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Towards a version of Markov’s theorem
for ribbon torus-links in R4

Celeste Damiani

Abstract In classical knot theory, Markov’s theorem gives a way of describing
all braids with isotopic closures as links in R3. We present a version of Markov’s
theorem for extended loop braids with closure in B3 × S1, as a first step
towards a Markov’s theorem for extended loop braids and ribbon torus-links
in R4.

Key words: Braid groups, links, welded braid groups, loop braids, welded
links, ribbon torus-links, Markov.
Mathematics Subject Classification (2010): Primary 57Q45.

1 Introduction

In the classical theory of braids and links, Alexander’s theorem allows us to
represent every link as the closure of a braid. Moreover, Markov’s theorem
states that two braids (possibly with different numbers of strings) have
isotopic closures in a 3-dimensional space if and only if one can be obtained
from the other after a finite number of Markov moves, called conjugation
and stabilization. This theorem is a tool to describe all braids with isotopic
closures as links in a 3-dimensional space. Moreover, these two theorems allow
us to recover certain link invariants as Markov traces.

When considering extended loop braids as braided annuli in a 4-dimensional
space on one hand, and ribbon torus-links on the other hand, we have that a
version of Alexander’s theorem is a direct consequence of three facts. First
of all, every ribbon torus-link can be represented by a welded braid [Sat00].
Then, a version of Markov’s theorem is known for welded braids and welded
links [Kam07, KL06]. Finally, welded braid groups and loop braid groups are
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2 C. Damiani

isomorphic [Dam17b], and loop braids are a particular class of extended loop
braids.

In this paper we take a first steps in formulating a version of Markov’s
theorem for extended loop braids with closure in the space B3 ×S1. We show
that two extended loop braids have closures that are isotopic in B3 × S1 if
and only if they are conjugate in the extended loop braid groups. The reason
for considering extended loop braid groups instead of loop braid groups is
because this allows to prove a result that is exactly the analogous of the result
that we have for 1-dimensional braids and knots in a 3-dimensional space.
In fact, if we consider two loop braids in the first place, we have that their
closures are isotopic as ribbon torus-knots in B3 ×S1 if and only if the pair
of loop braids are conjugate in the extended loop braid group. This is due
to the fact that isotopies of ribbon torus-links can introduce a phenomenon
called wen, which we discuss in Subsection 2.4, on the components of the
closed braided objects. Wens are natural phenomena in the context of ribbon
torus-links in R4, but they are not encoded in the theory of loop braids. Then,
extended loop braids, who encode wens, seem to be the most natural analogue
of classical braids, and the most appropriate notion that we need to consider.

1.1 Structure of the paper

In Section 2 we give an overview of the many equivalent interpretations
of extended loop braid groups, which are the braided objects coming to
play in our main result. An expanded version of this overview can be found
in [Dam17b]1. A particular focus will be placed on the definition of extended
loop braids as braided annuli in a 4-dimensional space. When we want to
make clear that we are using this interpretation for extended loop braids, we
use the terminology ribbon braids. We recall several results on these objects,
and we use them to prove that every ribbon braid can be parametrized by a
normal isotopy (Proposition 1).

In Section 3 we introduce the knotted counterpart of ribbon braids, which
are ribbon torus-links.

In Section 4 we present the main result of this paper. This is a version of
Markov’s theorem for ribbon torus-links living in the space B3 ×S1 (Theo-
rem 8).

Finally, in Section 5 we discuss possible ideas to complete the main result
of this paper to a complete Markov’s theorem for ribbon torus-links in R4.

1 Notations are slightly changed: differences will be pointed out along this text
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2 Extended loop braid groups and their equivalent

definitions

Loop braid groups were introduced under this name for the first time by Xiao-
Song Lin in 2007 [Lin08], although they had been considered before in other
contexts and with other terminologies, for instance groups of basis-conjugating
automorphisms in [Sav96] and welded braid groups in [FRR97].

The groups we call extended loop braid groups appeared sooner in the
literature, in [Dah62] and [Gol81], who called them motion groups of a trivial
link of unknotted circles in R3, but since then have been less treated in the
literature.

In terms of configuration spaces, both groups appear in [BH13], loop braid
groups as untwisted ring groups, and extended loop braid groups as ring
groups. In this paper we focus on extended loop braid groups, for which we
choose to adapt Lin’s notation because it gives a good visual idea of the
considered objects, while being more compact. In fact, the elements of both
these groups can be seen as trajectories travelled by loops as they move in
a 3-dimensional space to exchange their positions under some admissible
motions. The “extended” attribute highlights the fact that in extended loop
braid groups we admit an extra motion that can be described as a 180◦-flip
of a loop. For a detailed survey on loop braid groups, extended loop braid
groups and the explicit equivalences among the different definitions, we refer
to [Dam17b].

We dedicate this section to recall several definitions of extended loop
braid groups, and give the terminology used in the different contexts. The
diversity of points of view will be useful in the proof of the main result of this
paper (Theorem 8), since it provides many approaches and tools to tackle
problems involving extended loop braid groups and other knotted objects in
the 4-dimensional space.

