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Two weak base anion exchange resins, Lewatit A365 and Purolite MTS9850, have been tested for the 

removal of aqueous iodide from conditions simulating nuclear waste reprocessing streams. pH 

variation and relevant co-contaminant addition (nitrate, molybdate and iodine) allowed for 

assessment of iodide extraction behaviour of each resin. Isotherm experiments were performed and 

maximum uptake capacities obtained exceed current industrial adsorbents, such as silver-

impregnated zeolites. Maximum loading capacities, determined by Dubinin-Radushkevich isotherm, 
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were 761 ± 14 mg g-1 for MTS9850 and 589 ± 15 mg g-1 for A365. Uptake for both resins was 

significantly suppressed by nitrate and molybdate ions. The presence of dissolved iodine in the 

raffinate however, was found to increase iodide uptake. This was explained by characterisation of the 

spent resin surface by infrared and Raman spectroscopy, which determined the presence of triiodide, 

indicating charge-transfer complex formation on the surface. Dynamic studies assessed the effect of 

co-contaminants on iodide uptake in a column environment. Data was fitted to three dynamic 

models, with the Dose-Response model providing the best description of breakthrough. In all cases 

iodide breakthrough was accelerated, indicating suppression of uptake, but capacity was still 

significant. 

Keywords: anion exchange, radioiodine, Purolite MTS9850, Lewatit A365, remediation 

 

× Weak-base polyamine resins have demonstrated very large iodide uptake capacities. 

× Dubinin-Radushkevich isotherm-fitting confirms an anion-exchange mechanism is prevalent. 

× Breakthrough behaviour is well-described by the Dose-Response model. 

× Co-existing anions molybdate and nitrate suppressed uptake, but not completely. 

× Addition of diiodine increased uptake, seemingly due to charge-transfer complex formation with 

the resin matrix. 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

The fission of uranium-235 produces a variety of isotopes of various elements, from zinc through to 

the lanthanides. Four isotopes of iodine are produced in the fission process with significant yields 

[1]. Of these, iodine-129 (129I) and iodine-131 (131I) are a concern due to their ability to damage 

human health and the environment. Iodine displays a capricious chemistry which includes a variety 

of oxidation states, formation of organic compounds, and volatility. This diversity in chemical 

behaviour makes iodine challenging to capture, remove and immobilize from nuclear waste streams 

[2]. 129I has an extremely long half-life (t1/2 = 15.7 million years), whilst 131I has a short half-life (t1/2 = 

8.02 days), yet both have high mobility within the environment [1, 3]. 131I poses a severe risk to 

human health, particularly small children, due to high specific activity and ability to accumulate in 

the thyroid gland [4]. Conveniently, its short half-life results in little to no impact on nuclear waste 

disposal [5]. The long half-life of 129I is more of a concern for long-term waste storage in a geological 

repository. It is consistently found to be one of the largest radioactivity dose contributors in the 

assessment of such repositories [6]. Aqueous radioiodine has also been shown to bio-accumulate in 

aquatic ecosystems [7], which can potentially result in human uptake and exposure. 

During power generation, iodine can leach into coolant systems of the plant through fission product 

pathways, as a result of cladding or fuel handling failures [8]. In the processing of used nuclear fuel 

(UNF), iodine partitions between a variety of gaseous streams and aqueous phases, leading to the 

potential for release at every stage of unit operation. Iodine most readily escapes as an off-gas, with 

a small fraction remaining within the aqueous raffinate [9]. There are a number of commonly 

applied methods to limit the volume of iodine emissions, to remain in line with regulations. For 

example, 129I is often removed using caustic scrubbing or via adsorption using silver-impregnated 

silica or zeolites, whilst 131I removal involves acidic scrubbing processes [10]. Major challenges arise 

when considering the removal of the remaining iodine present in liquid waste streams and 

subsequently how the volume of aqueous iodine discharge can be more effectively reduced.   



In an acidic environment, iodide is known to be the dominant species of aqueous iodine [11]. With 

this knowledge in mind, a potential solution can be outlined. A promising option is ion-exchange, 

which has been widely used within the nuclear industry, most commonly for coolant purification and 

similar processes, such as condensate polishing [12]. There has however been minimal research into 

the removal of volatile fission products, such as iodine, from aqueous waste streams. Current solid 

sorbents such as activated charcoal and zeolites have poor uptake capacities in these challenging 

environments and often high raw material costs, particularly if impregnated with metals such as 

silver [13, 14]. Ion-exchange resins are an economically preferable choice and have been shown to 

display greater iodide uptake than industrially implemented methods [8, 15]. 

In this study, two weak-base anion (WBA) resins have been compared under a variety of conditions, 

approximately simulating UNF reprocessing aqueous waste streams, with the aim of determining 

uptake capacities for iodide anions. Anion-exchange resins are available in strong base and weak 

base forms, allowing for applications in a wide range of environments. WBAs are predicted to be 

more effective for iodide removal due to their increased selectivity and uptake capacities for larger 

anions compared to strong base resins. Their optimum operating pH range also ensures suitability 

for operation in the strongly acidic conditions present [16].  

The two commercially available resins, Purolite MTS9850 and Lewatit A365, have recommended 

applications for water purification and heavy metal removal, notably platinum, palladium and 

rhodium. However, there is minimal literature data available with respect for their suitability for the 

targeted removal of anions, and none at all for iodide specifically. Predominantly, research carried 

out using Purolite MTS9850 has focused on the removal of specific transition metals [17 - 19], while 

Lewatit A365 has had one sole literature publication, targeting uranium recovery from various media 

[20]. This makes it difficult to predict the relative uptake capacities and affinities of these tested 

resins for iodide. 



