional hazard models and Kaplan-Meier curves were used to test the association with 152 

survival (R-package Survival) (20). The survival time was calculated from time of diagnosis to time of 153 

last follow-up or time of death from melanoma, whichever occurred first, referred to as melanoma-154 

specific survival (MSS). Patients with deaths caused by factors other than melanoma were censored 155 

at the time of death. Receiver Operating Characteristic (ROC) analysis was performed using AJCC 156 
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stage pre-SNB and AJCC stage post-SNB for patients who had SNB. Clinical staging prior to SNB is 157 

described as AJCC pre-SNB. The AJCC stage post-SNB includes additional information on regional 158 

lymph node metastasis. The analysis used AJCC staging 8
th
 edition, and MSS up to 3 years was 159 

chosen as cut-off based upon the inclusion of the majority of the deaths without loss of data as a 160 

result of censoring (Supplementary table S11). Patients who were censored before 3 years were not 161 

included in the analysis. The analysis was performed using R-packages pROC, plotROC, and ggplot2 162 

(21-23). 163 

Pathway enrichment analysis  164 

The differentially expressed genes (DEG) were identified using the Significance Analysis of 165 

Microarrays (R-package SAMR) by comparing each class versus all others (24). Pathway enrichment 166 

and biological network analysis of DEGs with a q-value equal to 0 were performed using 167 

ReactomeFiviz in Cytoscape (25). The central nodes of the biological network were identified using a 168 

centrality measure (betweenness) in Gephi (26) (Supplementary methods).  169 

Copy Number Alterations (CNA) 170 

The CNA data were generated in a subset of LMC tumors using Illumina’s next-generation 171 

sequencing platform as reported in Filia et al. (in revision) (Supplementary methods). Among the 687 172 

transcriptome-profiled patients of LMC, CNA data were available for 272 patients. The CNA were 173 

assessed in the regions spanning the genes identified as hubs in network enrichment analysis. The 174 

ratio between mean of the window read counts in the region mapping to a gene and the average read 175 

count of the 10 flanking regions around that gene was used to estimate the copy number changes. 176 

The windows (5k) corresponding to a gene locus were identified using the R packages biomaRt 177 

(27,28). The cut-off for calling a region amplified was chosen as a value greater than 0.4 while a value 178 

less than -0.4 was used to identify a deletion. The 272 samples in the CNA dataset were at AJCC 179 

stages I (n=80), II (n=147), and III (n=45) (similar distribution to the whole LMC dataset). 180 

Lund validation dataset 181 

For replication, a primary melanoma transcriptomic dataset of 223 tumors from a Lund cohort 182 

(Sweden) was used (Harbst et al. (4)). The samples were classified using the newly generated 183 

signature by the supervised NCC approach (5). Out of those 223 patients, 200 had recorded 184 
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information on melanoma relapse in the follow-up time post-diagnosis and were used to test the 185 

association between patient subgroups and relapse-free survival (using Cox proportional hazard 186 

models, Kaplan-Meier curves and log-rank test).  187 

 188 

Immunotherapy datasets 189 

Three publicly available transcriptome datasets (Hugo Cohort: GSE78220, Ulloa-Monotoya cohort: 190 

GSE35640, Riaz Cohort: https://github.com/riazn/bms038_analysis) were downloaded (10-12), 191 

samples were quantile normalised and classified using the NCC method (Pearson’s correlation 192 

coefficient). The Riaz cohort was a mixture of samples from various melanoma types (cutaneous 193 

melanoma, mucosal melanoma, acral melanoma, uveal/ocular melanoma, others). In this study the 194 

samples labelled as cutaneous melanoma were analysed. In all the three cohorts, the association with 195 

response to immunotherapy was tested using Fisher’s exact test. 196 

 197 

Results 198 

Existing signatures showed no association with survival in stage I 199 

melanoma  200 

The structure of datasets used in this study are depicted in Figure 1. When applied to the whole LMC 201 

dataset (n=687), the three formerly published signatures (Lund 4-class, Lund 2-grade, TCGA 3-class) 202 

replicated previously observed associations with MSS (Figure 2A, 2C, and 2E). However, upon 203 

stratifying LMC patients on the basis of AJCC stage, the Lund and TCGA signatures showed no 204 

association with prognosis for LMC stage I patients (Figure 2B, 2D, and 2F). The Lund 2-grade 205 

signature had the highest statistical power (since based on only two groups) and showed a 206 

statistically significant interaction with AJCC stage (P=0.02, Supplementary table S1), suggesting that 207 

the lack of association in stage I was not solely due to low sample size. Because the full details of 208 