2.1 Extended loop braids as mapping classes

We present here a first definition for extended loop braid groups in terms of
mapping classes of a 3-ball with n circles that are left setwise invariant in its
interior.

Let us fix n ∈ N, and let C = C1 ⊔ ·· · ⊔ Cn be a collection of n disjoint,
unknotted, oriented circles, that form a trivial link of n components in the
interior of the 3-ball B3. A self-homeomorphism of the pair (B3,C) is an
homeomorphism f : B3 → B3 that fixes ∂B3 pointwise, preserves orientation
on B3, and globally fixes C. Every self-homeomorphism of (B3,C) induces
a permutation on the connected components of C in the natural way. We
consider the mapping class group of B3 with respect to C to be the group
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of isotopy classes of self-homeomorphisms of (B3,C), with multiplication
determined by composition. We denote it by MCG(B3,C∗).

Remark 1. The “∗” on the submanifold C is to indicate that homeomorphisms
do not preserve the orientation of the connected components of C. This is the
difference between extended loop braid groups and loop braid groups in this
context. In fact, in the latter, the homeomorphisms preserve orientation on C.

Remark 2. A map f from a topological space X to Homeo(B3;C∗) is con-
tinuous if and only if the map X × B3 → B3 sending (x,y) 7→ f(x)(y) is
continuous [Kel75]. Taking X equal to the unit interval I, we have that two
self-homeomorphisms are isotopic if and only if they are connected by a path
in Homeo(B3;C∗). Therefore MCG(B3,C∗) = π0(Homeo(B3;C∗)). The same
can be said for the pure groups, PMCG(B3,C∗) = π0(PHomeo(B3;C∗)).

Definition 1. For n ≥ 1, the extended loop braid group, denoted by LBext
n ,

is the mapping class group MCG(B3,C∗).

2.2 Extended loop braids as loops in a configuration

space

The second interpretation of extended loop braid groups LBext
n that we give

is in terms of configuration spaces, and has been introduced in [BH13]. Let
n ≥ 1, and consider the space of configurations of n Euclidean, unordered,
disjoint, unlinked circles in B3, denoted by Rn. The ring group Rn is its
fundamental group.

Remark that in Subsection 2.1 we were not considering Euclidean circles
as moving objects, but the components of a trivial link. We shall see now
that these two families of objects are deeply related. Let Ln be the space of
configurations of smooth trivial links with n components in R3: the following
result allows us to consider the fundamental group of Ln as being isomorphic
to Rn.

Theorem 1 ([BH13, Theorem 1]). For n ≥ 1, the inclusion of Rn into Ln

is a homotopy equivalence.

As anticipated, the groups Rn are isomorphic to the groups LBext
n , as stated

in the next theorem. Its proof heavily relies on Wattenberg’s results [Wat72,
Lemma 1.4 and Lemma 2.4] implying that the topological mapping class groups
of the 3-ball with respect to an n-components trivial link are isomorphic to
the C∞-mapping class groups of the same pair. In other terms, we have
that π0(Homeo(B3;C∗)) ∼= π0(Diffeo(B3;C∗)). We can define an evaluation
map from Diffeo(B3) to the space of configurations of a smooth trivial link
with n ordered components in R3, that we denote by PLn. We can refer to
PLn as to the pure configuration space of a smooth trivial link. Fixed the n
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components of a trivial link in the interior of the 3-ball, this evaluation map
sends self-diffeomorphisms of B3 to the image of the n components through
the considered self-diffeomorphism:

ε : Diffeo(B3) −→ PLn. (1)

This map can be proved to be a locally trivial fibration [Dam17b, Lemma 3.8].
This fibration is then used as the main ingredient to prove the following,
through the construction of exact sequences and a commutative diagram.

Theorem 2 ([Dam17b, Theorem 3.10]). For n ≥ 1, there is a natural
isomorphism between ring group Rn and the extended loop braid group LBext

n .

Brendle and Hatcher, in [BH13, Proposition 3.7], give a presentation for
the ring groups Rn, and so, for LBext

n .

Proposition 1. For n ≥ 1, the group LBext
n admits the presentation given by

generators {σi,ρi | i = 1, . . . ,n−1} and {τi | i = 1, . . . ,n}, subject to relations:





σiσj = σjσi for |i− j| > 1

σiσi+1σi = σi+1σiσi+1 for i = 1, . . . ,n−2

ρiρj = ρjρi for |i− j| > 1

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, . . . ,n−2

ρ2
i = 1 for i = 1, . . . ,n−1

ρiσj = σjρi for |i− j| > 1

ρi+1ρiσi+1 = σiρi+1ρi for i = 1, . . . ,n−2

σi+1σiρi+1 = ρiσi+1σi for i = 1, . . . ,n−2

τiτj = τjτi for i 6= j

τ2
i = 1 for i = 1, . . . ,n

σiτj = τjσi for |i− j| > 1

ρiτj = τjρi for |i− j| > 1

τiρi = ρiτi+1 for i = 1, . . . ,n−1

τiσi = σiτi+1 for i = 1, . . . ,n−1

τi+1σi = ρiσ
−1
i ρiτi for i = 1, . . . ,n−1.