This work represents one of the first attempts to study removal of iodine from aqueous nuclear 

waste streams by iodide ion-exchange, as well as comparing the performance of two WBA resins of 

little previous documentation. It will also begin to address the issue of the adverse effects of co-

existing anions on iodide uptake. Furthermore, the effect of introducing molecular iodine into an 

iodide system, and subsequently forming equilibrium with triiodide ion has not previously been 

documented to our knowledge. Overall, the suitability of each resin for iodide uptake in the nuclear 

industry will be assessed, with the potential for further kinetic studies and scale-up operation to be 

carried out. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Experimental 

2.1. Reagents and stock solutions  

All reagents were supplied by commercial suppliers Sigma Aldrich and Acros Organics, at analytical 

grade or higher, and were used as received. The majority of reagents were purchased as sodium 

salts (NaI, NaNO3, Na2MoO4.2H2O), used to simulate ions that are present in nuclear waste 

reprocessing streams. Elemental iodine in its solid form was also used for this reason, as well as to 

aid in the understanding of how it behaves in the presence of ion-exchange resins. 

A Cole-Parmer combination iodide ion-selective electrode (epoxy type) was used to carry out ion-

selective electrode (ISE) analysis. Calibration was completed by analysing a number of iodide 

standards across an appropriate range, made from a 1000 mg L-1 iodide standard solution (Fisher 

Scientific). Calibration was performed prior to every new study and after every run of £10 sample 

within an experiment, if applicable. All samples included 2% 5 M NaNO3 ionic strength adjuster and 

were made up to a convenient final volume with deionised water. Each sample was analysed in 

triplicate. Commercial anion exchange resins Purolite MTS9850 and Lewatit A365 were kindly 

donated by Purolite and Lanxess respectively. The functionalities of the two resins are shown in 

Figure 1 and an overview of resin parameters is found in Table 1.  

 

Figure 1. Functionalities of the two WBA resins. A) Purolite MTS9850 and B) Lewatit A365. Shaded 

circles represent the polymer matrix (acrylate/divinylbenzene). 
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Table 1. Manufacturer specifications for Purolite MTS9850 and Lewatit A365 (DVB = divinylbenzene). 

Parameter Purolite MTS9850 Lewatit A365 

Capacity (eq L-1) 2.3 3.4 

Moisture content 52-57% 44-51% 

Resin bead diameter (mm) 0.3 – 1.2 0.4 – 1.6 

Functionality Polyamine Polyamine 

Type Weak base/Chelating Weak base/Chelating 

Matrix Polyacrylic/DVB Polyacrylic/DVB 

 

Where necessary, pH adjustments were made using solutions of 0.01 – 1 M HNO3 and NaOH. 

Preconditioning of the resin was carried out by contacting 150 g of each resin (mass as-received) in 2 

L of 1 M HNO3 for 24 hours at room temperature on an orbital shaker. The preconditioned resin was 

then subsequently washed with 10 x 2 L of deionised water. An accurate conversion between wet 

settled volume and dry mass was determined by drying an appropriate volume of preconditioned 

resin in an air-flow oven at 50°C for a minimum of 24 hours, then recording the change in mass. Five 

repeat measurements were made and the results averaged. 

2.2. Uptake studies – pH and co-contaminants 

Varying pH studies were carried out in duplicate, using a solution of 10 g L-1 iodide. The pH range 

tested was 2 – 10 to observe the variation of uptake behaviour over acidic and basic conditions. 25 

mL of iodide solution was added to 600 mg of resin (dry mass) and subsequently pH adjusted, using 

solutions of 0.01 – 1 M HNO3 and NaOH. The solution was then made up to close to 50 mL with 

deionised water, with pH being further adjusted as necessary until stable, before samples were 

made up the final volume and placed on an orbital shaker for 12 hours to achieve equilibrium, prior 

to ISE analysis. Iodide uptake capacity, qe (mg g-1), was determined using Eq. (1), 

 

	�# =	 (&∋(&))×,−            (1) 

 

where Ci is the initial iodide concentration (mg L-1), Ce is the iodide concentration of the solution at 

equilibrium (mg L-1), V is volume of the solution analysed (L) and W is mass of resin (g).  



The effect of co-contaminants on iodide uptake was studied by addition of sodium nitrate, sodium 

molybdate and iodine, at concentrations of 1 – 10 g L-1, to 50 mL of 7 g L-1 iodide solution, contacted 

with 600 mg of resin (dry mass). Experiments were carried out at pH ~3 and not adjusted, following 

initial contact. The samples were placed on an orbital shaker for a minimum of 12 hours and 

subsequently analysed via ISE and uptake capacity quantified, as per the pH study.  

2.3. Isotherm studies 

Isotherm experiments were completed in duplicate for Purolite MTS9850 and Lewatit A365, varying 

initial iodide concentration over a range of 1 – 10 g L-1 at one gram intervals. 20 ml solutions were 

contacted with 250 mg of resin (dry mass) for a minimum of 12 hours and allowed to equilibrate at 

ambient temperature on an orbital shaker. Experiments were again carried out at pH ~3 and not 

adjusted, following initial contact. Iodide uptake capacity for each concentration was determined via 

ISE, as previously described.  

Numerous isotherm models can be considered for modelling of uptake behaviour, ranging from one- 

to five-parameter models [21]. Commonly used two-parameter isotherms have been applied to the 

data, these being Langmuir, Freundlich, Temkin and Dubinin-Radushkevich [22], for literature 

comparison on iodide uptake. Data fitting was carried out using linear regression and by non-linear 

least squares analysis using SOLVER in Microsoft Excel to obtain the best possible fit [23] and 

standard errors were calculated at 95% confidence intervals. 

The Langmuir isotherm model, (Eq. (2)) can be applied to systems with a finite number of adsorption 

sites. Given that there are a finite number of protonated tertiary amine groups present for both ion 

exchange resins, the Langmuir model should be applicable. 

�# =	 ./&)
012/&)           (2) 

In the Langmuir equation, aL and KL are Langmuir Isotherm constants.  The theoretical maximum 

possible uptake capacity, qmax (mg g-1), can be determined using these constants, as shown by Eq. 

(3). 



�324 =	./2/            (3) 

However, since the amine environments, particularly for MTS9850, would not be expected to be 

degenerate (Figure 1), iodide uptake behaviour could also be described by the Freundlich isotherm 

model [24] (Eq. (4)), 

�# = �6�#
8
9            (4) 

where KF and n are Freundlich isotherm constants. KF is a measure of adsorption capacity and n is a 

factor of heterogeneity [25]. 

