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Learning Physics-Based Manipulation in Clutter:

Combining Image-Based Generalization and Look-Ahead Planning

Wissam Bejjani, Mehmet R. Dogar and Matteo Leonetti

Abstract— Physics-based manipulation in clutter involves
complex interaction between multiple objects. In this paper,
we consider the problem of learning, from interaction in a
physics simulator, manipulation skills to solve this multi-step
sequential decision making problem in the real world. Our
approach has two key properties: (i) the ability to generalize
and transfer manipulation skills (over the type, shape, and
number of objects in the scene) using an abstract image-
based representation that enables a neural network to learn
useful features; and (ii) the ability to perform look-ahead
planning in the image space using a physics simulator, which
is essential for such multi-step problems. We show, in sets
of simulated and real-world experiments (video available on
https://youtu.be/EmkUQfyvwkY), that by learning to evaluate
actions in an abstract image-based representation of the real
world, the robot can generalize and adapt to the object shapes
in challenging real-world environments.

I. INTRODUCTION

The ability to acquire transferable physics-based manip-

ulation skills is central for future robots to interact with

cluttered real-world environments. Whether to pick-up items

from a shelf in an industrial warehouse, or fruits from the

back of a fridge, robots must execute long sequences of goal-

oriented prehensile (e. g. grasping) and non-prehensile (e. g.

pushing) manipulation actions with arbitrary objects [1].

Solving such tasks requires a substantial amount of geo-

metric and physics-based reasoning in real time. By way

of illustration, consider the example shown in Fig. 1, where

a robot is tasked with moving an object (the orange) to a

target location, on a cluttered and constrained planar space.

Planning a sequence of actions and executing it in open-loop

will result in unintended consequences, as the interaction

between the objects cannot be accurately predicted. The

actions must, therefore, be continuously generated from a

closed-loop control policy. However, for tasks involving an

arbitrary number of novel objects (not part of the training),

it is not clear what features the policy should use in order

to generalize over different setups. In this paper, we con-

sider the problem of learning, from interaction in a physics

simulator, manipulation skills that generalize over everyday

objects in order to solve a multi-step sequential decision

making problem in the real world.

Two paradigms have desirable properties, which we in-

tend to introduce in our system: end-to-end learning, and

planning-based look-ahead. There is a momentous interest
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Fig. 1: Real-world execution of moving an object (orange

fruit) to a target location using image-based look-ahead

planning. The abstract images show the predicted horizon

states under different simulated look-ahead roll-outs.

in approaching real-world manipulation tasks using end-to-

end learning [2], [3], [4]. End-to-end learning relieves the

algorithm designer from manually having to define what

features are relevant for the task. The problem is formulated

as learning a direct mapping function from the current real-

world sensory data, mainly RGB-D images, to robot joint

motion. Using images for state representation offers powerful

generalization capabilities.

The exploration necessary for skill learning is made sig-

nificantly more challenging by an unstructured state space,

such as raw sensory data. This problem is exacerbated by

sparse and delayed rewards. When a model is available,

solving problems with sparse reward functions can benefit

enormously from incorporating look-ahead planning in the

learning process, and at execution time [5], [6], [7]. This has

shown to compensate for inaccuracies in the learned utility

of a state-action pair [8]. At a slightly higher computation

cost, problems that require sequential decision making in

a relatively large and continuous space, can be approached

in near real time. We build on previous work [9], where

a short-horizon planner was used on a physics-based simu-

lator in conjunction with a learned value function, to both

plan quickly and act robustly in a manipulation task. The

value function was learned over predefined features, limiting

its applicability to a given number of objects of a single

particular shape.

We overcome these limitations, by proposing a novel

combination of image-based learning systems with look-



ahead planning, for real-world manipulation of a varying

number of novel objects. Our proposed approach relies on ab-

stracting the real-world state to a color labelled image-based

representation in a physics simulator. It allows for look-ahead

planning in the image space resulting in robust manipulation

skills that are transferable to different manipulation objects

and environment settings.

We evaluate the proposed method and compare it to

state-of-the-art approaches in a set of simulated and real-

world scenarios, where the robot is faced with scenes of

varying number of novel objects. Additionally, we show its

robustness at bridging the real world with the simulated

model for handling everyday objects.