(2)

The elements σi, ρi, and τi of the presentation represent the following loops
in Rn: if we place the n rings in a standard position in the yz-plane with
centers along the y-axis, then σi is the loop that permutes the i-th and the
(i+1)-st circles by passing the i-th circle through the (i+1)-st; ρi permutes
them passing the i-th around the (i + 1)-st, and τi is the loop that flips by
180◦ the i-th circle, see Figure 1.
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Fig. 1 Elements σ
i
, ρ

i
and τi.

i i+ 1 i i+ 1 i

σi ρi τi

2.3 Extended loop braids as automorphisms of the free

groups

We now give an interpretation of extended loop braids in terms of auto-
morphisms of Fn, the free groups of rank n. Fixing n ≥ 1, we consider the
automorphisms that send each generator of Fn to a conjugate of some gener-
ator, or its inverse: these are in bijection with elements of LBext

n . We start
recalling a result of Dahm’s unpublished thesis [Dah62], that appears in the
last section of Goldsmith’s paper [Gol81].

Theorem 3 ([Gol81, Theorem 5.3]). For n ≥ 1, there is an injective map
from the extended loop braid group LBext

n into Aut(Fn), where Fn is the
free group on n generators {x1, . . . ,xn}, and its image is the subgroup PCn,
consisting of all automorphisms of the form α : xi 7→ w−1

i x±1
π(i)

wi where π is a

permutation and wi is a word in Fn. Moreover, the group PCn is generated
by the automorphisms {σ1, . . .σn−1,ρ1, . . .ρn−1, τ1, . . . , τn} defined as:

σi :





xi 7→ xi+1;

xi+1 7→ x−1
i+1xixi+1;

xj 7→ xj , for j 6= i, i+1.

(3)

ρi :





xi 7→ xi+1;

xi+1 7→ xi;

xj 7→ xj , for j 6= i, i+1.

(4)

τi :

{
xi 7→ x−1

i ;

xj 7→ xj , for j 6= i.
(5)

This result is the analogue of Artin’s characterization of usual braids
as automorphisms of the free group. In an intuitive way, we use for the
automorphisms of PCn the notations of the corresponding elements of the
mapping class group2.

2 In [Dam17b] these groups are denote by P C∗

n, while P Cn is used for the groups of
automorphisms of the form α : xi 7→ w−1

i
xπ(i)wi.
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In [FRR97] Fenn, Rimányi and Rourke consider the subgroups of Aut(Fn)
generated only by the sets of elements {σi | i = 1, . . .n − 1} and {ρi | i =
1, . . .n−1}. They call these groups by the name braid-permutation groups, and
they prove independently from Dahm and Goldsmith that they are isomorphic
to the groups of all automorphisms of Aut(Fn) of the form α : xi 7→ w−1

i xπ(i)wi

where π is a permutation and wi is a word in Fn.

2.4 Extended loop braids as ribbon braids

The next interpretation of extended loop braids will be the one that we will
focus on in the main result of this paper. This is an approach in terms of
braided objects in a 4-dimensional space. Extended loop braids in this context
are called ribbon braids, when we want to specify the used interpretation3.

We need some notation before giving the definition of ribbon braids and
their equivalence to extended loop braids. Let n ≥ 1, and let D1, . . . ,Dn be a
collection of disks in the 2-ball B2. Let Ci = ∂Di be the oriented boundary
of Di. Let us consider the 4-ball B4 ∼= B3 ×I, where I is the unit interval. For
any submanifold X ⊂ Bm ∼= Bm−1 × I, with m = 3,4, we use the following
dictionary. To keep the notation readable, here we denote the interior of a
topological space by “int( )”, whereas anywhere else it is denoted by “̊ ”.

• ∂εX = X ∩ (Bm−1 ×{ε}), with ε ∈ {0,1};

• ∂∗X = ∂X \
(

int(∂0X)⊔ int(∂1X)
)

;

•
∗
X = X \∂∗X.

The image of an immersion Y ⊂ X is said to be locally flat if and only if
it is locally homeomorphic to a linear subspace Rk in Rm for some k ≤ m,
except on ∂X and/or ∂Y , where one of the R summands should be replaced
by R+. Let Y1,Y2 be two submanifolds of Bm. The intersection Y1 ∩Y2 ⊂ X

is called flatly transverse if and only if it is locally homeomorphic to the
transverse intersection of two linear subspaces Rk1 and Rk2 in Rm for some
positive integers k1,k2 ≤ m except on ∂X, ∂Y1 and/or ∂Y2, where one of the
R summands should be replaced by R+. In the next definition we introduce
the kind of singularities we consider.

Definition 2. Let Y1,Y2 be two submanifolds of B4. Ribbon disks are inter-
sections D = Y1 ∩Y2 that are isomorphic to the 2-dimensional disk, such that
D ⊂ Y̊1, D̊ ⊂ Y̊2 and ∂D is an essential curve in ∂Y2.

These singularities are the 4-dimensional analogues of the classical notion
of ribbon singularities introduces by Fox in [Fox73].