The Temkin isotherm model, (Eq. (5)), has been applied to confirm that heat of adsorption decreases 

linearly as exchange sites are occupied, as a result of interactions between the solution and the resin 

[26], 

 �# = :;
<= ln	(�;�#)          (5) 

where 
:;
<= 	 can be represented as B (heat of adsorption constant). 

R is the ideal gas constant (8.314 J K-1 mol-1), T is temperature (K), while AT and bT are Temkin 

isotherm constants.   

The Dubinin-Radushkevich (D-R) model, (Eq. (6)), is used to determine which adsorption mechanism 

dominates within the system; either chemisorption, ion-exchange or physisorption [27],  

�# = �324�(ΒΧDΕ           (6)  

 

where BD is a D-R isotherm constant (mol2 J2) and ε2 is the Polanyi potential which is described by Eq. 

(7). 

�Γ = ����(1 + 0
&))          (7) 

Mean free energy of sorption ED (J mol-1) can thus be obtained, which can help to determine which 

mechanism of adsorption is present and is represented by Eq. (8). 



�Ο =	 0
ΠΓΒΧ  

          (8)  

2.4. Dynamic studies  

Wet settled resin (4 mL) was packed into a 5 mL column and a 5 g L-1 iodide solution was passed 

through at a flow rate of 5.25 BV hr-1 (BV = bed volumes, the equivalent volume of water to that of 

the wet settled resin within the column). Tygon tubing with internal diameter of 0.8 mm was used, 

connected to a Fisher Scientific CTP100 peristaltic pump operating at 10 rpm. Samples were 

collected with a fraction collector at 15-minute intervals, until full breakthrough was achieved. ISE 

analysis was carried out as previously described. 

The above method was repeated to observe the effect of co-contaminants in a dynamic 

environment. Once again, these included sodium nitrate, sodium molybdate and iodine, all at 5 g L-1 

in the inlet solution of their respective experiments. Results were plotted using three common 

dynamic breakthrough models, these being Dose-Response, Yoon-Nelson and Thomas.  

The Dose-Response model (Eq. (9)) is often applied due to the fact it minimises errors produced in 

other models.  

&
&∋ = 1 −	 0

01ΡΣ)ΤΥ ς
W          (9) 

In the Dose-Response model, C is the concentration at a specific time (mg L-1), Ci is the initial 

concentration (mg L-1), Vef is volume of the liquid (mL), whilst a and b are Dose-Response constants.  

The Thomas model (Eq. (10)) aims to determine whether adsorption is controlled by interfacial mass 

transfer, rather than via a chemical reaction. 

ln Ξ&∋& − 1Ψ = ΞΖ=[∴ Ψ (�]�) − Ξ
Ζ=[
∴ Ψ _��#βχ       (10) 

In the Thomas model, kTh is the Thomas rate constant (ml min-1 mg-1), Q is flow rate (ml min-1), qo is 

maximum uptake capacity (mg g-1) and m is mass of resin (g). All other parameters are as previously 

described.   



The linearized Yoon-Nelson model (Eq. (11)) is the final model to consider, which aids in the 

prediction of adsorption performance, making a number of assumptions linked to proportionality.  

ln Ξ &
&∋(&Ψ = �εφ� −	�εφ�         (11) 

In the Yoon-Nelson model, kYN is the Yoon-Nelson constant (min-1) and τ is the 50% adsorbate 

breakthrough time constant (min). All other parameters are as previously described.  

2.5 Resin characterization 

Fourier-transform infrared spectroscopy (FTIR) was carried out using a PerkinElmer Spectrum 2000 

ATR FTIR spectrometer. Samples were prepared by grinding the resins, at various process stages, 

with a small volume of deionised water to produce a fine slurry, before drying in an air-flow oven at 

50°C for a minimum of 24 hours. Raman spectroscopy was carried out with a Horiba XploRA Plus 

microscope, with samples being prepared using the same method. Elemental analysis was 

performed using a Vario MICRO Cube analyser. 100 mg of each resin was preconditioned with 20 ml 

of 3 M hydrochloric acid, in order to give accurate nitrogen mass % results. Post-preconditioning, the 

resins were washed with 50 ml of deionised water and dried for 24 hours at 50 °C.  

 

 

 

 

 

 

 

 

 

 



3. Results 

3.1. Effect of pH and co-contaminants on iodide uptake  

Iodide uptake of both resins over a pH range from 2 – 10 is shown in Figure 2, which indicates that 

between pH 2 - 4 uptake remains similar. A 2nd order polynomial fit of the data suggests that 

optimum extraction can be achieved around pH 3.1 ± 0.01 for both resins. Therefore, all subsequent 

experiments were run at pH 3, which was very close to the natural pH of NaI solution. Under these 

conditions, the establishment of equilibrium for the uptake process was observed to not change the 

solution pH significantly, so no adjustment was performed during the experiments.  

The effect of nitrate, molybdate and iodine co-contaminants, which would be present in UNF 

reprocessing streams, on uptake of iodide by the resins, is presented in Figure 3. 

 

Figure 2. Iodide uptake for p = MTS9850 and £ = A365 across the pH range 2 - 10, adjusted with 

HNO3 and NaOH. Solution volume = 25 mL. I- Ci = 10 g L-1. Equilibration time = 24 hours. Resin mass = 

600 mg. T = 20°C. Error bars show 95% confidence intervals. Data points represent equilibrium pH of 

each solution. 2nd order polynomial fit of the data points is used to guide the eye. 
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Figure 3. Variation of iodide uptake capacity with the introduction of p = nitrate,£ = molybdate 

and � = iodine at concentrations of 1 - 10 g L-1. Equilibration time = 24 hours. Solution volume = 25 

mL. I- Ci = 10 g L-1.  Resin mass = 600 mg. T = 20°C. pH = 3. Best fit lines are displayed to show linear 

relationships between co-contaminant concentration and suppression of iodide uptake. 