II. RELATED WORK

Most of the large body of work on real-world manipulation

in clutter addresses prehensile and non-prehensile manipula-

tion as two separate problems. Recent attempts have been

made to combine the two [2], [10]. Most of these attempts

generate a sequence of well defined manipulation primitives,

under the assumption that a manipulation task is composed

of modular high level primitives, such as pushing, grasping,

leveraging, or pulling. Alternatively, other approaches have

tried to blur the boundary between these primitives by,

for example, combining a push and grasp motion into a

single manipulation skill [11]. The work of [4] proposes

learning to combine tasks such as getting into contact with an

object or pushing an object. Learning is performed with up

to two objects in simulation, while real-world applications

are demonstrated over a single object. For what concerns

tasks that require prehensile and non-prehensile manipulation

actions in clutter, the work of [2] is the most reminiscent

to ours. The system learns two distinct value functions,

one for evaluating push actions and one for evaluating

grasp actions. The value functions are trained on objects

of predefined geometries (block objects). Consequently, they

show that when everyday objects with unexpected shapes

are introduced, the performance degrades significantly. We

address this issue by mapping arbitrary objects to a common

abstract state space representation.

Combining planning with Reinforcement Learning (RL)

is an active field of research and is achieving many break-

through in problems with sparse reward functions [5], [12].

They mainly rely on Monte Carlo Tree Search (MCTS) to

guide the RL search policy. The vast majority of MCTS

implementations uses Upper Confidence Bounds (UCB), to

balance between exploitation of experienced rewards, and ex-

ploration of un-visited states. For these estimates to become

reliable, MCTS requires running a very large number of roll-

outs up to the terminal state. The problem for adapting such a

technique for manipulation in clutter is the computation cost

associated with simulating the physics for state transitions.

Indeed, it is prohibitively expensive to run this process in

closed-loop (at every time step) to be of practical use in

physics-based manipulation tasks. Alternatively, approaches

like Model Predictive Control (MPC), and Receding Horizon

Planning (RHP), have proved more viable for practical

manipulation applications. If the goal is not within a close

reach, sequences of state-action pairs are evaluated up to

a certain short horizon, then a cost function or a heuristic

is used to estimate the cost-to-go from the horizon states

to the goal [13], [9], [8]. The approaches mentioned above

assume a pre-defined set of geometric descriptions of real-

world objects, and rely on their Cartesian coordinates to

represent the state. Instead, we are interested in leveraging

the object geometries to make the manipulation motion more

efficient.

The use of images for state representation, combined

with deep leaning for robot control (that is, end-to-end

learning) presented a breakthrough in implicitly learning

spacial features that allow for greater task generalization.

This is attributed to the end-to-end mapping function being

a Convolutional Neural Network connected to a Deep Neural

Network (CNN+DNN). Impressive implementation of end-

to-end learning covers problems where the robot is tasked

to grasp an object [14], push an object [15], or manipulate

it in hand [16]. Typically, the training of the system takes

place on synthetic data generated in simulation. The data

can be either collected using Imitation Learning (IL) or

Deep Reinforcement Learning (DRL). The mapping function

(CNN+DNN) must see enough variation in the data such

that, at execution time, the real-world data would appear

as another instance of what the network was trained on,

and would thus able to generalize. This strategy, known as

domain randomization, has been a key element in enabling

such techniques to transfer to real-world applications. In

our work, we follow similar inspiration with the difference

that we rely on abstract images rendered from the physics

simulator.

III. PROBLEM FORMULATION

We consider the problem of manipulating, in real time,

a novel object on a cluttered planner space, by means of a

sequence of prehensile and non-prehensile actions. The robot

must be able to seamlessly adapt to different geometries and

clutter densities, without any of the objects falling outside

of the surface boundary.

A. Formalism

We formalize the problem as a Markov Decision Process

(MDP), represented as a tuple M = 〈S,A, T, r, γ〉 where S
is the set of states of the environment; A is the set of actions

that the robot can execute, including closing and opening

the gripper; T : S ×A× S → R is the transition probability

function, r : S × A → R is the reward function; γ is the

discount factor.