3 In the survey [Dam17b] the terminology ribbon braids refers to loop braids seen as
braided objects in the 4-dimensional braid, while the terminology extended ribbon braids
refers to extended loop braids. We chose to simplify.
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Definition 3. Let A1, . . . ,An be locally flat embeddings in
∗

B4 of n disjoint
copies of the oriented annulus S1 × I. We say that

b =
⊔

i∈{1,...,n}

Ai

is a geometric ribbon braid if:

1. the boundary of each annulus ∂Ai is a disjoint union Ci ⊔Cj , for Ci ∈ ∂0B4

and for some Cj ∈ ∂1B4. The orientation induced by Ai on ∂Ai coincides
with the one of the two boundary circles Ci and Cj ;

2. the annuli Ai are fillable, in the sense that they bound immersed 3-balls
⊂ R4 whose singular points consist in a finite number of ribbon disks;

3. it is transverse to the lamination
⋃

t∈I B3 × {t} of B4, that is: at each
parameter t, the intersection between b and B3 × t is a collection of exactly
n circles;

The group of ribbon braids, denoted by rBn, is the group of equivalence
classes of geometric ribbon braids up to continuous deformations through the
class of geometric ribbon braids fixing the boundary circles, equipped with
the natural product given by stacking and reparametrizing. The unit element
for this product is the trivial ribbon braid U =

⊔
i∈{1,...,n} Ci × [0,1].

The monotony condition allows us to consider the interval I in B4 =
B3 × I as a time parameter, and to think of a ribbon braid as a trajectory
β =

(
C1(t), . . . ,Cn(t)

)
of circles in B3 × I. This trajectory corresponds to

a parametrization of the ribbon braid. This interpretation is also referred
to in terms of flying rings in [BND16]. When one of the n circles that we
have at each time t makes a half-turn, we have what is called a wen on the
corresponding component. One can think of a wen as an embedding in R4 of
a Klein bottle cut along a meridional circle. A detailed treatment of wens can
be found in Kanenobu and Shima’s paper [KS02].

The following result states the equivalence of the interpretations of LBext
n

as mapping class groups and as ribbon braid groups. Its proof consists in
explicitly defining an isomorphism between rBn and Rn, and composing it
with the isomorphism from Theorem 2.

Theorem 4 ([Dam17b, Theorem 5.17]). For n ≥ 1, there is an isomor-
phism between the ribbon braid group rBn and the extended loop braid
group LBext

n .

We can show that when two ribbon braids are equivalent in the sense of
Definition 3, there is an ambient isotopy of R4 bringing one to the other.

Theorem 5 ([Dam17b, Theorem 5.5]). Every relative isotopy of a geo-
metric ribbon braid in B3 ×I extends to an isotopy of B3 ×I in itself constant
on the boundary.
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This result is true also for surface links, which are closed surfaces locally
flatly embedded in R4 [Kam02, Theorem 6.7].

With the results we recalled, we prove now that given a geometric ribbon
braid b and its set of starting set of circles, we can find a normal isotopy
parametrizing it. We take C = (C1, . . . ,Cn) to be an ordered tuple of n

disjoint, unlinked, unknotted circles living in B3. We consider the space of
configurations of ordered smooth trivial links of n components PLn introduced
in Subsection 2.2. As mentioned above, we have an evaluation map

ε : Diffeo(B3) −→ PLn

sending a self-diffeomorphism f to f(C). We remark that f(C) is an ordered
tuple of n disjoint, unlinked, trivial, smooth knots living in B3, which is a
locally trivial fibration with fibre the group of self-diffeomorphisms of the pair
(B3,C) that send each connected component of C to itself. Composing ε with
the covering map PLn → Ln, seeing Ln as the orbit space with of the action
of the symmetric group of PLn, we define a locally trivial fibration

ε̃ : Diffeo(D3) −→ Ln

sending f to f(C). More details on this construction can be found in [Dam17b].

Lemma 1. Let n ≥ 1. For every geometric ribbon braid b ⊂ B4 on n compo-
nents, there is a normal isotopy parametrizing b.

Proof. Let us consider a geometric ribbon braid b, through the isomorphism
between rBn and Rn (Theorem 4). This gives rise to a loop fb : I → PLn ⊂ Ln

sending t ∈ I into the unique n-circles set bt such that

b∩ (B3 × I) = bt ×{t}.

This loop begins and ends at the point ε̃(idB3) ∈ Ln represented by C. Being
ε̃ a fibration, we apply the homotopy lifting property, and lift fb to a path

f̂b : I → Diffeo(B3) beginning at ε̃−1(C) = Diffeo(B3;C∗) and ending at idB3 .