 

3.2. Isotherms 

Figure 4 shows isotherms for Purolite MTS9850 and Lewatit A365 respectively across a fixed range of 

starting concentrations and includes fits to the two-parameter models. Relevant parameters for 

each model were extracted and are presented in Table 2. 

The Langmuir separation factor, RL was calculated from Eq. (15) [28].  

�ι =	 0
01./&∋            (15) 

This value determines how favourable the adsorption is onto the resin, with a value approaching 0 

representing very strong adsorption.  

For an arbitrary iodide concentration of 5 g L-1, MTS9850 demonstrates a slightly stronger adsorption 

than A365 – a value of 2.5 x 10-4 compared to 9.4 x 10-4. 
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The D-R model provided the highest R2 value for the attained data (Table 2) and therefore the 

derived qD values were considered the most valid for estimating the maximum iodide adsorption 

capacity of the resins. 

 

MTS9850 A365 

  

 

Figure 4. Isotherm uptake of iodide by p = Purolite MTS9850 and £ = Lewatit A365 for Ci range 

1000 – 10000 mg L-1. Equilibration time = 24 hours. Solution volume = 20 mL. Resin mass = 250 mg. T 

= 20°C. pH = 3. Error bars show 95% confidence intervals. Models used to fit are indicated by lines on 

the graph; solid grey line = Freundlich, grey dotted line = Langmuir, grey dashed line = Temkin, grey 

dashed-dotted line = D-R. 
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Table 2. Key parameters obtained from fitting experimental data to the Langmuir, Freundlich, 

Temkin and D-R isotherm models for a fixed concentration range between 1000 – 10000 mg L-1. 

Model Parameter Purolite MTS9850 Lewatit A365 

Langmuir 

KL 0.75 ± 0.02 0.604 ± 0.003 

aL (g mg-1) 1.37 ± 0.05 (x 10-3) 1.39 ± 0.06 (x 10-3) 

qmax (mg g-1) 549 ± 2 440 ± 20 

R2 0.982 0.991 

Freundlich 

KF (mg g-1) 18.5 ± 0.8 21.3 ± 0.4 

n 2.54 ± 0.04 2.91 ± 0.05 

R2 0.990 0.973 

Temkin 

AT (L g-1) 2.20 ± 0.20 (x 10-2) 2.05 ± 0.08 (x 10-2) 

bT 24.4 ± 0.4 30 ± 1 

B (J mol-1) 101 ± 2 83 ± 3 

R2 0.968 0.984 

Dubinin-

Radushkevich 

BD (mol2 J-2) 6.76 ± 0.35 (x 10-9) 6.51 ± 0.37 (x 10-9) 

qD 761 ± 14 589 ± 15 

ED (kJ mol-1) 8.60 ± 0.19 8.76 ± 0.21 

R2 0.999 0.999 

 

 

3.3. Fixed-bed dynamic studies 

Through observations from all previous experiments, Purolite MTS9850 demonstrated superior 

iodide uptake capacity in relevant experimental conditions. Therefore, this resin was carried forward 

to look at column experiments. The breakthrough behaviour of the column with various co-

contaminants is shown in Figures 5 and 6. Table 3 provides the extracted key parameters for each 

model from the breakthrough data. 

 

 

 

 

 

 

 



Table 3. Key parameters for dynamic models used to fit the experimental breakthrough values. 

Model Parameter Iodide 
Iodide 

+ NO3
- 

Iodide 

+ MoO4
2- 

Iodide 

+ I2 

Iodide 

+ all 

Thomas 

kTH (ml min-1 mg-1) 2.70 x 10-3 6.36 x 10-3 5.89 x 10-3 3.32 x 10-3 9.14 x 10-3 

qo (mg g-1) 230 111 137 152 69.9 

R2 0.864 0.999 0.991 0.964 0.970 

Yoon- 

Nelson 

kYN (min-1) 8.02 x 10-3 0.0309 0.0401 9.53 x 10-3 0.0462 

τ (min) 605 270 276 692 174 

R2 0.975 0.999 0.991 0.964 0.970 

Dose- 

Response 

a 4.301 8.34 5.13 7.06 7.92 

b 207 93.6 65.5 136.1 28.7 

q0 (mg g-1) 278 110 161 149 69.2 

R2 0.987 0.999 0.899 0.961 0.971 

 

  



 

Figure 5. Column behaviour of Purolite MTS9850 with a variety of solutions; A = 5 g L-1 iodide only, B 

= 5 g L-1 iodide and 5 g L-1 nitrate, C = 5 g L-1 iodide and 5 g L-1 molybdate, D = 5 g L-1 iodide and 5 g L-1 

iodine. Resin BV = 4 mL. Flow rate = 5.25 BV hr-1. T = 20°C. Breakthrough models used indicated by 

lines on the plots; solid grey line = Thomas, grey dotted line = Yoon Nelson, grey dashed line = Dose 

Response.  
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The breakthrough data were fitted to the four models previously described. Results of the Adams-

Bohart model-fitting are not presented, due to poor agreement. The Thomas, Yoon-Nelson and 

Dose-Response models for each co-contaminant are provided for comparison to experimental data. 

 

 

Figure 6. Column behaviour of Purolite MTS9850 with iodide and all co-contaminants 5 g L-1 iodide, 

nitrate, molybdate and iodine. Resin BV = 4 mL. Flow rate = 5.25 BV hr-1. T = 20°C. Breakthrough 

models used to fit are indicated by lines on the plots; solid grey line = Thomas, grey dotted line = 

Yoon Nelson, grey dashed line = Dose Response. 

 

3.4. Resin characterization 

3.4.1. Elemental Analysis 

Elemental analysis was carried out to determine the nitrogen content of the two resins and 

investigate whether this could be correlated to uptake capacity. Results are shown in Table 4. 
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Table 4. Measured carbon, hydrogen, nitrogen and chlorine content for two resins. 