The robot interacts with the environment following a

certain policy π(a|s), then receives a reward r(s, a) and the

environment transitions to the next state. The agent’s objec-

tive is to learn an approximation q̂ of the optimal value func-

tion: q∗(s, a) = r(s, a) + γ
∫

S
T (s, a, s′)maxa′ q(s′, a′)ds′.

We represent random variables with upper case letters, and

their realizations with lower case letters. From the optimal

value function, it is possible to derive an optimal policy

π∗(a|s) = maxa q
∗(s, a), which, at any instant t, maximizes

the expected discounted sum of future rewards (called the



return) Gt =
∑L

k=t γ
k−tRk, where Rk = r(Sk, Ak), and L

is the length of the episode. The value function q̂(st, at) is

computed by iteratively minimizing the temporal difference

error δt:
δt = |q̂(st, at)− yt|

where the target yt is:

yt = r(st, at) + γmax
a

q(st+1, a)

B. Task Definition

We represent the state space as follows: S =
{A,V,R,G}, where:

• A is the arrangement of the objects :

A = {(x, y)(desired), (x, y)(2), . . . , (x, y)(n)} |

xmin 6 x 6 xmax ∧ ymin 6 y 6 ymax

(1)

where (xmin, xmax, ymin, ymax) forms the surface

boundary

• V are the vertices describing the shape of objects: V =
{v(desired), v(2), . . . , v(n)}, with v(n) ∈ R

k, and k > 3
• R is the Cartesian pose and gripper state of the end-

effector R = {(x, y, θ)(robot), θ(gripper)}
• G is the location and radius of the circular target region

G = {(x, y)(target), r(target) | xmin 6 x 6 xmax ∧
ymin 6 y 6 ymax}

We use a binary reward function, with the aim of only de-

scribing the goal, rather than favouring a particular solution

through the reward:

r(s, a) =











0, if T (s, a) ∈ Sgoal

−50, if T (s, a) /∈ Svalid

−1, otherwise

where Svalid is the set of states where all the objects are

within the manipulation surface boundary; Sgoal ⊂ Svalid is

the set of states where the desired object is on the target

region. The negative reward per action encourages the robot

to solve the problem with as few actions as possible.

By maximizing the reward, the robot brings the environ-

ment along a sequence of states 〈st〉
L−1
t=0 s.t. st ∈ Svalid ,

where L is the length of the traversed states, from sinit ∈
Svalid to sgoal ∈ Sgoal. The arrangement AL at a goal state is

defined as:

AL = {(x, y)(desired)
L , (x, y)

(2)
L , . . . , (x, y)

(n)
L } |

xmin 6 x 6 xmax ∧ ymin 6 y 6 ymax

∧ ||(x, y)
(desired)
L − (x, y)(target)|| 6 r(target)

(2)

this corresponds to having the desired object at the target

region and the the rest of the objects within the surface

boundary.

IV. OVERVIEW

Our proposed approach is divided into two phases: a

training phase which takes place in simulation, and an

execution phase which interleaves the real world with the

physics simulator.

The goal of the training phase is to learn a suitable

value function, in the form of a CNN+DNN, to be used

Fig. 2: Closed-loop control scheme for real-world execution

using value function guided look-ahead planning.

as heuristic for a look-ahead planner. We want the value

function to generalize over different environment settings,

namely: object shapes, clutter density, and target region

location. To achieve generalization: (i) the data is collected

in simulation over environments with different parametriza-

tions, as detailed in Section V-A on domain randomization;

(ii) abstract images, rendered from the physics simulator, are

used as state representation, to take advantage of the spacial

generalization of Convolutional Neural Networks (Section V-

B). We use a Deep Reinforcement Learning (DRL) algorithm

to train the CNN+DNN. It is updated episodically from data,

in the form of sequences of state-action pairs, as detailed

in Section V-C. The control policy of the RL algorithm

leverages its value function to guide a Receding Horizon

Planner (RHP) in order to better exploit the experienced

rewards, by following actions that are more likely to lead

to the goal (Section V-D).

The execution phase consists of a closed-loop control

scheme illustrated in Fig. 2. It runs by dynamically mapping

the state of the real world to the simulator, where an action

is selected and then executed by the real robot. A control

scheme cycle starts by processing raw sensory data from

the real world to produce a similar state in the physics

simulator (Section VI). Then, using the value function guided

RHP (the same one used by the RL policy during training),

multiple roll-outs are simulated up to a certain horizon in the

physics simulator. The state-action pairs are evaluated over

the abstract images rendered from the simulator. Lastly, the

selected action is resolved to the joint motion of the real

robot.