The path f̂b is a normal isotopy. The commutativity ε̃◦ f̂b = fb means that
this isotopy parametrizes b. ⊓⊔

2.5 Extended loop braids as extended welded braids

In this part we discuss 1-dimensional diagrams immersed in a 2-dimensional
space for extended loop braids. An extended welded braid diagram on n strings
is a planar diagram composed by a set of n oriented and monotone 1-manifolds
immersed in R2 starting from n points on a horizontal line at the top of the
diagram down to a similar set of n points at the bottom of the diagram. The
1-manifolds are allowed to cross in transverse double points, which will be



10 C. Damiani

decorated in three kinds of ways, as shown in Figure 2. Depending on the
decoration, double points will be called: classical positive crossings, classical
negative crossings and welded crossings. On each 1-manifold there can possibly
be marks as in Figure 3, which we will call wen marks.

Fig. 2 a) Classical positive crossing, b) Classical negative crossing, c) Welded crossing.

c)a) b)

Fig. 3 A wen mark on a strand.

Let us assume that the double points occur at different y-coordinates. Then
an extended welded braid diagram determines a word in the elementary dia-
grams illustrated in Figure 4. We call σi the elementary diagram representing
the (i + 1)-th strand passing over the i-th strand, ρi the welded crossing of
the strands i and (i+1), and τi the wen mark diagram.

Fig. 4 Elementary diagrams σ
i
, ρ

i
, and τi.

1 i n1 i i+ 1 n1 i i+ 1 n

Definition 4. An extended welded braid is an equivalence class of extended
welded braid diagrams under the equivalence relation given by isotopy of R2

and the following moves:

• classical Reidemester moves (Figure 5);
• virtual Reidemeister moves (Figure 6);
• mixed Reidemeister moves (Figure 7);
• welded Reidemeister moves (Figure 8);
• extended Reidemester moves (Figure 9).
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This equivalence relation is called (braid) generalized Reidemeister equivalence.
For n ≥ 1, the extended welded braid group on n strands WBext

n is the group
of equivalence classes of extended welded braid diagrams by generalized
Reidemeister equivalence. The group structure on these objects is given by:
stacking and rescaling as product, braid mirror image as inverse, and the
trivial diagram as identity.

Fig. 5 Classical Reidemeister moves for braid-like objects.

(R2) (R3)

Fig. 6 Virtual Reidemeister moves for braid-like objects.

(V 2) (V 3)

Fig. 7 Mixed Reidemeister moves.

(M)

Fig. 8 Welded Reidemeister moves.

(F1)

Remark 3. If wen marks were not allowed, the group defined would be the
group of welded braids WBn, introduced by Fenn, Rimányi and Rourke
in [FRR97]. This group is isomorphic to loop braid groups LBn.

In [Sat00] the author defines a surjective map Tube from welded knotted
objects to ribbon knotted objects in dimension 4. This map Tube can be
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Fig. 9 Extended Reidemeister moves.

(T1) (T2) (T3) (T4)

easily defined on extended welded braids and extended loop braids, in their
interpretation as ribbon braids. Its definition uses as a stepping stone a
projection of ribbon braids onto a certain class of 3-dimensional surfaces,
called broken surface diagrams. We do not treat them in this paper since they
are not relevant to the main result. However they are an interesting way of
representing ribbon braids, and more detail can be found in [BWC07]. In the
framework of extended welded braids and ribbon braids, it can be proved that
the Tube map is an isomorphism [Dam17b, Theorem 6.12]. Hence, we have
the last isomorphism that we recall in this overview on extended loop braids.

Theorem 6. For n ≥ 1, there is an isomorphism between the extended welded
braid group WBext

n and the extended loop braid group LBext
n .

2.6 Pure subgroups

As in the case of classical braid groups Bn, we have a notion of pure subgroups
for the extended loop braid groups LBext

n . Let us consider the first definition
we gave for extended loop braids, as elements of MCG(B3,C∗), where C =
C1 ⊔·· ·⊔Cn is a collection of n disjoint, unknotted, oriented circles, that form
a trivial link of n components. Let p : LBext

n → Sn be the homomorphism
that forgets the details of the braiding, remembering only the permutation
of the circles. Then the pure extended loop braid group PLBext

n is the kernel
of p. In each one of the approaches to extended loop braid groups that we
exposed, such subgroups can be defined with tools inherent to the particular
context. We will not dwell on these groups here, but they are discussed in all
the references we gave on extended loop braid groups throughout this section.

3 Ribbon torus-links

In this part we introduce the knotted counterpart of extended loop braid
groups: ribbon torus-links. Classical references for these objects are [Kam02,
Kaw96, Yaj62].
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Definition 5. A geometric ribbon torus-knot is an embedded oriented torus
S1 ×S1 ⊂ R4 which is fillable, in the sense that it bounds a ribbon torus. A
ribbon torus is an oriented immersed solid torus D2 ×S1 ⊂ R4 whose singular
points consist in a finite number of ribbon disks (see Definition 2, and compare
with point 2 of Definition 3). Ribbon torus-knots are equivalence classes of
geometric ribbon torus-knots defined up to ambient isotopy.

Remark 4. Wens can appear on portions of a ribbon knot, but for an argument
of coherence of the co-orientation, there are an even number of them on
each component, and they cancel pairwise, as remarked in [Aud16, proof of
Proposition 2.4].