Gerami et al’s (6) commercial signature were not published, we were limited in the scope of its 209 

replication in the LMC dataset. However, analysing the 27 Gerami genes identified 23 genes as 210 
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predictors of prognosis in the whole LMC dataset (Supplementary table S2). However, in keeping with 211 

the Lund and TCGA signatures, none of these genes showed a significant association with prognosis 212 

in stage I tumors (Supplementary table S2). 213 

 214 

Generating novel LMC classes and their clinical characteristics 215 

Consensus clustering of the LMC dataset was performed, and following additional quality control 216 

measures (Supplementary table S3), six distinct, novel molecular classes were identified (Figure 3A). 217 

These classes were associated with clinico-pathological variables known to have prognostic value, 218 

including tumor site (P=0.03), age at diagnosis (P=0.03), mitotic rate (P=0.002), ulceration (P=0.01), 219 

AJCC stage (P=6x10
-10

), tumor infiltrating lymphocytes (TILs) (P=6x10
-4

), and Breslow thickness 220 

(P=9x10
-14

) (Table 1). The LMC classes 1 and 5 tumors tended to be thin and non-ulcerated, whilst 221 

classes 2 and 4 tumors were thicker. Class 3 and 6 tumors were the thickest and most frequently 222 

ulcerated. The six classes showed strong association with BRAF (P=6x10
-5

) and NRAS mutation 223 

status (P=3x10
-4

): classes 1, 5, and 6 tumors were frequently BRAF mutated, while classes 2, 3, and 224 

4 tumors were frequently NRAS mutated (Table 1). 225 

 226 

LMC classes predicted prognosis in primary melanoma and in 227 

stage I subset 228 

The LMC classes predicted MSS in the whole LMC dataset and notably, across AJCC stages I, II and 229 

III subsets (Figure 3B-3C, Supplementary figure S1). In the unadjusted analysis of the whole dataset 230 

(Figure 3B, Supplementary table S4), class 1 (baseline) had the best prognosis, class 2 (HR=1.7, 231 

95% confidence interval (CI) 0.8-3.5) and class 5 (HR=1.5, 95% CI 0.7- 3.1) showed intermediate 232 

prognosis, while class 3 (HR=5.0, 95% CI 2.5-10.1), class 4 (HR=2.4, 95% CI 1.2- 4.7), and class 6 233 

(HR=3.1, 95% CI 1.6-6.1) had the worst prognosis. In multivariable analysis, classes 3, 4, and 6 234 

remained significant predictors of poor prognosis after including AJCC stage, sex, age at diagnosis, 235 

mitotic rate (Table S4) and when the AJCC stage was replaced by ulceration and Breslow thickness 236 

in the model (Table S6). In the LMC stage I subset, class 6 (HR=6.6, 95% CI 1.4-31.2) significantly 237 

predicted poor prognosis in unadjusted analysis (Figure 3C and Table S5) and it remained significant 238 
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when sex, age at diagnosis, mitotic rate, ulceration and Breslow thickness were adjusted (HR=9.8, 239 

95% CI 1.1-86.2, Table S6). Since Gerami signature was not available to us in full, we ran 240 

unsupervised clustering of the LMC dataset using the 27 Gerami genes to generate the 2 tumor 241 

groups analysed by Gerami et al. (6), referred to as the Gerami clusters. This analysis showed that 242 

the LMC classes and Gerami clusters had independent prognostic effects in the whole LMC dataset 243 