V. HEURISTIC LEARNING FOR NOVEL OBJECTS

In this section we describe the components for learning a

value function which is used to a Receding Horizon Planner

(RHP).

A. Domain Randomization

We aim to have a system that can generalize over and, at

the same time, exploit the variation in the shapes and number

of objects, to produce an efficient behavior adapted to the

particular scene. Domain randomization has been proven

effective in learning policies that can generalize over the

set of randomized parameters during the training process.

The parameters that we are interested in generalizing over

include: the shape and scale of the objects, the clutter density,

the target location, and the initial pose of the objects and

end-effector. We represent the parameters of a scene with

the vector µ = 〈shapes, scales, clutter density,
target location, initial distribution〉. The shape of an

object is randomly selected from a pool of polygons with

random number of vertices centered around the polygon
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Fig. 3: Comparing two manipulation behavior.

center of mass. Then, the size of the polygon is randomly

scaled up or down (within certain limits). This results in

some of the objects being too large to fit within the gripper

fingers to be grasped, whereas others are small enough to

be grasped from any approach angle, and some others are

directionally graspable. Furthermore, the clutter density is

also randomized by varying the number of objects in the

scene.

B. State Representation

State representation, that is, the features on which deci-

sions are made, play a major role in the learned behaviour.

When the parameters defining the task are not represented

in the state space, the resulting policy typically converges to

a robust yet conservative behavior [16]. In contrast, to take

advantage of the particular object shapes, those have to be

available to the learner, besides the position and orientation

of the objects. For this reason, we use an image-based

abstract representation of the manipulation task, where the

images are rendered from the state of the physics simulator.

Such a representation makes all of the variations in the

parameters µ available to the agent, and the convolutional

network can capture their spatial properties to generate

features for the value function. The top example in Fig. 3

shows a conservative behavior that works for a wide variety

of object shapes, i. e. to go behind the object and push it to

the target region with the fingers of the gripper being in the

open state. Such a behavior can result from representations

that do not encode shape features. The bottom example of

Fig. 3 relies on image-based representation such that the

robot can take advantage of the rectangular shape of the

object (the bottle) by grasping it from the side and moving

it to the target region.

C. Learning the Value Function

The bulk of this work is focused on learning the

CNN+DNN based value function. It takes the abstract image-

based representation of the scene, and outputs a value for

the robot actions. The network is trained over task instances

with different parameters. The parameters are sampled as

described in V-A, and kept constant throughout the task. We

train the value function to maximize the return given the task

parameters:

E [Gt | µ] . (3)

The network builds an internal representation of the features

relevant for manipulating an arbitrary number of objects of

different geometries.

As mentioned in section III-B, we refrained from encoding

hints of the solution into the reward function, as is common

in reward shaping [17], so as not to affect the task definition.

Instead, we accelerate the learning by jump starting the

value function from demonstrations [9], [18], [19]. The

demonstrations we collect are generated in the simulator

using a sampling based planner, the Kinodynamic RRT [20],

and the rewards along the trajectory are fed to the neural

network, to get an approximate value function for the policy

produced by the planner.

We then use deep Reinforcement Learning with double

Q-learning and experience replay [21], to optimize the value

function further. The Reinforcement Learning algorithm

starts to gradually replace the state-action pairs in the replay

buffer collected from demonstrations, by the ones collected

following the RL policy π being learned.

D. E-RHP as RL Policy

The exploration policy is particularly critical in DRL,

especially when trained over images, since the decision

is made on a vast space, not taking advantage of hand-

crafted features. For this reason, the robot must observe

transition samples leading to the goal frequently enough

for the value function to converge. We rely on a Receding

Horizon Planner to select actions by leveraging the physics

simulator within a short horizon, while learning the value

function for the long-term consequences of actions, which

can be more successfully approximated, since they need not

to be as precise. Therefore, we implement ǫ-RHP as the

RL policy. A random exploration action is selected with a

probability ǫ, and an RHP exploitation action is selected with

probability 1− ǫ.
A straightforward implementation of RHP consists of

running K roll-outs up to a horizon H [8], [22], [9]. All

roll-outs start from the current environment state scurrent. Each

roll-out works by sampling an action a according to its value

with respect to the other available actions

P (a|st) =
exp(q̂(st, a)/τ)

