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Abstract: We consider a two-dimensional ruin problem where the surplus process of business lines
is modelled by a two-dimensional correlated Brownian motion with drift. We study the ruin function
P(u) for the component-wise ruin (that is both business lines are ruined in an infinite-time horizon),
where u is the same initial capital for each line. We measure the goodness of the business by analysing the
adjustment coefficient, that is the limit of − ln P(u)/u as u tends to infinity, which depends essentially on
the correlation ρ of the two surplus processes. In order to work out the adjustment coefficient we solve
a two-layer optimization problem.

Keywords: adjustment coefficient; logarithmic asymptotics; quadratic programming problem; ruin
probability; two-dimensional Brownian motion

1. Introduction

In classical risk theory, the surplus process of an insurance company is modelled by the compound
Poisson risk model. For both applied and theoretical investigations, calculation of ruin probabilities for
such model is of particular interest. In order to avoid technical calculations, diffusion approximation is
often considered e.g., (Asmussen and Albrecher 2010; Grandell 1991; Iglehart 1969; Klugman et al. 2012),
which results in tractable approximations for the interested finite-time or infinite-time ruin probabilities.
The basic premise for the approximation is to let the number of claims grow in a unit time interval and to
make the claim sizes smaller in such a way that the risk process converges to a Brownian motion with
drift. Precisely, the Brownian motion risk process is defined by

R(t) = x + pt− σB(t), t ≥ 0,

where x > 0 is the initial capital, p > 0 is the net profit rate and σB(t) models the net loss process
with σ > 0 the volatility coefficient. Roughly speaking, σB(t) is an approximation of the total claim
amount process by time t minus its expectation, the latter is usually called the pure premium amount
and calculated to cover the average payments of claims. The net profit, also called safety loading, is the
component which protects the company from large deviations of claims from the average and also allows
an accumulation of capital. Ruin related problems for Brownian models have been well studied; see, for
example, Asmussen and Albrecher (2010); Gerber and Shiu (2004).
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In recent years, multi-dimensional risk models have been introduced to model the surplus of multiple
business lines of an insurance company or the suplus of collaborating companies (e.g., insurance and
reinsurance). We refer to Asmussen and Albrecher (2010) [Chapter XIII 9] and Avram and Loke (2018);
Avram and Minca (2017); Avram et al. (2008a, 2008b); Albrecher et al. (2017); Azcue and Muler (2018);
Azcue et al. (2019); Foss et al. (2017); Ji and Robert (2018) for relevant recent discussions. It is concluded
in the literature that in comparison with the well-understood 1-dimensional risk models, study of
multi-dimensional risk models is much more challenging. It was shown recently in Delsing et al. (2019)
that multi-dimensional Brownian model can serve as approximation of a multi-dimensional classical risk
model in a Markovian environment. Therefore, obtained results for multi-dimensional Brownian model
can serve as approximations of the multi-dimensional classical risk models in a Markovian environment;
ruin probability approximation has been used in the aforementioned paper. Actually, multi-dimensional
Brownian models have drawn a lot of attention due to its tractability and practical relevancy.

A d-dimensional Brownian model can be defined in a matrix form as

R(t) = x + pt− X(t), t ≥ 0, with X(t) = AB(t),

where x = (x1, · · · , xd)
>, p = (p1, · · · , pd)

> ∈ (0, ∞)d are, respectively, (column) vectors representing
the initial capital and net profit rate, A ∈ Rd×d is a non-singular matrix modelling dependence between
different business lines and B(t) = (B1(t), . . . , Bd(t))>, t ≥ 0 is a standard d-dimensional Brownian motion
(BM) with independent coordinates. Here > is the transpose sign. In what follows, vectors are understood
as column vectors written in bold letters.

Different types of ruin can be considered in multi-dimensional models, which are relevant to the
probability that the surplus of one or more of the business lines drops below zero in a certain time interval
[0, T] with T either a finite constant or infinity. One of the commonly studied is the so-called simultaneous
ruin probability defined as

QT(x) := P
{
∃t∈[0,T]

d⋂
i=1

{
Ri(t) < 0

}}
,

which is the probability that at a certain time t ∈ [0, T] all the surpluses become negative.
Here for T < ∞, QT(x) is called finite-time simultaneous ruin probability, and Q∞(x) is called
infinite-time simultaneous ruin probability. Simultaneous ruin probability, which is essentially the hitting
probability of R(t) to the orthant {y ∈ Rd : yi < 0, i = 1, . . . , d}, has been discussed for multi-dimensional
Brownian models in different contexts; see Dȩbicki et al. (2018); Garbit and Raschel (2014). In Garbit
and Raschel (2014), for fixed x the asymptotic behaviour of QT(x) as T → ∞ has been discussed.
Whereas, in Dȩbicki et al. (2018), the asymptotic behaviour, as u→ ∞, of the infinite-time ruin probability
Q∞(x), with x = αu = (α1u, α2u, . . . , αdu)>, αi > 0, 1 ≤ i ≤ d has been obtained. Note that it is
common in risk theory to derive the later type of asymptotic results for ruin probabilities; see, for example,
Avram et al. (2008a); Embrechts et al. (1997); Mikosch (2008).

Another type of ruin probability is the component-wise (or joint) ruin probability defined as

PT(x) := P
{

d⋂
i=1

{
∃t∈[0,T]Ri(t) < 0

}}
= P

{
d⋂

i=1

{
sup

ti∈[0,T]
(Xi(ti)− piti) > xi

}}
, (1)

which is the probability that all surpluses get below zero but possibly at different times. It is this possibility
that makes the study of PT(x) more difficult.

The study of joint distribution of the extrema of multi-dimensional BM over finite-time interval has
been proved to be important in quantitative finance; see, for example, He et al. (1998); Kou and Zhong (2016).
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We refer to Delsing et al. (2019) for a comprehensive summary of related results. Due to the complexity
of the problem, two-dimensional case has been the focus in the literature and for this case some explicit
formulas can be obtained by using a PDE approach. Of particular relevance to the ruin probability PT(x)
is a result derived in He et al. (1998) which shows that

P
{

sup
t∈[0,T]

(X1(t)− p1t) ≤ x1, sup
s∈[0,T]

(X2(s)− p2s) ≤ x2

}
= ea1x1+a2x2+bT f (x1, x2, T),

where a1, a2, b are known constants and f is a function defined in terms of infinite-series, double-integral
and Bessel function. Using the above formula one can derive an expression for PT(x) in two-dimensional
case as follows

PT(x) = 1− P
{

sup
t∈[0,T]

(X1(t)− p1t) ≤ x1

}
− P

{
sup

s∈[0,T]
(X2(s)− p2s) ≤ x2

}
(2)

+P
{

sup
t∈[0,T]

(X1(t)− p1t) ≤ x1, sup
s∈[0,T]

(X2(s)− p2s) ≤ x2

}
,

where the expression for the distribution of single supremum is also known; see He et al. (1998). Note that
even though we have obtained explicit expression of PT(x) in (2) for the two-dimensional case, it seems
difficult to derive the explicit form of the corresponding infinite-time ruin probability P∞(x) by simply
putting T → ∞ in (2).