Definition 6. A geometric ribbon torus-link with n components is the embed-
ding of a disjoint union of n oriented fillable tori. The set of ribbon torus-links
is the set of equivalence classes of geometric ribbon torus-knots defined up to
ambient isotopy.

3.1 Extended welded diagrams for ribbon torus-links

An extended welded link diagram is the immersion in R2 of a collection
of disjoint, closed, oriented 1-manifolds such that all multiple points are
transverse double points. Double points are decorated with classical positive,
classical negative, or welded information as in Figure 2. On each 1-manifod
there can possibly be an even number of wen marks as in Figure 3, the
motivation for this lying in Remark 4. We assume that extended welded link
diagrams are the same if they are isotopic in R2. Taken an extended welded
link diagram K, we call real crossings its set of classical positive and classical
negative crossings.

Definition 7. An extended welded link is an equivalence class of extended
welded link diagrams under the equivalence relation given by isotopies of
R2, moves from Definition 4, and classical and virtual Reidemeister moves
(R1) and (V 1) as in Figure 10. This equivalence relation is called generalized
Reidemeister equivalence.

Fig. 10 Reidemeister moves of type I.

(V 1)(R1)

The closure of an extended welded braid diagram is obtained as for usual
braid diagrams (see Figure 11), with the condition that extended welded
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braids can be closed only when they have an even number of wen marks on
each component.

Fig. 11 Closure of an extended welded braid diagram.

β

For completeness we recall that for extended welded diagrams we have two
results that are analogous to Alexander’s and Markov’s theorems, that we
state here in the following.

Proposition 2 ([Dam17a, Proposition 3.3]). Any extended welded link
can be described as the closure of an extended welded braid diagram which is
generalized Reidemeister equivalent to a welded braid diagram.

Theorem 7 ([Dam17a, Theorem 4.1]). Two extended welded braid dia-
grams that admit closure have equivalent closures as extended welded link
diagrams if and only if they are related by a finite sequence on the following
moves:

(M0) isotopy of R2 and generalized Reidemeister moves;
(M1) conjugation in the extended welded braid group WBext

n ;
(M2) a right stabilization of positive, negative or welded type, and its

inverse operation.

The Tube map we briefly discussed in Subsection 2.5 can be defined also
from extended welded links to ribbon torus-links, thanks to the intermediate
passage through broken surfaces, and to the fact that the map is defined
locally, for details see [Dam17b, Section 6.3]. On link-like objects there is no
result stating that the map is an isomorphism, however we have the following
result, which is a direct consequence of [Aud16, Proposition 2.5].

Proposition 3. The map Tube, defined on extended welded links, with values
in the set of ribbon torus-links, is a well-defined surjective map.

We will not linger on this construction, but we remark that the importance
of this result is that it allows us to associate an extended welded link to every
ribbon torus-link.
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3.2 Closed ribbon braids in V = B
3 ×S

1

We introduce a particular kind of ribbon torus-links in the space V = B3 ×S1.

Definition 8. A torus-link L in V is called a closed n-ribbon braid with n ≥ 1
if L meets each ball B3 ×{t}, for t ∈ S1, transversely in n circles.

Remark 5. Two closed ribbon braids in V are isotopic if they are isotopic
as oriented torus-links. This implies that the tubes don’t necessarily stay
transverse to the lamination during the isotopy.

Remark 6. In general a torus-link in V is not isotopic to a closed ribbon braid
in V . For instance a torus link lying inside a small 4-ball in V is never isotopic
to a closed braid.

Definition 9. Given an n-ribbon braid β, its tube closure is the ribbon torus-
knot β̂ obtained by gluing a copy of the trivial ribbon braid U along β,
identifying the pair (B3 ×{0},∂0β) with (B3 ×{1},∂1U) and (B3 ×{1},∂1β)
with (B3 ×{0},∂0U).

On the diagrammatical side: an extended welded link diagram for β̂ in
S1 × I is obtained by closing a diagram for β.

4 A version of Markov’s theorem in B
3 ×S

1

In classical braid theory, closed braids in the solid torus are classified up to
isotopy by the conjugacy classes of braids in Bn. We give here a classification
of this kind for closed ribbon braids: their closures will be classified, up to
isotopy in B3 ×S1, by conjugacy classes of ribbon braids. The proof is inspired
by the one given for the classical case in [KT08, Chapter 2]. In the following
statement we will consider extended loop braids in their interpretation as
braided annuli in the 4-dimensional space, so we will use the terminology
“ribbon braids” which is inherent to this approach.

Theorem 8. Let n ≥ 1 and β,β′ ∈ rBn a pair of ribbon braids. The closed
ribbon braids β̂, β̂′ are isotopic in B3 ×S1 if and only if β and β′ are conjugate
in rBn.

Proof. We begin with the "if" part. Suppose first the case that β and β′

are conjugate in rBn. We recall that rBn is isomorphic to the group of
extended welded braids WBext

n . We call with the same name an element
in rBn and a diagram for it as a representative of the corresponding class
in WBext

n . Conjugate elements of WBext
n give rise to isotopic closed welded

braid, which correspond to isotopic closed ribbon braids. This means that,
since β and β′ are conjugate in WBext

n , β′ = αβα−1 with α ∈ WBext
n , and
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we have that α̂βα−1 = β̂. To see this, it is enough to stack the diagrams of α,
β and α−1, close the composed welded braid diagram, and push the upper
diagram representing α along the parallel strands until α and α−1 are stacked
one next to the other at the bottom of the diagram.