Σai∈Aexp(q̂(st, ai)/τ)

where τ is the temperature parameter, and A is the set of

available actions. The simulated robot is advanced along

the sampled action. This process is repeated H times. The

value of a horizon state sH is also computed using the

value function maxa(q̂(sH , a)). The return of a roll-out is

computed at the end of the sequence, approximating the

states beyond the horizon with the current estimate of the

value function:

R0:H = r1 + γr2 + . . .+ γH−1rH + γH max
a

(q̂(sH , a)).

At the end of the process, the first action from the roll-out

with the highest reward is executed by the robot. Hence, the

value function plays two roles in RHP. It guides the roll-

outs towards promising directions, and acts as a proxy for

the estimated return beyond the horizon.



VI. MAPPING THE REAL WORLD TO THE ABSTRACT

REPRESENTATION

To use planning guided by the value function, in conjunc-

tion with real-world execution, we propose mapping the state

of the real world to a suitably similar state in the simulator.

Then, abstract images rendered from the simulator are used

to evaluate the state-action pairs in RHP.

Our mapping focuses on the shape and functionality of the

elements in the scene. We use real-world images of the ma-

nipulation scene and the robot joint configuration, to define

a quantitative representation of the task S = {A,V,R,G}.

We apply instance segmentation on real-world images to

detect the number, location, and shape of the objects. The

simulator uses this information to create polygonal objects

with same contour shape as the real-world objects. The shape

of the end-effector and the dimensions of the surface are pre-

loaded into the model as they do not vary from one task to

another. We use the robot Forwards Kinematics model to

localize the end-effector pose in the planar Cartesian space,

and the gripper state.

The input to the CNN+DNN encoding the value function

is in the from of an abstract image rendered from the state

of the physics simulator. To generate an abstract image, the

objects in the simulator are color labeled based on their

functionality. For instance, the desired object is always of the

same color, all other objects are of another common color.

The same applies for the end-effector, the surface boundary,

the target region, and the scene background color across all

task instances. The color labeling allows to transfer skills

over different real-world setups. For example, any object

can be assigned the color of the desired object, and the

CNN+DNN will treat that object as the desired object.

Further, the abstract images are robot centric, i. e. centered

around the end-effector. We found that a robot centric view

reduces the learning time compared to a fixed view of the

scene.

VII. EXPERIMENTS

We evaluate the proposed approach in series of experi-

ments conducted in simulation and on the real robot. The

goals of the experiments are threefold: 1) to assess the effect

on the performance of the main elements of the proposed

approach with respect to handling a varying number of novel

objects, 2) to evaluate if the acquired behavior learned to

adapt to the geometries of the objects, 3) to test whether

the proposed approach can robustly control a real robot even

though it uses the simulator in the control scheme.

We trained the value function on different task instances

containing a random number of objects between 1 and 7. A

sample of the objects used in the training are shown in Fig. 4.

We collected 10, 000 demonstrations using the Kinodynamic

RRT planner. We ran a total of 1, 000, 000 RL episodes. The

RHP, used by the RL policy and at execution time, executes

K = 4 roll-outs of H = 4 horizon depth each.

A. Our Approach and Baseline Methods

We run an ablation study to assess how each element

in the proposed approach affects the final performance.

Fig. 4: Objects used in training process.

Particularly, we look at the effect of the image-based ab-

stract representation, the use of a learned heuristic, and the

integration of the physics-based look-ahead planning in the

control loop. Accordingly, we compose three corresponding

baselines methods. All baseline methods are trained with the

same procedure as ours unless otherwise specified:

• Cartesian Pose Baseline (CaBa): Even though we

trained our value function over different environment

parameterizations, the policy could still converge to a

behavior that is robust yet impartial to the shape and

density of the objects (i. e. does the policy actually

learns to adapt the behavior of the robot to the shape

and number of objects in the scene). Instead of using

abstract images for state representation, CaBa uses the

relative Cartesian poses of the objects and the target

region with respect to the end-effector, and the absolute

Cartesian pose of the end-effector and a binary gripper

state. This baseline is inspired by the one used in [9].