By assuming x = αu = (α1u, α2u, . . . , αdu)>, αi > 0, 1 ≤ i ≤ d, we aim to analyse the asymptotic
behaviour of the infinite-time ruin probability P∞(x) as u→ ∞. Applying Theorem 1 in Dȩbicki et al. (2010)
we arrive at the following logarithmic asymptotics

− 1
u

ln P∞(x) ∼ 1
2

inf
t>0

inf
v≥α+pt

v>Σ−1
t v, as u→ ∞ (3)

provided Σt is non-singular, where pt := (p1t1, · · · , pdtd)
>, inequality of vectors are meant

component-wise, and Σ−1
t is the inverse matrix of the covariance function Σt of (X1(t1), · · · , Xd(td)),

with t = (t1, · · · , td)
> and 0 = (0, · · · , 0)> ∈ Rd. Let us recall that conventionally for two given positive

functions f (·) and h(·), we write f (x) ∼ h(x) if limx→∞ f (x)/h(x) = 1.
For more precise analysis on P∞(x), it seems crucial to first solve the two-layer optimization problem

in (3) and find the optimization points t0. As it can be recognized in the following, when dealing with
d-dimensional case with d > 2 the calculations become highly nontrivial and complicated. Therefore, in this
contribution we only discuss a tractable two-dimensional model and aim for an explicit logarithmic
asymptotics by solving the minimization problem in (3).

In the classical ruin theory when analysing the compound Poisson model or Sparre Andersen
model, the so-called adjustment coefficient is used as a measure of goodness; see, for example,
Asmussen and Albrecher (2010) or Rolski et al. (2009). It is of interest to obtain the solution of the
minimization problem in (3) from a practical point of view, as it can be seen as an analogue of the
adjustment coefficient and thus we could get some insights about the risk that the company is facing.
As discussed in Asmussen and Albrecher (2010) and Li et al. (2007) it is also of interest to know how the
dependence between different risks influences the joint ruin probability, which can be easily analysed
through the obtained logarithmic asymptotics; see Remark 2.
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The rest of this paper is organised as follows. In Section 2, we formulate the two-dimensional
Brownian model and give the main results of this paper. The main lines of proof with auxiliary lemmas are
displayed in Section 3. In Section 4 we conclude the paper. All technical proofs of the lemmas in Section 3
are presented in Appendix A.

2. Model Formulation and Main Results

Due to the fact that component-wise ruin probability P∞(x) does not change under scaling, we can
simply assume that the volatility coefficient for all business lines is equal to 1. Furthermore, noting that
the timelines for different business lines should be distinguished as shown in (1) and (3), we introduce
a two-parameter extension of correlated two-dimensional BM defined as

(X1(t), X2(s)) =
(

B1(t), ρB1(s) +
√

1− ρ2B2(s)
)

, t, s ≥ 0,

with ρ ∈ (−1, 1) and mutually independent Brownian motions B1, B2. We shall consider the following two
dependent insurance risk processes

Ri(t) = u + µit− Xi(t), t ≥ 0, i = 1, 2,

where µ1, µ2 > 0 are net profit rates, u is the initial capital (which is assumed to be the same for both
business lines, as otherwise, the calculations become rather complicated). We shall assume without loss of
generality that µ1 ≤ µ2. Here, µi is different from pi (see (1)) in the sense that it corresponds to the (scaled)
model with volatility coefficient standardized to be 1.

In this contribution, we shall focus on the logarithmic asymptotics of

P(u) := P∞(u(1, 1)>) = P {{∃t≥0R1(t) < 0} ∩ {∃s≥0R2(s) < 0}} (4)

= P
{

sup
t≥0

(X1(t)− µ1t) > u, sup
s≥0

(X2(s)− µ2s) > u

}
, as u→ ∞.

Define

ρ̂1 =
µ1 + µ2 −

√
(µ1 + µ2)2 − 4µ1(µ2 − µ1)

4µ1
∈ [0,

1
2
), ρ̂2 =

µ1 + µ2

2µ2
(5)

and let

t∗ = t∗(ρ) = s∗ = s∗(ρ) :=

√
2(1− ρ)

µ2
1 + µ2

2 − 2ρµ1µ2
. (6)

The following theorem constitutes the main result of this contribution.

Theorem 1. For the joint infinite-time ruin probability (4) we have, as u→ ∞,

− log(P(u))
u

∼


2(µ2 + (1− 2ρ)µ1), if −1 < ρ ≤ ρ̂1;
µ1+µ2+2/t∗

1+ρ , if ρ̂1 < ρ < ρ̂2 ;
2µ2, if ρ̂2 ≤ ρ < 1.

Remark 2. (a) Following the classical one-dimensional risk theory we can call quantities on the right hand side in
Theorem 1 as adjustment coefficients. They serve sometimes as a measure of goodness for a risk business.
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(b) One can easily check that adjustment coefficient as a function of ρ is continuous, strictly decreasing on
(−1, ρ̂2] and it is constant, equal to 2µ2 on [ρ̂2, 1). This means that as the two lines of business becomes more
positively correlated the risk of ruin becomes larger, which is consistent with the intuition.

Define

g(t, s) := inf
x≥1+µ1t
y≥1+µ2s

(x, y) Σ−1
ts (x, y)>, t, s > 0, (7)

where Σ−1
ts is the inverse matrix of Σts =

(
t ρ t ∧ s

ρ t ∧ s s

)
, with t ∧ s = min(t, s) and ρ ∈ (−1, 1).

The proof of Theorem 1 follows from (3) which implies that the logarithmic asymptotics for P(u) is of
the form

− 1
u

ln P(u) ∼ g(t0)

2
, u→ ∞, (8)

where

g(t0) = inf
(t,s)∈(0,∞)2

g(t, s), (9)

and Proposition 3 below, wherein we list dominating points t0 that optimize the function g over (0, ∞)2

and the corresponding optimal values g(t0).
In order to solve the two-layer minimization problem in (9) (see also (7)) we define for t, s > 0 the

following functions:

g1(t) =
(1 + µ1t)2

t
, g2(s) =

(1 + µ2s)2

s
,

g3(t, s) = (1 + µ1t, 1 + µ2s) Σ−1
ts (1 + µ1t, 1 + µ2s)>.