Resin Carbon % Hydrogen % Nitrogen % Chlorine % 

Purolite MTS9850 38.7 ± 0.2 7.78 ± 0.05 14.7 ± 0.1 23.1 ± 0.3 

Lewatit A365 38.2 ± 0.2 7.42 ± 0.05 15.8 ± 0.1 22.2 ± 0.4 

 

 

3.4.2. FT-IR Spectroscopy 

Spectra were produced for samples of resin that had been pre-conditioned in 1 M HNO3 for 24 

hours, as well as samples that had been contacted with a solution of 5 g L-1 iodide and 5 g L-1 iodine. 

Figure 7 presents comparisons of the two resins for pre-iodide contact and post-contact with the 

iodide-iodine solution for the region of 3500 – 2500 cm-1, showing differences in the C-H stretch 

region. Full spectra for each individual resin are available in the Supporting Information, Fig. S.1 and 

S.2, while peak identification tables are available in Tables S.1 and S.2. 

 

MTS9850 A365 

  

 

Figure 7. FT-IR spectra for the region of 3500-2500 cm-1 for WBA resins pre- and post-contact with 

iodide/iodine solutions. Black line = pre-contact. Grey line = post-contact. 
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3.4.3. Raman Spectroscopy  

Raman spectroscopy was performed to determine the presence of the triiodide ions on the resin 

surface for samples contacted by the iodide/iodine system. Both resins returned near-identical 

spectra (Figure 8), with peak assignments possible in the region of 50-300 cm-1, which are presented 

in Table 5. At higher wavenumbers, the spectra could not be interpreted, due to saturation, 

produced by the fluorescent properties of the samples. 

 

Figure 8. Raman spectra for the WBA resins post-contact with iodide/iodine solution. Spectra show 

the region in which iodine species produce notable peaks. 

 

Table 5. Assignments of Raman spectral peaks for the two resins. 
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4. Discussion 

4.1. pH effects on iodide extraction 

The iodide uptake of both resins was high across the majority of the pH range tested. Above pH 6 

the extraction of iodide starts to be suppressed, with the lowest extraction values achieved at pH 10 

for both resins. It is seen that Purolite MTS9850 demonstrates higher uptake capacities across all 

pHs, apart from pH 10. Results therefore suggest that Lewatit A365 is potentially more effective in 

more alkaline conditions, while MTS9850 is superior in acidic conditions, which is the focus of this 

work. Alkaline and neutral conditions have been included here, as iodide removal could potentially 

be desirable from other waste-streams, such as medical waste [29]. The greater dependency of pH 

on MTS9850 iodide uptake could be partly attributed to the aromatic alcohol present in the 

MTS9850 functionality, which would be protonated and act as an anion-exchange site at very low 

pH. From the data captured at pH 9-10, it can be inferred that the average pka of protonated 

ammonium sites on the resins is higher for A365. This is concurrent with the functional group 

structures, with A365 consisting of 1° amines and MTS9850 containing 2° and 3° amines [30, 31]. 

There is no obvious optimum pH observed for either resin, with very little change in iodide uptake 

under acidic conditions. It is known from the literature that high ionic strength suppresses the anion 

exchange mechanism, and from this it can be predicted that the extraction of iodide under 

concentrated acid conditions would be suppressed [17], as well as the resin potentially degrading. 

The uptake capacities for iodide were lower than would be expected, given the subsequent isotherm 

data. This can be explained by the HNO3 used for pH adjustments suppressing iodide uptake, due to 

the competition between iodide and introduced nitrate ions. This competition would be present in 

the aqueous system, which the proposed treatment would target, since the UNF waste-stream is 

dissolved in concentrated nitric acid and is an industrial consideration.  

4.2. Co-contaminant effect on iodide extraction 

It can be observed from Figure 3 that MTS9850 has superior uptake, compared to A365, in the 

presence of competing anions. It is clear that molybdate has a stronger suppressive effect as can be 



seen by the steeper gradients corresponding to addition of molybdate. It can be concluded that the 

selectivity of the two resins for the different anions are as follows: 

MoO42-	>	NO3-	>		I-		
It is generally difficult to obtain iodide selectivity data against competing anions, as relevant 

literature on WBA resin behaviour is lacking. Resins will often have specific selectivity for anions, 

dependent on factors such as crosslinking and specific functionality. Concentration and experimental 

conditions have also been seen to alter the selectivity. However, Gierczyk et al. studied gel-like 

polymers with WBA functionality and the same selectivity series to that suggested in this work was 

determined [32].  

Interestingly, the introduction of iodine to the system appeared to increase the uptake of iodide 

from the solution. Iodine speciation is not only dependent upon pH, temperature and redox 

potential of the solution, but also on the equilibrium formed between iodide, iodine and triiodide 

(Eq. (12)).  

IΓ + I( ⇋	 Iυ(           (12) 

Triiodide can also be formed through the reduction of iodine (Eq. (13)), which can then undergo a 

further redox reaction, ultimately leading to the reformation of iodide (Eq. (14)) and potentially 

increasing the uptake via changing the concentration gradient [33, 34].  

3IΓ + 2e( ⇋	2Iυ(          (13) 

Iυ( +	2e( ⇋ 3I(          (14) 

Wiebenga et al. identified that aqueous triiodide concentration increases with the acidity of the 

system and therefore iodide could feasibly be reformed, as previously mentioned [35]. The 

equilibrium constant for Eq. (12) however, is 4.76 x 10-3 [36], which suggests iodide uptake should 

not increase significantly, as is observed in this work. However, this obviously does not consider the 

effects of the interface between the hydrophobic resin and the aqueous environment. Our proposed 

reasoning for this behaviour, based on solid-state analysis, will be discussed in section 4.5. 



The near linear correlation observed between iodide uptake and co-contaminant concentration, for 

all three species tested could be used to potentially predict the effect on resin performance 

industrially. 

4.3. Isotherm behaviour for anion extraction 

For both resins, the D-R isotherm model provided excellent description of the uptake. Hence it can 

be inferred that both A365 and MTS9850 possess an approximately Gaussian distribution of binding 

site energies [37]. The experimental ED values of 8.60 (MTS9850) and 8.76 (A365) are consistent with 

the expected uptake mechanism. Values below 8 kJ mol-1 relate to a physical adsorption process, 

values between 8 and 16 kJ mol-1 correspond to an ion-exchange process and values exceeding 16 kJ 

mol-1 infer a stronger chemical adsorption process [38]. 