• Handcrafted Heuristic Baseline (HaBa): Many plan-

ning algorithms for manipulation in clutter rely heavily

on handcrafted heuristics. Combined with the physics

model for the local searches, we ask the question if the

problem can still be solved in closed-loop without hav-

ing reference to a learned heuristic i. e. value function,

but instead using a handcrafted heuristic to estimate

the cost-to-go from a horizon state to the goal. Hence,

HaBa implements RHP with a hand crafted heuristic.

HaBa simulate K = 15 random roll-outs of length

H = 4. The heuristic used is a weighted sum of the

Euclidean distances between the desired object and the

target region, the rotational angle for the end-effector

to face the desired object, the rotational angle for the

end-effector to face the target region, and the Euclidean

distances between the objects and the surface boundary.

It is designed to favor a behavior where the end-effector

would first approach the desired object from the back

and push it towards the target region.

• Greedy Baseline (GreBa): Traditionally, a RL trained

agent would act greedy at execution time on the learned

value function without running look-ahead planning.

Albeit, in this work we started by assuming that, in

an environment rich with physical interactions, it is

hard for a greedy policy to anticipate the interaction

dynamics. GreBa challenges this claim by running a

greedy policy on the value function. The value function

is evaluated on the abstract image of the current state

The simulator is, therefore, used only to generate the

abstract images on which the greedy policy acts.

We note that the DNN architecture of CaBa has an inherent

limitation, which dictates that the DNN must be trained on a

specific number of objects. Adding or removing objects, i. e.

changing the dimension of the input space and consequently



the size of the input layer, requires retraining a new DNN

for the task. Hence, CaBa uses multiple DNNs, each trained

over a specific number of objects.

B. Evaluation Metrics

Data for each experiment is collected over 300 test runs

and the performance is evaluated with respect to two met-

rics. 1) The Success rate represents the percentage of the

successfully completed tasks. We consider a task to be

successfully completed when the desired object is moved

to the target region in under 50 actions without having any

of the objects falling off the surface edges as specified in

Equation 2. 2) The Action Efficiency looks at how many

actions were executed before successfully reaching the goal

state. It is measured in view of the scene complexity which

is represented by the clutter density. It is calculated as
number of objects in the scene

number of actions until completion
. A smaller ratio implies a

more conservative behavior, and a higher ratio implies a more

efficient behavior that adapts to the specificity of the scene.

C. Experiments Setup

The scenarios of the experiments consist of a number of

objects laying on the surface of a table. The robot, a 6-

DOF UR51, must use its end-effector, a Robotiq 2F-85 two

finger gripper2, to move one desired object to a target region

on the table by means of prehensile and non-prehensile

manipulation actions. The surface is a square of dimension

50cm×50cm. It can reasonably fit up to 7 everyday objects

(ex: bottles, apples, oranges, cups, etc.).

The real-world images are captured by a generic RGB

camera. To detect the objects and their shapes in an im-

age, we use a pre-trained vision system, namely Mask R-

CNN [23] trained on the COCO Dataset [24]. The Mask

R-CNN takes a RGB image (real-world image) as an input

and outputs an instance segmentation of the objects in the

image. The instance segmentation allows us to localize each

object in the image together with its corresponding shape.

The polygon’ shape of an object in the simulator corresponds

to the contour shapes of the object’ mask outputted by the

Mask R-CNN. We use Box2D as our physics simulator [25].

The physics parameters (friction, inertia, and gripping force)

in the simulator are empirically optimized to resemble the

physics of the real world. An abstract image is rendered from

the physics simulator as follows:

• a top view image with white background centered

around the end-effector

• the end-effector has the shape of a gripper with two

articulated fingers and is colored in blue

• the surface boundaries are represented by straight black

lines

• the desired object is colored in green

• all the other objects are colored in red

• the target region is a circle of 5cm in radius and colored

in dark green

1https://www.universal-robots.com/products/ur5-robot/
2https://robotiq.com/products/2f85-140-adaptive-robot-gripper

The abstract RGB images are of 60 × 60 × 3 in pixel

dimension. The Forward and Inverse Kinematics of the UR5

are computed and simulated in OpenRAVE [26].