Let us now prove the converse, which is: any pair of ribbon braids with
isotopic closures in V = B3 ×S1 are conjugate in rBn. Passing through the
isomorphism between rBn and PCn, it will be enough to prove the following:
any pair of ribbon braids with isotopic closures in V = B3 ×S1 have associated
automorphisms of PCn that are conjugate. Set V = B3 ×R. Considering the
cartesian product of (B3, idB3) and the universal covering (R,p) of S1 given
by

p : R −→ S1

t 7−→ exp(2πit)

we obtain a universal covering (V , idB3 ×p) of V . Denote by T the covering
transformation

T : V −→ V

(x,t) 7−→ (x,t+1)

for all x ∈ B3 and t ∈R. If L is a closed n-ribbon braid in V , then its preimage
L ⊂ V is a 2-dimensional manifold meeting each 3-ball B3 × {t}, for t ∈ R,
transversely in n disjoint pairwise unlinked circles. This implies that L consists
of n fillable components homeomorphic to S1 ×R.

Being L a closed ribbon braid, we can present it as a closure of a geometric
ribbon braid b ⊂ B4 = B3 × I where we identify ∂0B4 with ∂1B4. Then L =⋃

m∈Z
T m(b), i.e., we can see L as a tiling of an infinite number of copies of b.

For n ≥ 1, let C = (C1, . . . ,Cn) be a family of n disjoint, pairwise unlinked,

euclidean circles in B̊3, lying on parallel planes. We consider a parametrization
for b, i.e., a family {αt : B3 → B3}t∈I such that α0(C) = C, α1 = idB3 , all αt

fix ∂B3 pointwise, and b =
⋃

t∈I(αt(C), t) (see Lemma 1).

We take the self-homeomorphism of V = B3 ×R given by

(x,t) 7−→ (αt−⌊t⌋α
−⌊t⌋
0 (x), t)

where x ∈ B3, t ∈ R, and ⌊t⌋ is the greatest integer less than or equal to t.
This homeomorphism fixes ∂V = S2 ×R pointwise and sends C ×R onto L,
see Figure 12 for an intuitive (although necessarily imprecise) idea.

The induced homeomorphism (B3 \ C) ×R ∼= V \ L shows that B3 \ C =
(B3 \ C) × {0} ⊂ V \ L is a deformation retract of V \ L. Pick a point d ∈
∂0B4 = B3 and set d = (d,0) ∈ V ; them the inclusion homomorphism

i : π1(B3 \C,d) −→ π1(V \L,d)
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Fig. 12 A homeomorphism between (B3
×R,C ×R) and (B3

×R,L).

b

b

∼
=

b

b

is an isomorphism.
By definition the image of d by the covering transformation T is T (d) =

(d,1); the covering transformation T restricted to V \ L induces an isomor-
phism π1(V \ L,d) → π1(V \ L,T (d)). Let T∗ be the composition of this iso-
morphism with the isomorphism π1(V \L,T (d)) → π1(V \L,d) obtained by
conjugating the loops by the path d× [0,1] ⊂ ∂B3 ×R ⊂ V \L. Then T∗ is an
automorphism of π1(V \L,d). Therefore the following diagram commutes:

π1(B3 \C,d)
i

−−−−→ π1(V \L,d)

β̃

y
yT∗

π1(B3 \C,d)
i

−−−−→ π1(V \L,d)

where β̃ is the automorphism induced by the restriction of α0 to B3 \C. The
isomorphism between rBn and MCG(B3,C∗) allows us to send the ribbon
braid β, represented by b, to the isotopy class of α0.

Identifying π1(B3 \C,d) with the free group Fn with generators x1,x2, . . . ,xn,
we conclude that the automorphism β̃ is equal to ν(b), where ν : rBn → PCn

is the isomorphism between the group of ribbon braids rBn and PCn,
the subgroup of Aut(Fn) generated by the automorphisms of the form
α : xi 7→ w−1

i x±1
π(i)

wi where π is a permutation and wi is a word in Fn. Then
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it is the automorphism of Fn corresponding to β, the ribbon braid represented
by b. Thus i−1T∗i = β̃.

Suppose now that β,β′ ∈ rBn are two ribbon braids with isotopic closures
in V , and that b and b′ ⊂ B4 = B3 × I are two geometric ribbon braids that
represent them. Let L and L′ ⊂ V = B3 ×S1 be their respective closures.