Data was fitted to the Freundlich isotherm model to investigate potential multilayer adsorption 

behaviour. This model gives a superior fit for MTS9850 uptake and this suggests a weaker 

physisorption interaction may become prevalent at higher Ci, which may also contribute to the 

greater capacity of this resin. For both resins, the heterogeneity factor, n, exceeds a value of 1. 

Values greater than 1 indicate an element of heterogeneity of the binding sites on the resin’s surface 

[39]. The returned values between 2.5 – 3 suggest the binding sites in this instance are relatively 

heterogeneous [40]. 

With respect to the Temkin isotherm model, the positive B values for both resins, albeit less than 1 

kJ mol-1, suggest a weak physisorption process is prevalent. Values for bT are also positive, 

confirming that the adsorption process is exothermic. This model fitted the data moderately well 

and suggested a linear trend between heat of adsorption and surface coverage for these systems 

[41]. 

In comparison to previous studies on anion-exchange using WBA resins, the iodide capacity of these 

resins exceeds that of other sorbents previously reported. The maximum loading values, calculated 

by both Langmuir and D-R isotherm fitting are actually in excess of the manufacturer-quoted 



capacities, considerably so in the case of MTS9850 (Table 1). It is known that WBA resins tend to 

favourably exchange larger ions, as well as those with a greater charge, due to strong electrostatic 

interactions. The superior capacity of MTS9850 was unexpected, given that its manufacturer-quoted 

exchange capacity is lower (Table 1). This table however, also shows the greater moisture content of 

MTS9850 when hydrated. It is known that this parameter corresponds to a higher porosity and a 

greater selectivity for larger ions such as iodide. Furthermore, the macroporous nature of MTS9850 

allows for greater access to the interior exchange sites and is also directly linked to an increased 

level of crosslinking, which in turn increases moisture content. It is probable that MTS9850 has a 

greater percentage of crosslinking with the divinylbenzene backbone resulting in its greater moisture 

content. MTS9850 also has a smaller average bead size, meaning a shorter diffusion pathway to the 

active sites in the macroporous structure and subsequently an increased likelihood of interaction 

with the protonated functional groups [16].  

There are few direct literature comparisons to be made with respect to iodide uptake. However, 

Table 6 shows uptake capacities of a number of anion-exchange resins for a range of other anions, 

showing that the two resins used in this study are superior in capacity to any WBAs that have been 

documented. A study featuring uranyl uptake by Purolite MTS9850 has been included, which 

confirms the excellent capacity of this resin. 

 

Table 6. A comparison of uptake capacities for various ions and WBAs to provide a comparison to 

the two resins used in this study. 

Resin Matrix Functionality Target Ion Uptake capacity (qmax) Ref 

Duolite A368  PS-DVB 2° amine 
Iodide (131I-) 62.25 mg g-1 [42] 

Bromide (82Br) 34.52 mg g-1 [42] 

Duolite A7  PFA-PC 2° amine Nitrate (NO3
-) 6.51 mg g-1 [43] 

Amberlyst A21  PS-DVB 2° amine Sulphate (SO4
2-) 16.18 mg ml-1 [44] 

Amberlite IRA-67  PA-DVB 3° amine Phosphate (PO4
3-) 120.63 mg g-1 [45] 

Purolite MTS9850  PA-DVB Polyamine Uranyl ([UO2(SO4)3]4-) 269.50 mg g-1 [46] 

PS-DVB = polystyrene divinylbenzene, PFA-PC = crosslinked phenol-formaldehyde polycondensate, 

PA-DVB = polyacrylic divinylbenzene. 



 

It is clear that the two resins studied are suitable for anion uptake, as their capacities are unusually 

high, far exceeding many other commercially available materials. A key point appears to be that the 

resins identified for comparison with polystyrene-DVB backbones have considerably lower exchange 

capacities. The Amberlite IRA-67, used by Drissi and Mouats [45], as well as the resins used in this 

work, have polyacrylic-DVB backbones and exhibit higher uptake capacity values. Other iodide 

uptake studies tend to look at strong base resins, which display considerably different uptake 

behaviours [8, 47, 48]. 

The quoted ion-exchange capacity of the two resins, in mmol g-1, was calculated from manufacturer 

specifications given in Table 1 and using the experimentally-determined ratio between wet settled 

volume and dry mass. For A365, this was found to be 6.8 mmol g-1, compared to our experimental 

value, derived from the D-R isotherm, of 4.64 mmol g-1. For MTS9850, the specification was 5.5 

mmol g-1, compared to the experimental value of 5.99 mmol g-1. From these calculations, it can be 

seen that MTS9850 performed slightly above expectations, based on manufacturer data. This may 

indicate an interaction between resin-bound and aqueous iodide occurs at very high Ci, allowing for 

further adsorption and hence the good fitting to the Freundlich model. The poorer performance of 

A365, relative to manufacturer data may be partially explained by the presence of amide nitrogens 

in the functionality of A365 (Figure 1). These would be expected to be very weakly basic and not 

significant exchange sites at the natural pH of the sodium iodide solutions. Notably, for MTS9850, 

the capacity is seen to be significantly greater than for uranyl uptake observed by Amphlett et al. 

[46]. This however, was a chelating interaction, with a single uranyl anion interacting with multiple 

amines. 

Other materials have focussed on removal of radioiodine from the gaseous phase and uptake values 

are less comparable. Some studies have investigated adsorption of pure iodine vapour, rather than 

iodide/iodine in solution and with competing anions. Chalcogels with NiMoS and ZnSnS matrices 

achieved uptakes of 2.25 g I2 g-1 [49] and a hydrogen-bonded, cross-linked organic framework 



achieved an uptake of 2.9 g I2 g-1 at 75 °C [50]. Such sorbents have high iodine-capture potential, but 

their synthesis has not yet transitioned to an industrially viable scale. 