We use the TensorFlow [27] library to build and train

the Neural Networks models. For CaBa, we used a feed-

forward DNN model consisting of 5 fully connected layers.

The input corresponds to the end-effector R, the objects

arrangement A, the target region G. The 4 subsequent

layers have 330, 180, 80, and 64 neurons, respectively, with

ReLU activation functions. For GreBa and our approach,

we used a CNN connected to feed-forward DNN model

(CNN+DNN). The input is a 60x60x3 array. The CNN starts

with 2 convolution layers with 32 filters of size 6x6 each,

followed by a 2x2 max-pooling layer, then it is followed by

a sequence of convolution and 2x2 max-pooling layers. The

convolution layers are 64 4x4, 128 3x3, respectively, with

leaky ReLU activation functions. A flat layer connects the

CNN to the DNN. The DNN has 4 layers of 256, 256, 64
neurons, respectively, with leaky ReLU activation functions.

The output layer of both architectures consists of 8 neurons

with linear activation functions: 4 for moving the robot along

the cardinal directions, 2 for rotating clockwise and counter

clockwise, and 2 for opening and closing the gripper.

D. Results

The first set of simulated experiments examines the per-

formance with respect to an increase in clutter density. The

experiments consist of 4 scenarios ranging from 1 novel

object on the surface (i. e. no clutter, only the desired object)

up to 7 novel objects. The results for the success rate and

action efficiency are shown in Fig. 5 and Fig. 6 respectively.

The results show that our approach outperforms the other

baselines on both metrics. Looking at both metrics, we

observe that, for a low clutter density, all approaches present

a decent level of performance. Not surprisingly, increasing

the clutter density causes a drop in performance as it becomes

much more likely for objects to fall off the edges or for

the robot not to find its way through the clutter. We see

a drastic drop in the success rate across all baselines, with

CaBa suffering the sharpest drop in the success rate with

respect to the number of objects. Our approach, however,

can cope better with the increase in clutter density. Further,

all approaches show a similar increasing trend in action

efficiency w.r.t. the number of objects. GreBa and our

approach consistently hold a higher action efficiency than

the other two baselines.

The second set of simulated experiments looks at the

performance with respect to an increase in the size of the

objects relative to the dimensions of the gripper. We expect

that the shape of small objects is less significant to the

manipulation task compared to large objects. Specifically,

one setting uses a random number of small novel objects. The

small objects are chosen such they can fit inside the fingers

of the gripper (i. e. graspable objects). Another setting uses

a random number of large novel objects. The large objects

are chosen such that they cannot be grasped by the gripper.

We also include a setting which has a mix of small and large

objects. The results are reported respectively in Fig. 7 and



TABLE I: Average Planning and Execution Time per Task.

Method CaBa HaBA GreBa Our Appr.

Time
in seconds

19.4±2.5 38.7±3.6 2.4± 0.2 27.1± 2.2

Fig. 8 for the success rate and the action efficiency.

The results show that large objects seem to be slightly

more difficult to manipulate as reflected in a decrease in the

success rate. Albeit, our approach appears to be significantly

more robust to the increase in object sizes. In addition, the

action efficiency shows no significant variation between the

different settings, but similar to the first set of experiments,

GreBa and our approach consistently score higher in terms

of action efficiency.

We also present the average execution and planning time

in Table I. The results are averaged over the 300 experiments

with random number of objects of novel shapes. RHP

causes a significant jump in computation time as evident

by GreBa’ low computation time, in which the policy acts

greedy on the value function without running any physics

roll-outs. The difference in time between CaBa and our

approach is due to the difference in inference time between

using the DNN and CNN+DNN respectively. We allowed for

more RHP roll-outs to be simulated for HaBa to compensate

for any deficiency in the handcrafted heuristic. Therein, the

average planning and execution time for HaBa is the highest.

E. Evaluation

As expected, the prevalence of rich physical interactions

in the environment makes the problem harder to solve. The

fact that CaBa scores consistently lower than GreBa and

our approach validates the hypothesis that an expressive yet

sufficient state space representation is crucial to the final per-

formance. Without the geometric details of the objects, CaBa

converges to a behavior that suites the average variation in

the object shapes. Albeit, this shows to be problematic with

the high clutter density and large objects.