Since t ∧ s appears in the above formula, we shall consider a partition of the quadrant (0, ∞)2, namely

(0, ∞)2 = A ∪ L ∪ B, A = {s < t}, L = {s = t}, B = {s > t}. (10)

For convenience we denote A = {s ≤ t} = A ∪ L and B = {s ≥ t} = B ∪ L. Hereafter, all sets are
defined on (0, ∞)2, so (t, s) ∈ (0, ∞)2 will be omitted.

Note that g3(t, s) can be represented in the following form:

g3(t, s) =

 gA(t, s) := (1+µ2s)2

s + ((1+µ1t)−ρ(1+µ2s))2

t−ρ2s , if (t, s) ∈ A

gB(t, s) := (1+µ1t)2

t + ((1+µ2s)−ρ(1+µ1t))2

s−ρ2t , if (t, s) ∈ B.
(11)

Denote further

gL(s) := gA(s, s) = gB(s, s) =
(1 + µ1s)2 + (1 + µ2s)2 − 2ρ(1 + µ1s)(1 + µ2s)

(1− ρ2)s
, s > 0. (12)

In the next proposition we identify the so-called dominating points, that is, points t0 for which
function defined in (7) achieves its minimum. This identification might also be useful for deriving a more
subtle asymptotics for P(u).
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Notation: In the following, in order to keep the notation consistent, ρ ≤ µ1/µ2 is understood as ρ < 1 if
µ1 = µ2.

Proposition 3.
(i) Suppose that −1 < ρ < 0.

For µ1 < µ2 we have

g(t0) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1),

where, (tA, sA) = (tA(ρ), sA(ρ)) :=
(

1−2ρ
µ1

, 1
µ2−2µ1ρ

)
is the unique minimizer of g(t, s), (t, s) ∈ (0, ∞)2.

For µ1 = µ2 =: µ we have

g(t0) = gA(tA, sA) = gB(tB, sB) = 8(1− ρ)µ,

where (tA, sA) =
(

1−2ρ
µ , 1

(1−2ρ)µ

)
∈ A, (tB, sB) :=

(
1

(1−2ρ)µ
, 1−2ρ

µ

)
∈ B are the only two minimizers of

g(t, s), (t, s) ∈ (0, ∞)2.
(ii) Suppose that 0 ≤ ρ < ρ̂1. We have

g(t0) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1),

where (tA, sA) ∈ A is the unique minimizer of g(t, s), (t, s) ∈ (0, ∞)2.
(iii) Suppose that ρ = ρ̂1. We have

g(t0) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1),

where (tA, sA) = (tA(ρ̂1), sA(ρ̂1)) = (t∗(ρ̂1), s∗(ρ̂1)) ∈ L, is the unique minimizer of g(t, s), (t, s) ∈
(0, ∞)2, with (t∗, s∗) defined in (6).

(iv) Suppose that ρ̂1 < ρ < ρ̂2. We have

g(t0) = gA(t∗, s∗) = gL(t∗) =
2

1 + ρ
(µ1 + µ2 + 2/t∗),

where (t∗, s∗) ∈ L is the unique minimizer of g(t, s), (t, s) ∈ (0, ∞)2.
(v) Suppose that ρ = ρ̂2. We have t∗(ρ̂2) = s∗(ρ̂2) = 1/µ2 and

g(t0) = gA(1/µ2, 1/µ2) = gL(1/µ2) = g2(1/µ2) = 4µ2,

where the minimum of g(t, s), (t, s) ∈ (0, ∞)2 is attained at (1/µ2, 1/µ2), with g3(1/µ2, 1/µ2) = g2(1/µ2)

and 1/µ2 is the unique minimizer of g2(s), s ∈ (0, ∞).
(vi) Suppose that ρ̂2 < ρ < 1. We have

g(t0) = g2(1/µ2) = 4µ2,

where the minimum of g(t, s), (t, s) ∈ (0, ∞)2 is attained when g(t, s) = g2(s).

Remark 4. In case that µ1 = µ2, we have ρ̂1 = 0, ρ̂2 = 1 and thus scenarios (ii) and (vi) do not apply.
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3. Proofs of Main Results

As discussed in the previous section, Proposition 3 combined with (8), straightforwardly implies the
thesis of Theorem 1. In what follows, we shall focus on the proof of Proposition 3, for which we need to
find the dominating points t0 by solving the two-layer minimization problem (9).

The solution of quadratic programming problem of the form (7) (inner minimization problem of
(9)) has been well understood; for example, Hashorva (2005); Hashorva and Hüsler (2002) (see also
Lemma 2.1 of Dȩbicki et al. (2018)). For completeness and for reference, we present below Lemma 2.1 of
Dȩbicki et al. (2018) for the case where d = 2.

We introduce some more notation. If I ⊂ {1, 2}, then for a vector a ∈ R2 we denote by aI = (ai, i ∈ I)
a sub-block vector of a. Similarly, if further J ⊂ {1, 2}, for a matrix M = (mij)i,j∈{1,2} ∈ R2×2 we denote by
MI J= MI,J = (mij)i∈I,j∈J the sub-block matrix of M determined by I and J. Further, write M−1

I I = (MI I)
−1

for the inverse matrix of MI I whenever it exists.

Lemma 5. Let M ∈ R2×2 be a positive definite matrix. If b ∈ R2 \ (−∞, 0]2, then the quadratic
programming problem

PM(b) : Minimise x>M−1x under the linear constraint x ≥ b

has a unique solution b̃ and there exists a unique non-empty index set I ⊆ {1, 2} such that

b̃I = bI 6= 0I , M−1
I I bI > 0I ,

and if Ic = {1, 2} \ I 6= ∅, then b̃Ic = MIc I M−1
I I bI ≥ bIc .

Furthermore,

min
x≥b

x>M−1x = b̃
>

M−1b̃ = b>I M−1
I I bI > 0,

x>M−1b̃ = x>I M−1
I I b̃I = x>I M−1

I I bI , ∀x ∈ R2.

For the solution of the quadratic programming problem (7) a suitable representation for g(t, s) is
worked out in the following lemma.

For 1 > ρ > µ1/µ2, let D2 = {(t, s) : w1(s) ≤ t ≤ f1(s)} and D1 = (0, ∞)2 \ D2 , with boundary
functions given by

f1(s) =
ρ− 1

µ1
+

ρµ2

µ1
s, w1(s) =

s
ρ + (ρµ2 − µ1)s

, s ≥ 0, (13)

and the unique intersection point of f1(s), w1(s), s ≥ 0, given by

s∗1 = s∗1(ρ) :=
1− ρ

ρµ2 − µ1
, (14)

as depicted in Figure 1.
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D1

D2

s

t

w1(s) =
s

ρ+(ρµ2−µ1)s

f1(s) =
ρ−1
µ1

+ ρµ2

µ1
s

s∗1

s∗1

Figure 1. Partition of (0, ∞)2 into D1, D2.