(Supplementary table S7); however, the Gerami clusters showed no prognostic value in stage I 244 

tumors while LMC class 6 remained a significant predictor in the multivariable model (Supplementary 245 

table S8). 246 

 247 

To validate the prognostic value of the LMC classes in an independent dataset, a 150-gene based 248 

signature (LMC signature), generated after refining ~13,000 genes (Supplementary figure S2), was 249 

applied to the Lund dataset (4). In keeping with the observations made in the LMC dataset, class 3, 250 

class 4, and class 6 predicted worse prognosis in the Lund dataset, while class 1, class 2, and class 5 251 

predicted better prognosis (Figure 3D, Supplementary table S9). Since the Lund dataset had only a 252 

few stage I cases (n=58) the prognostic value of LMC signature could not be replicated in stage I 253 

disease. 254 

LMC signature had independent prognostic value when compared 255 

with SNB  256 

In the dataset derived from individuals who had a SNB, the prognostic value of combined LMC class 257 

signature and pre-SNB AJCC stage was similar to that of AJCC stage with SNB (i.e. stage post-SNB) 258 

(AUC 0.82 vs 0.80, P= 0.7, Figure 3E). Combining the LMC signature with AJCC stage post-SNB, 259 

patient’s sex, age at diagnosis and site of tumor increased the AUC to 0.88. Similarly, in the subset of 260 

patients at stage I pre-SNB, the LMC signature alone had comparable prognostic value to AJCC 261 

stage post-SNB (AUC=0.88 vs 0.83, P= 0.7, Figure 3F). In this stage I subset, addition of stage post-262 

SNB, patient’s sex, age at diagnosis and site of tumor to the LMC signature further increased the 263 

AUC to 0.98. However, the limited sample size of stage I dataset and including so many variables 264 

clearly overfitted the model, giving near perfect classification and illustrating that independent 265 

datasets are needed to better assess performance. 266 
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Biological overlap between the LMC and existing signatures  267 

The six classes of LMC signature showed distinct gene expression profiles (Figure 4A) and showed 268 

partial overlap with the existing Lund and TCGA signatures. LMC classes 1, 3, and 5 overlapped 269 

substantially with the high-immune, pigmentation, and normal-like classes of the Lund 4-classes 270 

(Figure 4B), and with the immune, MITF low, and keratin classes of the TCGA 3-classes (Figure 4C). 271 

In contrast, LMC classes 2, 4, and 6 represented a mixture of the Lund 4-classes and TCGA 3-272 

classes. Gene expression pathway enrichment analysis revealed distinctive biological features of the 273 

6 LMC classes: notably class 2 was characterised by increased WNT signalling genes and metabolic 274 

pathways; class 4 by decreased expression of immune genes and class 6 by increased expression of 275 

cell cycle and consistent down-regulation of cell metabolism pathway genes (Supplementary table 276 

S14).  277 

When applied to the LMC 6 classes, the Lund modules (29) revealed discrimination consistent with 278 

enriched gene pathways: LMC class 1 tumors showed higher immune module activity, and class 3 279 

tumors showed higher cell cycle module activity (Figure 4D). Interestingly, class 6 tumors had 280 

relatively higher cell cycle but also immune module activity and, as expected, the immune, stroma and 281 

interferon modules were positively correlated but they negatively correlated with cell cycle and MITF 282 

modules (Figure 4D). The tumor infiltrating immune cell populations imputed for each of the LMC 283 

classes (30) were consistent with the Lund immune module, as class 1 had the highest immune cell 284 

populations and class 3 the lowest, whilst class 6 appeared to maintain an intermediate level of 285 

immune cell populations, having the second highest scores on average (Supplementary figure S3).  286 

A comparison with the Consensus Immunome Clusters (CICs), previously generated in the same 287 

LMC dataset based on 380 immune genes (13), showed that the 2 most prognostically contrasted 288 