4.4. Fixed-bed column dynamics for anion extraction 

For the solution of iodide only, the Dose-Response model provided an excellent fit for experimental 

data, closely followed by the Yoon-Nelson model. The Thomas model did not adequately describe 

the data in comparison. It is observed that with the introduction of nitrate and molybdate ions, 

breakthrough time is much shorter as would be expected, due to the selectivity of these competing 

ions, as previously mentioned. It can also be seen that the iodide/nitrate system breakthrough curve 

has a shallower gradient than the iodide/molybdate system (Fig 5B and 5C). This suggests iodide ions 

were competing more strongly for the binding sites, which is in agreement with the batch co-

contaminant data.  

For the iodide/iodine system, the dynamic models demonstrate good fits until breakthrough is 

achieved, as at this point the concentration of iodide continued increasing beyond the inlet solution 

concentration (Fig. 5D). We believe that the initial solution was in a state of equilibrium with the 

iodide, iodine and triiodide ion, but as the experiment progressed, triiodide bound to the active sites 

and/or the surface of the resin (see Section 4.5.) and may have ultimately been remobilised back 

into the aqueous phase with the subsequent flow and dissociated into iodide and iodine, hence the 

eluent having a higher iodide concentration that the inlet solution.  

For the iodide/iodine system, the 50% breakthrough time was greater than for all other co-

contaminants (692 minutes) as calculated by Yoon-Nelson model, but less than the iodide only 

system, while a similar uptake capacity to nitrate and molybdate experiments was observed. This 

suggests that in column operation, at least under these experimental conditions, the addition of 

iodine may not enhance iodide uptake to the extent that column operating lifespan would also be 

lengthened. Hence, the proposed triiodide formation on the resin seems to be a relatively slow 

kinetic process. The effect of all co-contaminants added at the same time produced the shortest 

breakthrough time observed in this study, (174 minutes), as there were two competing anions at 



high concentrations in the inlet solution. Overall, despite the obvious effects of co-contaminants, the 

dynamic capacity of S985 for iodide is still considerable and the close fitting to theoretical models 

means that column breakthrough behaviour would be easy to predict with all species present, which 

would be an advantage industrially. 

A number of studies have considered iodine uptake in a dynamic environment. However, the lack of 

dynamic modelling means there are no comparable parameters [8, 48, 51]. There are no previous 

studies, to the best of our knowledge on dynamic experiments, using WBAs for iodide uptake. 

However, some novel adsorbents have been so tested and results are summarised in Table 7. This 

table includes results for some commercial ion-exchange resins with different targeted anions. It can 

therefore be seen that MTS9850 has a rather greater iodide capacity than other adsorbents, in 

dynamic, as well as static conditions. A relevant comparison is the work of Li and Yang [55], who 

used Hydrolite 202, with nitrite as the target anion, since the suppression by nitrate on uptake was 

considered. It was found that nitrate suppressed nitrite uptake by ~42% when compared to the 

initial experiment, which is comparable to this work. 

Table 7. A comparison of various ion exchange material uptakes in a dynamic environment to 

demonstrate Purolite MTS9850 (used in this study) is superior to other dynamic studies in literature. 

 

Sorbent name Matrix Functionality Target ion 
Capacity 

(qmax) 
Ref 

Mg-Al double hydroxides 
Porous silica 

spheres 
- Iodide (127I-) 81.28 mg g-1 [52] 

Modfied poly(glycidyl 

methacrylate) (MPGMA) 

Poly(glycidyl 

methacrylate) 
Hydroxylamine Iodide (131I-) ~ 25 mg g-1 [53] 

Amberlyst A21 PS-DVB 2° amine 
Sulphate 

(SO4
2-) 

12.7 mg ml-1 [44] 

Purolite A520E PS-DVB 4° ammonium Nitrate (NO3
-) 9.69 mg g-1 [54] 

Hydrolite 202 PS-DVB 4° ammonium Nitrite (NO2
-) 46.80 mg g-1 [55] 

 

 

 

 



4.5. Resin Characterization 

4.5.1. Elemental Analysis 

Static isotherm work showed that the capacity of MTS9850 for iodide ions was considerably greater. 

It was therefore hypothesised that it would exhibit a greater nitrogen mass %, corresponding to a 

greater number of amine groups and hence a better degree of functionalization. 

A365 was actually found to contain a slightly higher nitrogen mass % than MTS9850. However, given 

the apparent maximum iodide uptakes seen in Table 2, this cannot be directly correlated to the 

number of accessible anion-exchange sites, for which MTS9850 is superior. This may again be 

explained, by the presence of unprotonated amide nitrogens in the A365 functionality, whereas the 

majority of nitrogen atoms in the MTS9850 functionality are 2° amines. The nitrogen content of the 

resin functional group, after mass correction to account for the different counterions in uptake 

experiments, was 8.59 and 9.68 mmol g-1 for MTS9850 and A365 respectively, from which it appears 

that, despite the high iodide uptake capacities observed, not every nitrogen represents an active 

exchange site for either resin, since the maximum iodide uptake in mmol g-1 does not approach 

these levels (6.0 and 4.6 mmol g-1 respectively). Another possibility is that, due to the vicinity of 

heteroatoms within the functional group of MTS9850, some of the large iodide ions interact with 

multiple nitrogens upon binding, which would also help explain the observed heterogeneity of the 

adsorption, derived from Freundlich isotherm fitting. This may indeed be true for most common 

anions, which would explain why the manufacturer-specified exchange capacity for MTS9850 (Table 

1) is lesser. 

It is also noted from the elemental analysis that the measured chlorine mass % for MTS9850, which 

was assumed to be entirely chloride counterions from the HCl pretreatment, equated to a capacity 

of 6.51 mmol g-1, which was close to, but slightly above the theoretical maximum uptake capacity 

observed for iodide (Table 2). 