Lemma 6. Let g(t, s), t, s > 0 be given as in (7). We have:

(i) If −1 < ρ ≤ µ1/µ2, then
g(t, s) = g3(t, s), (t, s) ∈ (0, ∞)2.

(ii) If 1 > ρ > µ1/µ2, then

g(t, s) =

{
g3(t, s), if (t, s) ∈ D1

g2(s), if (t, s) ∈ D2.

Moreover, we have g3( f1(s), s) = g3(w1(s), s) = g2(s) for all s ≥ s∗1 .

3.1. Proof of Proposition 3

We shall discuss in order the case when −1 < ρ < 0 and the case when 0 ≤ ρ < 1 in the following
two subsections. In both scenarios we shall first derive the minimizers of the function g(t, s) on regions A
and B (see (10)) separately and then look for a global minimizer by comparing the two minimum values.
For clarity some scenarios are analysed in forms of lemmas.

3.1.1. Case −1 < ρ < 0

By Lemma 6, we have that

g(t, s) = g3(t, s), (t, s) ∈ (0, ∞)2.

We shall derive the minimizers of g3(t, s) on A, B separately.
Minimizers of g3(t, s) on A. We have, for any fixed s,

∂g3(t, s)
∂t

=
∂gA(t, s)

∂t
= 0 ⇔ (µ1t + 1− ρ− ρµ2s)(µ1t− (2µ1ρ2 − ρµ2)s + ρ− 1) = 0,

where the representation (11) is used. Two roots of the above equation are:

t1 = t1(s) :=
ρ− 1 + ρµ2s

µ1
, t2 = t2(s) :=

1− ρ + (2µ1ρ2 − ρµ2)s
µ1

. (15)

Note that, due to the form of the function gA(t, s) given in (11), for any fixed s, there exists a unique
minimizer of gA(t, s) on A which is either an inner point t1 or t2 (the one that is larger than s), or a boundary
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point s. Next, we check if any of ti, i = 1, 2, is larger than s. Since ρ < 0, t1 < 0 < t2. So we check if t2 > s.
It can be shown that

t2 > s ⇔ (µ1 + ρµ2 − 2µ1ρ2)s < 1− ρ. (16)

Two scenarios µ1 + ρµ2 − 2µ1ρ2 ≤ 0 and µ1 + ρµ2 − 2µ1ρ2 > 0 will be distinguished.
Scenario µ1 + ρµ2 − 2µ1ρ2 ≤ 0. We have from (16) that

t1 < 0 < s < t2,

and thus
inf

(t,s)∈A
g3(t, s) = inf

s>0
fA(s),

where

fA(s) := gA(t2(s), s) =
(1 + µ2s)2

s
+ 4µ1((1− ρ) + (ρ2µ1 − ρµ2)s).

Next, since

f ′A(s) = 0 ⇔ sA = sA(ρ) :=
1

|µ2 − 2ρµ1|
=

1
µ2 − 2ρµ1

> 0, (17)

the unique minimizer of g3(t, s) on A is given by (tA, sA) with

tA := t2(sA) =
1− 2ρ

µ1
.

Scenario µ1 + ρµ2 − 2µ1ρ2 > 0. We have from (16) that

t1 < 0 < s < t2 ⇔ s <
1− ρ

µ1 + ρµ2 − 2µ1ρ2 =
1− ρ

ρ(µ2 − µ1ρ) + µ1(1− ρ2)
=: s∗∗(ρ) = s∗∗, (18)

and in this case,

inf
(t,s)∈A

g3(t, s) = min
(

inf
0<s<s∗∗

fA(s), inf
s≥s∗∗

gL(s)
)

, (19)

where gL(s) is given in (12). Note that

g′L(s) = 0 ⇔ s∗ = s∗(ρ) =

√
2(1− ρ)

µ2
1 + µ2

2 − 2ρµ1µ2
. (20)

Next, for −1 < ρ < 0 we have that (recall s∗∗ given in (18))

s∗∗ ≥ 1− ρ

µ1(1− ρ2)
>

1
µ1
≥ 1

µ2
> sA, s∗∗ >

1− ρ

µ1
> s∗.



Risks 2019, 7, 83 10 of 21

Therefore, by (19) we conclude that the unique minimizer of g3(t, s) on A is again given by (tA, sA).
Consequently, for all −1 < ρ < 0, we have that the unique minimizer of g3(t, s) on A is given by
(tA, sA), and

inf
(t,s)∈A

g3(t, s) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1). (21)

Minimizers of g3(t, s) on B. Similarly, we have, for any fixed t,

∂g3(t, s)
∂s

=
∂gB(t, s)

∂s
= 0 ⇔ (µ2s + 1− ρ− ρµ1t)(µ2s− (2µ2ρ2 − ρµ1)t + ρ− 1) = 0.

Two roots of the above equation are:

s1 = s1(t) :=
ρ− 1 + ρµ1t

µ2
, s2 = s2(t) :=

1− ρ + (2µ2ρ2 − ρµ1)t
µ2

. (22)

Next, we check if any of si, i = 1, 2, is greater than t. Again s1 < 0 < s2 as ρ < 0. So we check if s2 > t.
It can be shown that

s2 > t ⇔ (µ2 + ρµ1 − 2µ2ρ2)t < 1− ρ. (23)

Thus, for Scenario µ2 + ρµ1 − 2µ2ρ2 ≤ 0 we have that

s1 < 0 < t < s2

and in this case
inf

(t,s)∈B
g3(t, s) = inf

t>0
fB(t),

with

fB(t) := gB(t, s2(t)) =
(1 + µ1t)2

t
+ 4µ2((1− ρ) + (ρ2µ2 − ρµ1)t).

Next, note that

f ′B(t) = 0 ⇔ tB = tB(ρ) :=
1

|µ1 − 2ρµ2|
=

1
µ1 − 2ρµ2

> 0. (24)

Therefore, the unique minimizer of g3(t, s) on B is given by (tB, sB) with

sB := s2(tB) =
1− 2ρ

µ2
, inf

(t,s)∈B
g3(t, s) = gB(tB, sB) = 4(µ1 + (1− 2ρ)µ2).

For Scenario µ2 + ρµ1 − 2µ2ρ2 > 0 we have from (23) that

s1 < 0 < t < s2 ⇔ t <
1− ρ

µ2 + ρµ1 − 2µ2ρ2 =
1− ρ

ρ(µ1 − ρµ2) + µ2(1− ρ2)
=: t∗∗(ρ) = t∗∗. (25)
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In this case,

inf
(t,s)∈B

g3(t, s) = min
(

inf
0<t<t∗∗

fB(t), inf
t≥t∗∗

gL(t)
)

.