LMC classes (class 1 and class 3) had a near perfect match with CIC 2 (high Immune) and CIC 3 (low 289 

immune/ȕ-catenin high) respectively (Supplementary figure S4) while the rest of LMC classes were a 290 

mixture of CICs. Cluster 1 had correspondingly a higher proportion of tumors with histological 291 

evidence of brisk tumor infiltrating lymphocytes (36% compared with 8% in class 3). Analysing the 292 

correlation between the Gerami genes and LMC signature genes showed that the Gerami genes 293 

positively correlated with the genes upregulated in LMC class 5 tumors and negatively correlated with 294 
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genes upregulated in LMC class 3 tumors (Supplementary figure S5). Consistent with this, Gerami 295 

clusters 1 and 2 highly overlapped with LMC classes 3 and 5 respectively (Supplementary figure S6). 296 

JUN as marker of poor prognosis in class 6 tumors 297 

LMC class 6 predicted worse prognosis within AJCC stage I tumors. Further biological network 298 

analysis identified JUN as a key upregulated nodal gene in this class (Figure 5A-B). The NGS-based 299 

CNA data from a subset of LMC tumors (n=272) indicated that class 6 tumors were more likely to 300 

have DNA amplifications of JUN than other classes (P=0.003, Figure 5C, Supplementary figure S7). 301 

In melanoma, JUN has been reported to activate epithelial-to-mesenchymal transition (EMT), and 302 

accordingly a 6-gene based (31) and 200-gene based EMT signature (32) consistently scored higher 303 

in LMC class 6 than in all other LMC classes (Figure 5D, Supplementary figure S7). A secondary key 304 

nodal gene NFKB1 identified to be upregulated in class 6 had no copy number changes. Further 305 

examination of immunohistochemically stained sections, showed that all 4 tumors stained from class 306 

6 were positive for NFKB1 protein expression, and this was similar to other LMC classes (P=0.4, 307 

Supplementary figure S7). 308 

LMC signature as a potential predictor of response to 309 

immunotherapy 310 

The value of the LMC signature in predicting outcome in patients treated with immunotherapy was 311 

assessed in three disparate clinical trial cohorts of metastatic melanoma (Figure 5F) (10-12). In the 312 

Hugo et al. cohort, tumors classified as class 6 were mainly non-responders to PD-1 blockade in 313 

comparison to the other LMC classes (P=0.03). Hugo et al. reported that expression of AXL predicts 314 

poor response to PD-1 blockade; the gene expression data revealed significantly higher AXL 315 

expression in class 6 tumors when compared to other classes within their cohort (Figure 5G). 316 

Similarly, for the cohort reported by Ulloa-Montoya et al., class 6 tumors showed a significantly higher 317 

proportion of non-responders to MAGE-A3 immunotherapy in comparison to other classes. The cohort 318 

reported by Riaz et al. was predominantly composed of non-responders to anti-CTLA-4 further treated 319 

with PD-1 blockade but LMC classes were not convincingly predictive but class 3 predicted poor 320 
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prognosis, which was consistent with the LMC dataset when compared to good prognosis class 1 321 

(Figure 5H).  322 

 323 

Discussion 324 

In this study, transcriptome classification was performed utilising a large population-ascertained 325 

cohort of primary melanomas, revealing classes having prognostic value in stage I disease. In stage I 326 

tumors, the LMC signature predicted outcome comparably to AJCC staging including SNB. 327 

Furthermore, evidence suggests that the signature predicted outcome in patients treated with 328 

immunotherapies. 329 

Given the rising incidence of early stage tumors and the cost of adjuvant therapies to health services 330 

and to patients in terms of toxicity, there is an urgent need to identify better prognostic and predictive 331 

biomarkers for early stage disease. When previous gene signatures were applied to the LMC (3,8), 332 

the signatures robustly predicted outcome when the dataset was analysed as a whole, but failed to do 333 

so in stage I tumors alone. Although the full Gerami signature was not available, analysing the 334 

prognostic value of genes reported in that study (6) showed that the genes were predictive of 335 

prognosis in the whole LMC dataset but not in stage I tumors. In this work, a six-class signature 336 