Further, even using a meticulously handcrafted heuristic in

HaBa and at a high computation cost it still underperforms

compared to the one learned over the abstract image-based

representation. This is because the learned heuristic repre-

sents a good estimate of the optimal value function whereas

the handcrafted one is based on the intuition of the algorithm

designer. We suspect that further tuning the weights that

balance the handcrafted heuristic might slightly enhance its

performance.

GreBa shows decent level of performance contrary to our

expectation particularly when the clutter density is not very

high. Nevertheless, it still follows the trend of a dramatic

drop in performance with an increase in clutter density.

Hence, we conclude that having a physics model in the

closed-loop control scheme is necessary to alleviate the com-

plexity associated with anticipating the outcome of physical

interactions.

Looking at the action efficiency results in Fig. 6 and

Fig. 8, we see a clear trend where GreBa and our approach

have similarly high action efficiency than the other baselines.

Having in common the abstract image-based representation
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Fig. 5: Performance w. r. t. clutter density.
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Fig. 6: Action efficiency w. r. t. clutter density.

of the state space is strong indicator that the learned value

function managed to capture relevant features from the state

space representation. This further supports our claim that the

CNN+DNN is able to capture spacial features from images

which allow for greater generalization and more efficient

behaviors.

F. Real-World Experiments

In this section, we reach main target of our work which

is centered around handling everyday real-world objects. We

have identified from the previous section that our approach

can handle a random number of objects of different ge-

ometries. We run several real-world experiments to validate

the robustness of our approach in transferring manipulation

skills between the simulation domain and the real world. The

experiments involve a variety of objects of different size and

shapes. For example, small and large apples, ranges, cups,

and bottles.

We present snippets from some of the experiments in

Fig. 1, 9, 10, and 11. The abstract image-based representation

of the environment is overlaid on the corner of the images.

We can observe an interesting behavior in Fig. 9 where the

robot is tasked to move the small apple to the target region.

The robot approaches the apple with the gripper closed, then

grasp it and pull it back to the target region. On the other

hand, in Fig. 10 where the robot has to handle a large apple,

we notice that the robot went first to the left side of the

surface, pushed the clutter to the side, then went to pushing

the large apple without attempting to grasp it. Another

fascinating behavior is observed in Fig. 11 where the robot is

tasked to move the juice bottle to the target region. First, we

see the robot exploiting the rectangular shape of the bottle

by maneuvering it into stable position within the fingers of

the gripper, then carefully driving to the target region, all

the while interacting with the clutter without causing any

object to fall outside the surface boundary. A full video of the



Small
objects

Mixed
objects

Large
objects

40

60

80

100
S

u
cc

es
s

R
at

e

CaBa

HaBa

GreBa

Our Approach

Fig. 7: Performance w. r. t. to objects sizes.

Small
objects

Mixed
objects

Large
objects

0

0.1

0.2

0.3

A
ct

io
n

E
ffi

ci
en

cy CaBa HaBa GreBa Our Approach

Fig. 8: Action efficiency w. r. t. object sizes.

Fig. 9: Moving the small apple to the target region.

Fig. 10: Moving the large apple to the target region.

Fig. 11: Moving the juice bottle to the target region.

experiments is available on https://youtu.be/EmkUQfyvwkY.

The robot was able to seamlessly transfer skills between

the two domains whilst generalizing to real-world objects

that were not experienced before. The overall behavior is

robust against temporary failures in object detection and can

dynamically adjust to the object dynamics.

VIII. CONCLUSIONS

This paper described a hybrid combination of real-world

execution with planning in a simulated space. By reasoning

over abstract images on the possible outcome of a manip-

ulation motion, the control policy was able to generate,

in closed-loop, complex sequences of manipulation actions.

To the best of our knowledge, this is the first work to

achieve generalization over arbitrary number and shape of

everyday objects in a planar manipulation task using pre-

hensile and non-prehensile actions. We demonstrated the

promising potential of the hybrid control scheme and its

possible implication for real-world applications.

We are building on our findings to explore how we can

continuously infer and abstract arbitrary dynamic properties

from the objects (e. g. directional rolling, omnidirectional

sliding, quasistatic, etc.) in order to exploit them for making

manipulation motions even more efficient.
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