Though it is not easy to determine explicitly the optimizer, we can conclude that the minimizer should
be taken at (tB, sB), (t∗, t∗) or (t∗∗, t∗∗), where t∗ = t∗(ρ) = s∗(ρ). Further, we have from the discussion in
(19) that

gA(tA, sA) < gL(s∗) = gL(t∗) = min(gL(t∗), gL(t∗∗)),

and
gB(tB, sB) = 4(µ1 + (1− 2ρ)µ2) ≥ 4(µ2 + (1− 2ρ)µ1) = gA(tA, sA).

Combining the above discussions on A, B, we conclude that Proposition 3 holds for −1 < ρ < 0.

3.1.2. Case 0 ≤ ρ < 1

We shall derive the minimizers of g(t, s) on A, B separately. We start with discussions on B, for which
we give the following lemma. Recall t∗(ρ) = s∗(ρ) defined in (20) (see also (6)), tB(ρ) defined in (24), t∗∗(ρ)
defined in (25) and s∗1(ρ) defined in (14) for µ1/µ2 < ρ < 1. Note that where it applies, 1/0 is understood
as +∞ and 1/∞ is understood as 0.

Lemma 7. We have:

(a) The function t∗(ρ) is a decreasing function on [0, 1] and both tB(ρ) and s∗1(ρ) are decreasing functions on
(µ1/µ2, 1).

(b) The function t∗∗(ρ) decreases from 1/µ2 at ρ = 0 to some positive value and then increases to 1/µ2 at ρ̂2

(defined in (5)) and then increases to +∞ at the root ρ̂ ∈ (0, 1] of the equation µ2 + ρµ1 − 2µ2ρ2 = 0.
(c) For 0 ≤ ρ ≤ µ1/µ2, we have

tB(ρ) ≥ t∗∗(ρ), t∗(ρ) ≥ t∗∗(ρ),

where both equalities hold only when ρ = 0 and µ1 = µ2.
(d) It holds that

t∗(ρ̂2) = tB(ρ̂2) = s∗1(ρ̂2) = t∗∗(ρ̂2) =
1

µ2
. (26)

Moreover, for µ1/µ2 < ρ < 1 we have

(i) t∗(ρ) < s∗1(ρ) for all ρ ∈ (µ1/µ2, ρ̂2), t∗(ρ) > s∗1(ρ) for all ρ ∈ (ρ̂2, 1).
(ii) tB(ρ) < s∗1(ρ) for all ρ ∈ (µ1/µ2, ρ̂2), tB(ρ) > s∗1(ρ) for all ρ ∈ (ρ̂2, 1).
(iii) t∗∗(ρ) < s∗1(ρ) for all ρ ∈ (µ1/µ2, ρ̂2), t∗∗(ρ) > s∗1(ρ) for all ρ ∈ (ρ̂2, ρ̂).
(iv) t∗∗(ρ) < t∗(ρ) for all ρ ∈ (µ1/µ2, ρ̂2), t∗∗(ρ) > t∗(ρ) for all ρ ∈ (ρ̂2, ρ̂).
(v) t∗∗(ρ) < tB(ρ) for all ρ ∈ (µ1/µ2, ρ̂2), t∗∗(ρ) > tB(ρ) for all ρ ∈ (ρ̂2, ρ̂).

Recall that by definition gL(s) = gA(s, s) = gB(s, s), s > 0 (cf. (12)). For the minimum of g(t, s) on B
we have the following lemma.
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Lemma 8. We have

(i) If 0 ≤ ρ < ρ̂2, then

inf
(t,s)∈B

g(t, s) = gL(t∗) =
2

1 + ρ
(µ1 + µ2 + 2/t∗),

where (t∗, t∗) is the unique minimizer of g(t, s) on B.
(ii) If ρ = ρ̂2, then t∗(ρ̂2) = s∗(ρ̂2) = 1/µ2 and

inf
(t,s)∈B

g(t, s) = gL(1/µ2) = g2(1/µ2) = 4µ2,

where the minimum of g(t, s) on B is attained at (1/µ2, 1/µ2), with g3(1/µ2, 1/µ2) = g2(1/µ2) and 1/µ2

is the unique minimizer of g2(s), s ∈ (0, ∞).
(iii) If ρ̂2 < ρ < 1, then

inf
(t,s)∈B

g(t, s) = inf
(t,s)∈D2

g2(s) = g2(1/µ2) = 4µ2,

where the minimum of g(t, s) on B is attained when g(t, s) = g2(s) on D2 (see Figure 1).

Next we consider the minimum of g(t, s) on A. Recall s∗(ρ) defined in (20), sA(ρ) defined in (17)
and s∗∗(ρ) defined in (18). We first give the following lemma.

Lemma 9. We have

(a) Both s∗(ρ) and s∗∗(ρ) are decreasing functions on [0, 1].
(b) That ρ̂1 is the unique point on [0, 1) such that

sA(ρ̂1) = s∗∗(ρ̂1) = s∗(ρ̂1),

and

(i) sA(ρ) < s∗∗(ρ) for all ρ ∈ [0, ρ̂1), sA(ρ) > s∗∗(ρ) for all ρ ∈ (ρ̂1, 1),
(ii) s∗(ρ) < s∗∗(ρ) for all ρ ∈ [0, ρ̂1), s∗(ρ) > s∗∗(ρ) for all ρ ∈ (ρ̂1, 1).

(c) For all µ1/µ2 < ρ < 1, it holds that s∗∗(ρ) < s∗1(ρ).

For the minimum of g(t, s) on A we have the following lemma.

Lemma 10. We have

(i) If 0 ≤ ρ < ρ̂1, then

inf
(t,s)∈A

g(t, s) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1),

where (tA, sA) ∈ A is the unique minimizer of g(t, s) on A.
(ii) If ρ = ρ̂1, then

inf
(t,s)∈A

g(t, s) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1),

where (tA, sA) = (t∗, s∗) ∈ L is the unique minimizer of g(t, s) on A.
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(iii) If ρ̂1 < ρ < ρ̂2, then

inf
(t,s)∈A

g(t, s) = gL(s∗) =
2

1 + ρ
(µ1 + µ2 + 2/s∗),

where (s∗, s∗) is the unique minimizer of g(t, s) on A.
(iv) If ρ = ρ̂2, then t∗(ρ̂2) = s∗(ρ̂2) = 1/µ2 and

inf
(t,s)∈A

g(t, s) = gL(s∗) = g2(1/µ2) = 4µ2,

where the minimum of g(t, s) on A is attained at (1/µ2, 1/µ2), with g3(1/µ2, 1/µ2) = g2(1/µ2).
(v) If ρ̂2 < ρ < 1, then

inf
(t,s)∈A

g(t, s) = g2(1/µ2) = 4µ2,

where the minimum of g(t, s) on A is attained when g(t, s) = g2(s) on D2 (see Figure 1).

