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ABSTRACT
After a reperfused myocardial infarction (MI), dynamic tissue changes occur (edema, inflammation, microvascular

obstruction, hemorrhage, cardiomyocyte necrosis, and ultimately replacement by fibrosis). The extension and magnitude

of these changes contribute to long-term prognosis after MI. Cardiac magnetic resonance (CMR) is the gold-standard

technique for noninvasive myocardial tissue characterization. CMR is also the preferred methodology for the

identification of potential benefits associated with new cardioprotective strategies both in experimental and clinical trials.

However, there is a wide heterogeneity in CMR methodologies used in experimental and clinical trials, including time of

post-MI scan, acquisition protocols, and, more importantly, selection of endpoints. There is a need for standardization of

these methodologies to improve the translation into a real clinical benefit. The main objective of this scientific expert

panel consensus document is to provide recommendations for CMR endpoint selection in experimental and clinical

trials based on pathophysiology and its association with hard outcomes. (J Am Coll Cardiol 2019;74:238–56)

© 2019 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
I mprovements in therapy for ST-segment
elevation myocardial infarction (STEMI)
have resulted in a significant decline in mortal-

ity rates. The extent of myocardial loss after STEMI
(infarct size) is a main determinant of post–
myocardial infarction (MI) mortality and morbidity,
including heart failure (HF) (1). For this reason,
experimental and clinical research is focused on po-
tential therapies able to reduce MI size in conjunction
with reperfusion.

In the past 2 decades, cardiac magnetic resonance
(CMR) has evolved into a unique tool for noninvasive
evaluation after MI. Multiple abnormalities in
myocardial structure and function secondary to
ischemia/reperfusion (I/R) injury can be characterized
using CMR. Several established CMR-derived param-
eters, such as left ventricular ejection fraction (LVEF)
or infarct size using late gadolinium enhancement
(LGE), are commonly measured in clinical practice
and aid not only in the diagnosis of MI but also in risk
stratification for future cardiovascular events.
Furthermore, CMR-based indexes are increasingly
used as surrogate endpoints in translational and
clinical trials testing cardioprotective therapies.

Although conventional CMR measurements are
highly accurate and reproducible, there is an unmet
need for standardization of image protocols and,
more importantly, preferred endpoints. Alternative
CMR techniques that allow for more objective and
operator-independent tissue characterization are
also rapidly evolving, and are likely to play an
increasing role in clinical and research settings.
These newer approaches, together with recent ob-
servations challenging accepted pathophysiological
paradigms, are providing novel insights into the
biological processes associated with acute myocar-
dial I/R injury.

Against this background, a panel of individuals
with vast expertise in post-MI pathophysiology and
CMR characterization gathered together in a closed
meeting titled Post-Myocardial Infarction Tissue
Characterization by Cardiac Magnetic Resonance
held at the Centro Nacional de Investigaciones
Cardiovasculares (CNIC) in Madrid, Spain. The main

http://creativecommons.org/licenses/by-nc-nd/4.0/


HIGHLIGHTS

� CMR is increasingly used for improved
long-term risk stratification of post-MI
patients and to initially evaluate
cardioprotective interventions.

� There is a need to standardize CMR
endpoints, which should rely on
pathophysiology and association with
hard endpoints.

� This document presents a consensus of
recommendations of CMR endpoints
selection in experimental and clinical
trials.

� Universal standardization of CMR
protocols/endpoints will accelerate the
process of bringing cardioprotective
interventions into clinical practice.

� Future studies should serve to introduce
CMR as an indispensable tool affecting
decision-making in daily practice.