(Supplementary data file) was identified which was not only prognostic in the whole LMC dataset but 337 

also in patients diagnosed at AJCC stage I. The prognostic value of the LMC signature was validated 338 

in an independent cohort of primary melanoma built in Lund (4) although the number of stage I cases 339 

in this cohort was insufficient to allow replication of the signature’s prognostic value in stage I disease. 340 

The LMC signature showed limited overlap with the Lund and TCGA signatures. When comparing it 341 

with previously identified immunome clusters by our group (13), two LMC classes strongly overlapped 342 

with immune subgroups. The non-overlapping classes could not be clearly discriminated using the 343 

immunome clusters suggesting that these LMC classes are driven by different genomic mechanisms. 344 

Comparison of LMC signature genes with Gerami genes indicated a biological pathway overlap as 345 

Gerami genes were found to be strongly correlated with LMC classes 3 and 5. 346 

Although SNB is an important melanoma staging tool, the surgery is associated with morbidity 347 

(33,34). In the LMC, SNB was observed to be of prognostic value in the whole dataset and in stage I 348 
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tumors. However, the LMC signature performed just as well. Given the morbidity of SNB, it may be 349 

argued that the LMC signature should be tested in an independent study as a possible alternative to 350 

this procedure especially in stage I disease where the likelihood of a positive result is overall low and 351 

must be weighed against morbidity. 352 

In melanoma, increased immune gene expression has been consistently shown to predict good 353 

prognosis (5,9,13,35). However, a subset of tumors (LMC class 6) was observed which, despite 354 

showing immune gene expression, resulted in the patient’s early death. Further biological 355 

characterisation of this class identified copy number amplifications and increased expression of JUN. 356 

Ramsdale et al. have shown that JUN promotes an invasive cell phenotype through activation of the 357 

EMT pathway (36), and a higher scoring EMT signature in LMC class 6 confirmed increased activity 358 

of the EMT pathway in this class. Riesenberg et al. have reported that increased JUN expression 359 

leads to pro-inflammatory and stress signals that promote cytokine expression in coordination with 360 

NF-B (37). Again, these findings are consistent with the presented transcriptomic observations of 361 

JUN and NFKB1 in defining LMC class 6 (Figure 5B, 5E). There was insufficient tissue to carry out 362 

immunohistochemistry for JUN, therefore JUN protein expression in the TCGA dataset was examined 363 

and confirmed a positive correlation between JUN gene transcription and protein expression 364 

(Supplementary figure S7). Collectively, these data are indicative of copy number gains resulting in 365 

both increased gene expression and transcriptional activity of JUN in LMC class 6 tumors, although 366 

further proteomic studies would be required to confirm this.  367 

The LMC signature was associated with response to immunotherapies; specifically, class 6 368 

associated with poor outcome in two of the three tested datasets. None of these data sets are 369 

sufficiently large to make clear inferences. It is of note that the expression of AXL, a known marker for 370 

immune evasion, was significantly upregulated in LMC class 6 in metastatic melanoma samples in the 371 

Hugo data set.  372 

The inherent strength of this study is the relatively large size of the population ascertained cohort. A 373 

corresponding limitation is the lack of a well powered AJCC stage I dataset to allow independent 374 

replication of the signature in stage I melanoma. Another limitation of this study is that only one-third 375 

of LMC patients had a SNB, limiting the power to compare staging tests. The LMC recruitment period 376 

preceded the advent of both immunotherapy and targeted therapy, and only a very small number of 377 

the study participants have been treated with these drugs. Excluding the samples from these 378 
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participants showed no modifying effect of such treatments on MSS in the LMC dataset (data not 379 

shown). 380 

 381 

In conclusion, this study presents a novel signature with demonstrated prognostic value similar in 382 

magnitude to that of AJCC staging of melanoma, but having added value in stage I melanoma. The 383 

data further confirm that AJCC stage largely captures biological variation associated with survival. 384 