Then there is a homeomorphism g : V → V such that g maps L onto L′,
preserving their canonical orientation along the annuli, but possibly reversing
the orientation of the circles at some instant (for example when Reideiester
moves of type I occur). Note that a Reidemeister move of type I is isotopic to
the composition of two wens [Aud16, Corollary 3.3], so globally the orientation
of the circles at the starting and ending time parameter is preserved). In fact
the orientation of the ambient V is preserved by g, but when considering
a section B3 × {t} the orientation of the circles can be concordant or not
concordant with the one induced by V . In addition the restriction of g to ∂V

is isotopic to the identity idV . This fact, plus the isomorphism of the map
induced by the inclusion π1(∂V ) = π1(S2 ×S1) → π1(V ) = π1(B3 ×S1) ∼= Z

implies that g induces an identity automorphism of π1(V ). Therefore g lifts
to a homeomorphism g : V → V such that g is isotopic to the identity on ∂V ,
gT = Tg, and g(L) = L′.

Hence g induces an isomorphism

g∗ : π1(V \L,d) −→ π1(V \L′,d)

commuting with T∗. The following diagram commutes:

π1(B3 \C,d)
i

−−−−→ π1(V \L,d)

ϕ

y
yg

∗

π1(B3 \C,d)
i′

−−−−→ π1(V \L′,d).

Consider the automorphism ϕ = (i′)−1g∗i of Fn = π1(B3 \C,d), where:

i : π1(B3 \C,d) −→ π1(V \L,d) and

i′ : π1(B3 \C,d) −→ π1(V \L′,d)

are the inclusion isomorphisms.
Applying the same arguments to β′, we have β̃′ = (i′)−1T∗i′, and from the

preceding commutative diagram we have:

ϕβ̃ϕ−1 =
(
(i′)−1g∗i

) (
i−1T∗i

) (
i−1g∗

−1i′
)

= (i′)−1T∗i′ = β̃′

We claim that ϕ is an element of the subgroup of Aut(Fn) consisting of
all automorphisms of the form xi 7→ qix

±1
j(i)

q−1
i , where i = 1, . . . ,n, j(i) is

some permutation of the numbers 1, . . . ,n, and qi a word in x1, . . . ,xn. Then
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the isomorphism between this subgroup and rBn implies that β and β′ are
conjugate in rBn.

We prove this claim. The conjugacy classes of the generators x1,x2, . . . ,xn

in Fn = π1(B3 \C,d) are represented by loops encircling the circles Ci. The
inclusion B3 \C = (B3 \C)×{0} ⊂ V \L maps these loops to some loops in
V \L encircling at each parameter t the rings that form the components of L.
The homeomorphism g : V → V transforms these loops into loops in V \ L′

encircling the components of L′. The latter represent the conjugacy classes of
the images of x1, . . . ,xn under the inclusion B3 \C = (B3 \C)×{0} ⊂ V \L′.

The automorphism ϕ transforms the conjugacy classes of x1, . . . ,xn into
themselves, up to permutation and orientation changes. This verifies the
condition. The possible orientation changes are due to the fact that the
isotopy of closed braid is not monotone with respect to the time parameter
as ribbon braid isotopy is, thus Reidemeister moves of type I can occur. ⊓⊔

When one ribbon braid is a conjugate of another ribbon braid, we can
describe the form of the conjugating element.

Lemma 2. Let n ≥ 1 and β,β′ ∈ rBn a pair of ribbon braids. They are conju-
gates in rBn if and only if β′ = πτ αβα−1π−1

τ , where πτ is composed only by
wens and α does not contain any wen. Speaking in terms of presented group,
πτ is represented by a word in the τi generators of presentation (2).

Proof. Take β and β′ in rBn conjugate by another element in rBn. Then
there exists an element γ in rBn such that β = γβ′γ−1. Consider γ as an
element of the configuration space of n circles Rn. We can use relations from
presentation (2) to push to the right of the word the generators τi, to obtain
an equivalent element γ′ = πτ α, where πτ is a word in the τis and α only
contains generators σi and ρi. This means that α is in fact an element that
can be written without τ generators. Finally, when considering γ−1 for the
conjugacy, we remark that π−1

τ is just the mirror image word of πτ . ⊓⊔

5 Ideas for further developments

To extend the result in R4 we shall prove the invariance of isotopy classes of
closed ribbon braids under the operation known as stabilisation. The approches
used for usual knotted objects, for instance those of [Bir74] and [Tra98], rely
on the bijection given by Reidemeister theorem between knots and knot
diagrams up to Reidemeister moves. We do not have such a result for ribbon
torus-links. In fact, as Proposition 3 points out, the injectivity of the map Tube

between extended welded links and ribbon torus-links is an open question.
When applied to welded links (not extended), we know that the Tube map
is not injective: for instance, it is invariant under the horizontal mirror
image on welded diagrams ([IK12, Proposition 3.3], see also [Win09, Sat00]),
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while welded links in general are not equivalent to their horizontal mirror
images. However, extended welded links are equivalent to their horizontal
mirror image ([Dam17a, Proposition 5.1]). This fact suggest they could be
good candidates to be in bijection with ribbon torus-links. Of course, other
obstructions to injectivity may exist, so the relation between extended welded
links and ribbon torus-links shall be investigated. It is worth noticing that an
alternative approach to solve the problem of establishing a bijection between
welded diagrams and ribbon torus-links has been suggested by Kawauchi
in [Kaw17, Problem, Section 2].
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