 

 



4.5.2. FT-IR Spectroscopy 

FT-IR spectra show that the C-H stretch region in both resins undergoes notable shifts when iodine is 

introduced into the system. Specifically, the ratio of intensity between aromatic and aliphatic C-H 

peaks appears to alter. We believe this represents the formation of a charge transfer (CT) complex, 

with triiodide acting as the electron-acceptor. Previous studies have demonstrated that iodine, in 

various forms, can act as a s-acceptor with aliphatic molecules and aromatic systems [56, 57]. Refat 

et al. investigated CT complex-formation between morpholine and triiodide and also observed 

significant changes in the N-H stretch region [56]. Mahmoud et al. postulated a CT interaction 

between triiodide and the primary amine groups of amino acids [58]. However, this is difficult to 

correlate in our work because of the broadness and weakness of the N-H stretch peak, caused by the 

polymeric environment.  Nonetheless, the decrease in aromatic C-H stretch peak intensity, first 

observed by Benesi and Hildebrand, is obvious (Figure 7) and is believed to be the result of protons 

detaching from the aromatic ring and forming hydrogen iodide [59]. The likelihood of complexation 

increases when a greater number of π-electrons are present in a localised area, such as in an 

aromatic structure. However, if the electron density spreads over a larger area (i.e. multiple rings), 

the stability of the complex is hindered [60, 61]. Neither resin matrix features an extended 

delocalised π-system as the aromatic rings are instead crosslinked by aliphatic hydrocarbons. Hence 

CT complex formation would be predicted to be favourable. To the best of our knowledge, this is the 

first time such interaction has been reported between iodine and a polymeric resin.  

4.5.3. Raman Spectroscopy 

Raman spectroscopy produced three notable peaks present at 111 cm-1, 153 cm-1 and 225 cm-1, 

which can all be attributed to the presence of triiodide on the resin surfaces [62, 63].  

The absence of a stronger peak at ~160 -170cm-1 indicates there is not significant polyiodide or 

diiodine formation on the resin [64]. It has been observed in the literature that CT complexes 

existing in hydrophobic conditions lead to triiodide being the dominant species [58], whereas 

crystalline and ionic liquid environments produce polyiodides [64, 65]. Indeed, it is known that the 



equilibrium constant of Eq. (12) in a more hydrophobic environment is pushed in favour of triiodide 

formation [66]. Hence, the observations in this study are predictable. 

The likely uptake mechanism involves molecular iodine associating with the hydrophobic areas of 

the resin, consistent with the CT complex formation suggested by the IR and Raman spectra, 

followed by a surface reaction with aqueous iodide. This phenomenon explains the enhanced uptake 

of iodide observed with the iodide/iodine systems in batch experiments, as more adsorption sites 

are theoretically created. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. Conclusions 

Two commercial weak base anion exchange resins, Purolite MTS9850 and Lewatit A365 were 

assessed for their suitability in the removal of radioiodine from spent nuclear fuel reprocessing 

aqueous waste streams. The resins achieved maximum uptakes of 761 ± 14 mg g-1 and 589 ± 15 mg 

g-1 respectively from Dubinin-Radushkevich isotherm modelling. These values exceeded those 

reported for currently implemented industrial adsorbents such as silver-impregnated zeolites and 

silicas. 

MTS9850 exhibited lower nitrogen mass % than A365, yet appeared to exhibit more active exchange 

sites. Its superior uptake capacity may be attributed to other physical characteristics such as 

moisture content and a higher percentage of crosslinking within the polymer backbone.  

For both resins, iodide uptake increased with decreasing pH, which would be advantageous in the 

acidic conditions present in UNF raffinate. The introduction of co-contaminants nitrate and 

molybdate reduced iodide uptake, as would be expected for the weak base anion functionality. 

However, iodide uptake increased with the addition of diiodine to the system. The proposed CT 

complex formation and triiodide formation observed have not previously been documented for 

polymeric resins and such phenomena could potentially be exploited for improved resin 

performance industrially.  

Equilibrium uptake data were fitted to isotherm models. Both resins showed good agreement with 

the D-R model, with A365 also following the Langmuir model closely, suggesting monolayer 

adsorption, while MTS9850 followed the Freundlich model accurately, suggesting multilayer 

adsorption was occurring. The nature of the polyamine functionality, with many slightly different 

tertiary amine groups present, is likely the cause of the heterogeneity of binding sites observed. 

Dynamic studies on MTS9850 concluded the research and column behaviour followed the Dose-

Response and Yoon-Nelson models accurately. 



It is hoped that this work will provide a foundation for the use of polyamine functionality in the 

capture of radioiodine from aqueous waste-streams of the nuclear industry, for which there is 

currently a lack of definitive, economical solutions.  
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Table A.1. FT-IR peak assignment for Purolite S985 before and after contact with iodide-iodine solution. 

Pre-Iodide Contact Post-Iodide/Iodine Contact Peak Assignment 

Peak Wavenumber (cm-1)  

3280 3275 N-H st. (2° amine) 

3015  sp2 C-H st. (aromatic) 

2875 2975 & 2920 sp3 C-H st. (alkyl) 

~2500 (vague) Not observed NH3
+ symmetric st.  

1640 & 1540 1640 &1530 C=C st. (aromatic) 

   

1290 1290 C-O st. (acyl) 

1040 1040 C-N st. (aliphatic) 

825 & 720 825 & 720 sp2 C-H bend (aromatic) 
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Fig. A.1. Full FT-IR spectra for Purolite S985 both before and after contact with iodide-iodine solution. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A.2. Full FT-IR peak assignments for Lewatit A365 both before and after contact with iodide-iodine solution. 

Pre-Iodide Contact Post-Iodide/Iodine Contact Peak Assignment 

Peak Wavenumber (cm-1)  

3280 3280 N-H st. (1° amine) 

3050 3040 sp2 C-H st. (aromatic) 

2950 2915 & 2860 sp3 C-H st. (alkyl) 

1530 & 1635 1520 & 1635 C=C st. (aromatic)  

   

1290 1290 C-O st. (acyl) 

1035 1035 C-N st. (aliphatic) 

825 & 720 825 & 720 sp2 C-H bend (aromatic) 

amide C=O st. would be expected at ~ 1650 cm-1, but cannot be observed. 
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Fig. A.2. Full FT-IR spectra for Lewatit A365 both before and after contact with iodide-iodine solution. 