Consequently, combining the results in Lemma 8 and Lemma 10, we conclude that Proposition 3
holds for 0 ≤ ρ < 1. Thus, the proof is complete.

4. Conclusions and Discussions

In the multi-dimensional risk theory, the so-called “ruin” can be defined in different manner.
Motivated by diffusion approximation approach, in this paper we modelled the risk process via
a multi-dimensional BM with drift. We analyzed the component-wise infinite-time ruin probability
for dimension d = 2 by solving a two-layer optimization problem, which by the use of Theorem 1 from
Dȩbicki et al. (2010) led to the logarithmic asymptotics for P(u) as u → ∞, given by explicit form of
the adjustment coefficient γ = g(t0)/2 (see (8)). An important tool here is Lemma 5 on the quadratic
programming, cited from Hashorva (2005). In this way we were also able to identify the dominating
points by careful analysis of different regimes for ρ and specify three regimes with different formulas for
γ (see Theorem 1). An open and difficult problem is the derivation of exact asymptotics for P(u) in (4),
for which the problem of finding dominating points would be the first step. A refined double-sum method
as in Dȩbicki et al. (2018) might be suitable for this purpose. A detailed analysis of the case for dimensions
d > 2 seems to be technically very complicated, even for getting the logarithmic asymptotics. We also note
that a more natural problem of considering Ri(t) = αiu + µit− Xi(t), with general αi > 0, i = 1, 2, leads to
much more difficult technicalities with the analysis of γ.

Define the ruin time of component i, 1 ≤ i ≤ d, by Ti = min{t : Ri(t) < 0} and let
T(1) ≤ T(2) ≤ . . . ≤ T(d) be the order statistics of ruin times. Then the component-wise infinite-time

ruin probability is equivalent to P
{

T(d) < ∞
}

while the ruin time of at least one business line is

Tmin = T(1) = mini Ti. Other interesting problems like P
{

T(j) < ∞
}

have not yet been analysed.
For instance, it would be interesting for d = 3 to study the case T(2). The general scheme on how
to obtain logarithmic asymptotics for such problems was discussed in Dȩbicki et al. (2010).

Random vector X̄ = (supt≥0(X1(t)− p1t), . . . , supt≥0(Xd(t)− pdt))> has exponential marginals and
if it is not concentrated on a subspace of dimension less than d, it defines a multi-variate exponential
distribution. In this paper for dimension d = 2, we derived some asymptotic properties of such distribution.
Little is known about properties of this multi-variate distriution and more studies on it would be of interest.
For example a correlation structure of X̄ is unknown. In particular, in the context of findings presented
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in this contribution, it would be interesting to find the correlation between supt≥0(X1(t) − µ1t) and
supt≥0(X2(t)− µ2t).
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Appendix A

In this appendix, we present the proofs of the lemmas used in Section 3.

Proof of Lemma 6. Referring to Lemma 5, we have, for any fixed t, s, there exists a unique index set

I(t, s) ⊆ {1, 2}

such that

g(t, s) = (1 + µ1t, 1 + µ2s)I(t,s) (Σts)
−1
I(t,s),I(t,s) (1 + µ1t, 1 + µ2s)>I(t,s), (A1)

and

(Σts)
−1
I(t,s),I(t,s) (1 + µ1t, 1 + µ2s)>I(t,s) > 0I(t,s). (A2)

Since I(t, s) = {1}, {2} or {1, 2}, we have that

(S1) On the set E1 = {(t, s) : ρ t ∧ s s−1(1 + µ2s) ≥ (1 + µ1t)}, g(t, s) = g2(s)
(S2) On the set E2 = {(t, s) : ρ t ∧ s t−1(1 + µ1t) ≥ (1 + µ2s)}, g(t, s) = g1(t)
(S3) On the set E3 = (0, ∞)2 \ (E1 ∪ E2), g(t, s) = g3(t, s).

Clearly, if ρ ≤ 0 then
E1 = E2 = ∅, E3 = (0, ∞)2.

In this case,
g(t, s) = g3(t, s), (t, s) ∈ (0, ∞)2.

Next, we focus on the case where ρ > 0. We consider the regions A and B separately.
Analysis on A. We have

A1 = A ∩ E1 = {s ≤ t ≤ f1(s)}, f1(s) =
ρ− 1

µ1
+

ρµ2

µ1
s,

A2 = A ∩ E2 = {s ≤ t ≤ f2(s)}, f2(s) =
ρs

1 + (µ2 − ρµ1)s
,
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A3 = A ∩ E3 = {t ≥ s, t > max( f1(s), f2(s))}.

Next we analyse the intersection situation of the functions f (s) = s, f1(s), f2(s) on region A.
Clearly, for any s > 0 we have f2(s) < s. Furthermore, f1(s) = f2(s) has a unique positive solution s1

given by

s1 =
1− ρ

ρ(µ2 − ρµ1)
.

Finally, for ρµ2 ≤ µ1 we have that f1(s) does not intersect with f (s) on (0, ∞) but for ρµ2 > µ1 the
unique intersection point is given by s∗1 > s1 (cf. (14)). To conclude, we have, for ρ ≤ µ1/µ2,

g(t, s) = g3(t, s), (t, s) ∈ A,

and for ρ > µ1/µ2,

g(t, s) =

{
g3(t, s), if (t, s) ∈ A ∩ {t ≥ max(s, f1(s)), t > f1(s)}
g2(s), if (t, s) ∈ A ∩ {s ≤ t ≤ f1(s)}.

Additionally, we have from Lemma 5 g3( f1(s), s) = g2(s) for all s ≥ s∗1 .
Analysis on B. The two scenarios ρ ≤ µ1/µ2 and ρ > µ1/µ2 will be considered separately. For ρ ≤

µ1/µ2, we have

B1 = B ∩ E1 = {t < s ≤ h1(t)}, h1(t) =
ρt

1 + (µ1 − ρµ2)t
,

B2 = B ∩ E2 = {t < s ≤ h2(t)}, h2(t) =
ρ− 1

µ2
+

ρµ1

µ2
t,

B3 = B ∩ E3 = {s > max(t, h1(t), h2(t))}.

It is easy to check that
t > h1(t), t > h2(t), ∀t > 0,

and thus
g(t, s) = g3(t, s), (t, s) ∈ B.