The LMC class signature prognostic value was similar to that of SNB in the whole dataset (where their 385 

effects were additive) and in stage I disease. The signature predicted poor outcome in patients 386 

receiving immunotherapies and in particular identified high-JUN/high-AXL as a tumor phenotype with 387 

poor prognosis in early and advanced stage melanoma albeit in very small datasets. This signature 388 

has the potential to be trialled as a biomarker in clinical monitoring programs and may help in early 389 

identification of patients who may or may not benefit from adjuvant therapies. 390 
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Table 1 The LMC classes association with clinico-histopathological variables  507 

Histopathological variables 
Whole dataset 

n=687 (%) 

LMC classes 

Class 1 

(n=71) 

Class 2 

(n=122) 

Class 3 

(n= 73) 

Class 4 

(n=143) 

Class 5 

(n=136) 

Class 6 

(n=142) 
P

a
 

Sex : male n (%) 310 (45) 39 (55) 51 (42) 34 (47) 56 (39) 55 (40) 75 (52) 0.07 

Tumor site: limbs n (%) 289 (42) 37 (52) 58 (48) 26 (36) 58 (41) 64 (47) 46 (32) 0.03 

Age at diagnosis (years) m(r) 58 (18, 81) 59 (21,76) 59 (22,79) 60 (20,77) 58 (18,81) 53 (25,76) 59 (22,81) 0.03 

Breslow thickness (mm) m(r) 2.3 (0.3, 20) 1.7 (0.7, 5.5) 2.1 (0.8, 8.9) 3.2 (0.8, 20) 2.3 (0.3, 15) 1.8 (0.7, 12) 3.0 (0.8, 18) 9 × 10
-14

 

AJCC stage (%) 
b
 I 

II 

III 

236 (35) 

335 (49) 

109 (16) 

39 (55) 

26 (36) 

6 (9) 

42 (35) 

57 (48) 

21 (17) 

11 (15) 

46 (64) 

15 (21) 

46 (33) 

77 (55) 

18 (12) 

71 (53) 

45 (33) 

19 (14) 

27 (19) 

84 (60) 

30 (21) 

6 × 10
-10

 

Ulceration (present) n (%) 228 (33) 16 (23) 32 (26) 30 (41) 53 (37) 38 (28) 59 (42) 0.01 

Mitotic rate (/mm
2
) 1 (0,25) 0 (0,11) 1 (0,17) 2 (0,25) 1 (0,13) 1 (0,12) 1 (0,18) 0.002 

TILs (%) Absent 

Non-Brisk 

Brisk 

76 (15) 

333 (68) 

81 (17) 

2 (4) 

30 (60) 

18 (36) 

13 (14) 

65 (71) 

14 (15) 

17 (32) 

32 (60) 

4 (8) 

14 (16) 

60 (68) 

14 (16) 

15 (16) 

63 (66) 

17 (18) 

15 (13) 

83 (74) 

14 (13) 

6 × 10
-4

 

BRAF mutant yes (%) 266 (47) 26 (43) 38 (30) 23 (40) 44 (36) 63 (59) 72 (61) 6 × 10
-5

 

NRAS mutant yes (%) 138 (25) 8 (14) 35 (34) 17 (30) 41 (34) 20 (19) 17 (15) 3 × 10
-4

 

aThe associations were tested using Pearson’s chi-squared test for categorical variables and the Kruskal-Wallis test for continuous variables. Symbol n is the 508 

number of samples, m is the median and r is the range.  b 7 patients had mucosal melanoma and, although they were classified, they were not included in 509 

survival analyses. Their AJCC stage was not reported. Each of LMC class 2 and 4 contained 2 of these, while class 3, 5 and 6 had 1 each.   510 
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Figure legends 511 

Figure 1: Analysis workflow of the study 512 

 513 

Figure 2: Replicating Lund and TCGA signatures using LMC dataset. Kaplan-Meier plots showing the 514 

Melanoma-specific survival (MSS) for (A) Lund 4-classes (HI- high-immune, NL- normal-like, Pigm.- 515 

pigmentation, Prolif.- proliferative ), (B) Lund 2-grades (low grade and high grade) and (C) TCGA 3-516 

classes (immune, keratin, MITF low) across the whole LMC dataset. In LMC stage I subset, Kaplan-517 