For ρ > µ1/µ2, we have

B1 = B ∩ E1 = {w1(s) ≤ t < s}, w1(s) =
s

ρ + (ρµ2 − µ1)s
,

B2 = B ∩ E2 = {w2(s) ≤ t < s}, w2(s) =
1− ρ

µ1ρ
+

µ2

µ1ρ
s,

B3 = B ∩ E3 = {t < min(s, w1(s), w2(s))}.

Next we analyze the intersection situation of the functions w(s) = s, w1(s), w2(s) on region B.
Clearly, for any s > 0, w2(s) > s. w1(s) and w2(s) do not intersect on (0, ∞). w(s) and w1(s) has

a unique intersection point s∗1 (cf. (14)).
To conclude, we have, for ρ ≤ µ1/µ2,

g(t, s) = g3(t, s), (t, s) ∈ B,
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and for ρ > µ1/µ2,

g(t, s) =

{
g3(t, s), if (t, s) ∈ B ∩ {t < min(s, w1(s))}
g2(s), if (t, s) ∈ B ∩ {w1(s) ≤ t < s}.

Additionally, it follows from Lemma 5 that g3(w1(s), s) = g2(s) for all s ≥ s∗1 .
Consequently, the claim follows by a combination of the above results. This completes the proof.

Proof of Lemma 7. (a) The claim for t∗(ρ) follows by noting its following representation:

t∗(ρ) = s∗(ρ) =

√
2(1− ρ)

µ2
1 + µ2

2 − 2µ1µ2 + 2µ1µ2 − 2ρµ1µ2
=

√√√√ 2
(µ1−µ2)2

1−ρ + 2µ1µ2

.

The claims for tB(ρ) and s∗1(ρ) follow directly from their definition.
(b) First note that

t∗∗(0) = t∗∗(ρ̂2) =
1

µ2
.

Next it is calculated that

∂t∗∗(ρ)
∂ρ

=
−2µ2ρ2 + 4µ2ρ− µ1 − µ2

(µ2 + ρµ1 − 2µ2ρ2)2 .

Thus, the claim of (b) follows by analysing the sign of ∂t∗∗(ρ)
∂ρ over (0, ρ̂).

(c) For any 0 ≤ ρ ≤ µ1/µ2 we have |µ1 − 2ρµ2| ≤ µ1 and thus

tB(ρ) ≥
1
u1
≥ 1

u2
≥ 1− ρ

u2(1− ρ2)
≥ 1− ρ

ρ(µ1 − ρµ2) + µ2(1− ρ2)
= t∗∗(ρ).

Further, since

µ2
1 + µ2

2 − 2ρµ1µ2 = µ1(µ1 − ρµ2) + µ2(µ2 − ρµ1) ≤ µ2(µ1 − ρµ2) + µ2(µ2 − ρµ1) ≤ 2µ2
2(1− ρ),

it follows that

t∗(ρ) ≥ 1
µ2
≥ t∗∗(ρ).

(d) It is easy to check that (26) holds. For (i) we have

t∗(ρ)− s∗1(ρ) = (1− ρ)

(
1

f1(ρ)
− 1

f2(ρ)

)
,

where

f1(ρ) =

√
(1− ρ)(µ2

1 + µ2
2 − 2ρµ1µ2)

2
=

√
µ1µ2ρ2 − (µ1 + µ2)2

2
ρ +

µ2
1 + µ2

2
2

f2(ρ) = ρµ2 − µ1.
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Analysing the properties of the above two functions, we have f1(ρ) is strictly decreasing on [0, 1] with

f1(0) =

√
µ2

1 + µ2
2

2
> −µ1 = f2(0), f1(1) = 0 ≤ µ2 − µ1 = f2(1),

and thus there is a unique intersection point of the two curves t∗(ρ) and s∗1(ρ) which is ρ = ρ̂2.
Therefore, the claim of (i) follows. Similarly, the claim of (ii) follows since

tB(ρ)− s∗1(ρ) =
−(µ1 + µ2)ρ + 2µ2ρ2

(ρµ2 − µ1)(2ρµ2 − µ1)
.

Finally, the claims of (iii), (iv) and (v) follow easily from (a), (b) and (26). This completes the proof.

Proof of Lemma 8. Consider first the case where 0 ≤ ρ ≤ µ1/µ2. Recall (22). We check if any of si, i = 1, 2,
is greater than t. Clearly, s1 ≤ t. Next, we check whether s2 > t. It is easy to check that

s2 > t ⇔ t < t∗∗,

where (recall (25))

t∗∗ = t∗∗(ρ) =
1− ρ

ρ(µ1 − µ2ρ) + µ2(1− ρ2)
> 0.

Then

inf
(t,s)∈B

g3(t, s) = min
(

inf
0<t<t∗∗

gB(t, s2(t)), inf
t≥t∗∗

gB(t, t)
)

.

Consequently, it follows from (c) of Lemma 7 the claim of (i) holds for 0 ≤ ρ ≤ µ1/µ2.
Next, we consider µ1/µ2 < ρ < 1. Recall the function w1(s) defined in (13). Denote the inverse

function of w1(s) by

ŵ1(t) =
ρt

1− (ρµ2 − µ1)t
, t ≥ s∗1 .

We have from Lemma 6 that

gB(t, ŵ1(t)) = g2(t), t ≥ s∗1 .

Further note that 1/µ2 is the unique minimizer of g2(s), s > 0. For µ1/µ2 < ρ < ρ̂2, we have from (d)
in Lemma 7 that

inf
s∗1≤s

g2(s) = g2(s∗1) = gL(s∗1) > gL(t∗),

and further

inf
(t,s)∈B

g(t, s) = min( inf
0<t<t∗∗

gB(t, s2(t)), inf
t∗∗≤t<s∗1

gB(t, t), inf
s∗1≤t

gB(t, ŵ1(t)), inf
s∗1≤s

g2(s))

= gB(t∗, t∗) = gL(t∗),

where (t∗, t∗) is the unique minimizer of g(t, s) on B. Therefore, the claim for µ1/µ2 < ρ < ρ̂2 is established.
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For ρ = ρ̂2, because of (26) we have

inf
(t,s)∈B

g(t, s) = min( inf
0<t<1/µ2

gB(t, s2(t)), inf
1/µ2≤t

gB(t, ŵ1(t)), inf
1/µ2≤s

g2(s))

= gB(1/µ2, 1/µ2) = gL(1/µ2) = g2(1/µ2),

and the unique minimum of g(t, s) on B is attained at (1/µ2, 1/µ2). Moreover, for all ρ̂2 < ρ < 1 we have

s2(tB) = ŵ1(tB) =
1

µ2
> s∗1 .

Thus,

inf
(t,s)∈B

g(t, s) = min( inf
0<t<tB

gB(t, s2(t)), inf
tB≤t

gB(t, ŵ1(t)), inf
s∗1≤s

g2(s))

= gB(tB, 1/µ2) = g2(1/µ2),

and the unique minimum of g(t, s) on B is attained when g(t, s) = g2(s) on D2. This completes the
proof.

Proof of Lemma 9. (a) The claim for s∗(ρ) has been shown in the proof of (a) in Lemma 7. Next, we show
the claim for s∗∗(ρ), for which it is sufficient to show that ∂s∗∗(ρ)

∂ρ < 0 for all ρ ∈ [0, 1]. In fact, we have

∂s∗∗(ρ)
∂ρ

=
−2µ1ρ2 + 4µ1ρ− µ1 − µ2

(µ1 + ρµ2 − 2µ1ρ2)2 < 0.

(b) In order to prove (i), the following two scenarios will be discussed separately:

(S1). µ2 < 2µ1; (S2). µ2 ≥ 2µ1.

First consider (S1). If 0 ≤ ρ < µ2
2µ1

, then

sA(ρ)− s∗∗(ρ) =
(µ1 + ρµ2 − 2µ1ρ2)− (1− ρ)(µ2 − 2ρµ1)

(µ2 − 2ρµ1)(µ1 + ρµ2 − 2µ1ρ2)

=
f (ρ)

(µ2 − 2ρµ1)(µ1 + ρµ2 − 2µ1ρ2)
,

where

f (ρ) = −4µ1ρ2 + 2(µ2 + µ1)ρ− µ2 + µ1.

Analysing the function f , we conclude that

f (ρ) < 0, for ρ ∈ [0, ρ̂1), f (ρ) > 0, for ρ ∈ (ρ̂1,
µ2

2µ1
).

Further, for µ2
2µ1
≤ ρ < 1 we have

sA(ρ)− s∗∗(ρ) =
µ1 + µ2 − 2µ1ρ

(2ρµ1 − µ2)(µ1 + ρµ2 − 2µ1ρ2)
> 0.
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Thus, the claim in (i) is established for (S1). Similarly, the claim in (i) is valid for (S2) . Next, note that

s∗(ρ)− s∗∗(ρ) = (1− ρ)

(
1

f1(ρ)
− 1

f2(ρ)

)
with

f1(ρ) =

√
(1− ρ)(µ2

1 + µ2
2 − 2ρµ1µ2)

2
=

√
µ1µ2ρ2 − (µ1 + µ2)2

2
ρ +

µ2
1 + µ2

2
2

f2(ρ) = µ1 + ρµ2 − 2µ1ρ2.

Analysing the properties of the above two functions, we have f1(ρ) is strictly decreasing on [0, 1] with

f1(0) =

√
µ2

1 + µ2
2

2
≥ µ1 = f2(0), f1(1) = 0 ≤ µ2 − µ1 = f2(1),

and thus there is a unique intersection point ρ ∈ (0, 1) of s∗(ρ) and s∗∗(ρ). It seems not clear at the moment
whether this unique point is ρ̂1 or not, since we have to solve a polynomial equation of order 4. Instead, it is
sufficient to show that

sA(ρ̂1) = s∗(ρ̂1). (A3)

In fact, basic calculations show that the above is equivalent to

(2µ1ρ̂1 − (u1 + µ2)) f (ρ̂1) = 0

which is valid due to the fact that f (ρ̂1) = 0. Finally, the claim in (c) follows since

ρµ2 − µ1 < µ1 + ρµ2 − 2ρ2µ1.

This completes the proof.

Proof of Lemma 10. Two cases ρ̂1 ≤ µ1/µ2 and ρ̂1 > µ1/µ2 should be distinguished. Since the proofs for
these two cases are similar, we give below only the proof for the more complicated case ρ̂1 ≤ µ1/µ2.

Note that, for 0 ≤ ρ ≤ µ1/µ2, as in (19),

inf
(t,s)∈A

g(t, s) = inf
(t,s)∈A

g3(t, s) = min
(

inf
0<s<s∗∗

fA(s), inf
s≥s∗∗

gL(s)
)

,

and thus the claim for 0 ≤ ρ ≤ µ1/µ2 follows directly from (i)–(ii) of (b) in Lemma 9.
Next, we consider the case µ1/µ2 < ρ < ρ̂2 (note here ρ̂1 < µ1/µ2 < ρ). We have by (i) of (d) in

Lemma 7 and (i)–(ii) of (b) in Lemma 9 that

s∗∗(ρ) < s∗(ρ) = t∗(ρ) < s∗1(ρ), s∗1(ρ) >
1

µ2
, sA(ρ) > s∗∗(ρ).
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Thus, it follows from Lemma 6 that

inf
(t,s)∈A

g(t, s) = min

(
inf

0<s<s∗∗
gA(t2(s), s), inf

s∗∗≤s≤s∗1
gA(s, s), inf

s∗1<s
gA( f1(s), s), inf

s∗1<s
g2(s)

)
= gA(t∗, s∗) = gL(s∗),

and (t∗, s∗) ∈ L is the unique minimizer of g(t, s) on A. Here we used the fact that

inf
s∗1<s

gA( f1(s), s) = inf
s∗1<s

g2(s) = gA( f1(s∗1), s∗1) = g2(s∗1) > gL(s∗).

Next, if ρ = ρ̂2, then

s∗1(ρ̂2) = s∗(ρ̂2) =
1

µ2
,

and thus

inf
(t,s)∈A

g(t, s) = min
(

inf
0<s<s∗∗

gA(t2(s), s), inf
s∗∗≤s≤1/µ2

gA(s, s), inf
1/µ2<s

gA( f1(s), s), inf
1/µ2<s

g2(s)
)

= gA(1/µ2, 1/µ2) = gL(1/µ2) = g2(1/µ2).

Furthermore, the unique minimum of g(t, s) on A is attained at (1/µ2, 1/µ2),
with g3(1/µ2, 1/µ2) = g2(1/µ2).

Finally, for ρ̂2 < ρ < 1, we have

s∗∗(ρ) < s∗1(ρ) < s∗(ρ) <
1

µ2
, sA(ρ) > s∗∗(ρ),

and thus

inf
(t,s)∈A

g(t, s) = min

(
inf

0<s<s∗∗
gA(t2(s), s), inf

s∗∗≤s≤s∗1
gA(s, s), inf

s∗1<s
gA( f1(s), s), inf

s∗1<s
g2(s)

)
= g2(1/µ2),

where the unique minimum of g(t, s) on A is attained when g3(t, s) = g2(s) on D2. This completes
the proof.
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