Meier plots showing the MSS for (D) Lund 4-classes, (E) Lund 2-grades, and (F) TCGA 3-classes. 518 

Pvalues are from log-rank test. Samples which could not be classified into any of the classes were not 519 

used in survival analysis. 520 

 521 

Figure 3: Defining LMC signature and its prognostic value. (A) The area under the CDF and its 522 

relative change with increasing k. The delta area graph shows little variation at k=6. Heatmap of 523 

consensus matrices at k=5 and 6. The blue color indicates high consensus score and the white color 524 

indicates low consensus (B) Kaplan-Meier plot showing the MSS for the six classes in (B) the whole 525 

LMC dataset, (C) the LMC stage I, and (D) relapse-free survival in the Lund cohort (Pvalue from log-526 

rank test, or Wald test for two-groups comparison). Seven mucosal tumors were excluded from 527 

analysis. (E) ROC curves comparing the prognostic value of the LMC signature to that of Sentinel 528 

Node Biopsy (SNB) in the whole dataset. The AUCs for LMC class+ stage pre-SNB and stage post-529 

SNB were not significantly different (DeLong’s test P=0.7). (F) The ROC curve comparing prognostic 530 

value of LMC signature with SNB in the stage I pre-SNB group. All but one patient were stage IB pre-531 

SNB, therefore AUC for LMC signature alone was compared to stage post-SNB and the difference 532 

was not significant (DeLong’s test P=0.7). The difference in AUCs between stage post-SNB alone and 533 

LMC class +stage post-SNB was also not significant (DeLong’s test P=0.1). 534 

 535 

Figure 4: Biological characterization of the six LMC classes. (A) The heatmap shows gene expression 536 

across the classes with tumor samples placed in columns and genes in rows. Blue depicts low 537 

expression and red depicts high expression. Each gene expression was standardized to mean 0 and 538 
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standard deviation 1. The up- and down-regulated nodal genes identified in network analyses are 539 

shown under the heatmap. The barplot shows the overlap between the LMC classes and (B) Lund 4-540 

classes (HI- high-immune, NL- normal-like, Pigm- pigmentation, Prolif- proliferative), and (C) TCGA 3-541 

classes. The samples that could not be classified into the Lund 4-classes and TCGA 3-classes were 542 

labelled here as Uncls. (D) The modules (defined by a list of differentially upregulated genes) 543 

associated with melanoma-specific biological pathways as identified by the Lund group (29). Boxplots 544 

of immune and cell cycle module scores (standardized expressions) within the 6 LMC classes and 545 

correlation matrix of immune, cell cycle, MITF, stroma and interferon module scores. The module 546 

score variation across the classes was tested using the Kruskal-Wallis test. 547 

 548 

Figure 5: Biological characterization of LMC class 6 and association with response to immunotherapy. 549 

(A) Network of upregulated genes in the LMC class 6 with key genes (highest betweenness centrality) 550 

shown as large circles. Sub-networks are shown in different colors. (B) Expression of JUN across the 551 

six LMC classes (Pvalue from Kruskal-Wallis test). (C) JUN copy number alterations in LMC class 6 552 

vs other classes. (D) The 6-gene based EMT score in tumors across the six LMC classes (Pvalue 553 

from Kruskal-Wallis test). (E) The gene expression of NFKB1 across the 6 LMC classes (Pvalue from 554 

Kruskal-Wallis test). (F) The LMC classes association with response to immunotherapy in three 555 

cohorts (Pvalue from Fisher’s exact test). Patients in these cohorts were classified into the 6 LMC 556 

classes by the NCC method.  (G) Expression of AXL across the six LMC classes in the Hugo Cohort 557 

dataset (Pvalue from Mann–Whitney U test). (H) Kaplan-Meier plot showing survival curves of LMC 558 

class 1, class 3, and class 6 in the Riaz Cohort. Other LMC classes had <5 samples and were 559 

excluded. 560 

  561 
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