AB BR E V I A T I O N S

AND ACRONYM S

AAR = area at risk

CMR = cardiac magnetic

resonance

ECV = extracellular volume

I/R = ischemia/reperfusion

IMH = intramyocardial

hemorrhage

IPC = ischemic preconditioning

LVEF = left ventricular

ejection fraction

MSI = myocardial salvage index

MVO = microvascular

obstruction

RIC = remote ischemic

conditioning

SSFP = steady-state free

precession

STEMI = ST-segment elevation

myocardial infarction
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objectives of this 2-day summit were to appraise prior
and new lines of evidence of CMR-based depiction of
myocardial I/R injury, to review available data on the
diagnostic and prognostic value of CMR in the
post-MI setting, and to provide recommendations for
standardization of imaging protocols for use in clin-
ical trials and experimental scenarios. This Expert
Panel consensus document summarizes the final
conclusions and recommendations agreed in this
meeting. Philips sponsored the meeting (travel of
experts and meals, no economic compensation to any
person involved in this meeting) but did not play any
role in the appointment of experts, topics or conclu-
sions. The process of appointing the expert panel and
the methodology followed for the identification of
topics and for deciding statements/recommendations
is presented in the Online Appendix. Although there
are other relevant recent consensus documents from
scientific societies dealing with methodologies and
recommendations on CMR outcome measures (2–5),
the present consensus is only focused on MI (I/R). The
document addresses 2 main areas: 1) pathophysiology
of myocardial I/R injury as revealed by CMR; and 2)
proposed endpoints for use in clinical and research
studies in the post-MI setting. It is important to
highlight that although some pathophysiology and
imaging principles apply to both STEMI and non-
STEMI, this paper focuses on STEMI.
THE INFARCTED MYOCARDIUM

IS NOT STATIC: EVOLVING CHANGES

AFTER I/R

A section dedicated to the relevance of ani-
mal models to human pathophysiology and
how these contribute to our knowledge about
I/R can be found in the Online Appendix.

PROGRESSION OF NECROSIS AND ITS

BORDERS. In the late 1970s, Reimer and
Jennings (6) experimentally demonstrated in
dogs that necrosis ensues as a “wave front”
from the subendocardium to the epicardium,
following a transmural gradient of collateral
flow within the hypoperfused (ischemic)
area. Although some investigators initially
suggested the existence of a wide lateral
“border zone” of intermediate-level perfu-
sion, later studies showed this was mostly a
partial volume artifact due to the limited
resolution of the techniques used, and

indeed, with progressively higher levels of spatial
resolution, investigators have concluded that there is
no zone of intermediate perfusion (or injury) at the
lateral border of the area at risk (AAR) in dogs (7,8).
Despite the prevailing concept based on pathology
studies that there is no lateral progression of necrosis,
there are some studies suggesting the opposite in
some cases (9–11). Given that most of these studies
used CMR and not pathology, these data should be
interpreted with caution.

At the infarct border, histological sections can
show apparent isolated islands of surviving myocar-
dium within areas of necrotic tissue, as well as iso-
lated islands of necrosis within areas of viable tissue
(12). In the absence of collaterals, the infarct borders
are sharp at a cellular level but may appear to have
fuzzy borders when assessed by methods with low
resolution relative to cardiomyocyte size due to par-
tial volume errors (13).

DYNAMIC CHANGES OF INFARCT SIZE AFTER I/R.

When assessing the post-I/R myocardium by CMR,
the imaging features of the “infarcted myocardium”

can experience important longitudinal changes.
Immediately after reperfusion, the area that will
become irreversibly injured increases in size due to
reperfusion-related edema. This “swelling” is rapidly
reduced, resulting in a decrease in the size of the
irreversibly injured myocardium. In the following
days, dead cardiomyocytes and debris are progres-
sively removed from the post-I/R region, while there
is an intense transit of inflammatory cells and a

https://doi.org/10.1016/j.jacc.2019.05.024
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FIGURE 1 Dynamic Tissue Composition Changes Occurring After Ischemia/Reperfusion

During ischemia, some degree of intracellular edema initiates. Reperfusion after prolonged ischemia results in a very rapid and intense

extracellular edema formation. Cardiac fibers are separated by the extracellular edema and as a result there is a myocardial swelling (increase

in myocardial thickness). The reperfusion-related edema is significantly attenuated within 24 h. Neutrophils, macrophages, and other in-

flammatory cells infiltrate the post-ischemic region, and a progressive replacement of cardiomyocyte debris by collagen and extracellular

matrix takes place during the days following reperfusion. The replacement of cardiomyocytes by extracellular matrix results in a significant

shrinkage of the myocardial thickness. The healing process results in the so called “deferred wave of edema,”which can last for days or weeks

depending on remodeling processes.
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progressive deposition of collagen. These changes
result in a further “shrinkage” of the infarcted region
(Figure 1). Depending on the extent of irreversible
injury and its spatial distribution (e.g., sub-
endocardial, transmural, or patchy), these changes
can be of different magnitudes. This concept is
important, because the imaging biomarker “infarct
size” (as % of LV) can vary greatly at different time
points after MI (14–16). Studies aiming to quantify
Consensus Related to Myocardial I/R Concepts and Animal Models

al models (mice, rats) are useful for specific mechanistic evaluations but do n
from these models into humans without first testing in large animals (126).

g I/R models have similarities and differences with humans but are the closes
tes are not considered for ethical reasons) (126).

I/R region (infarcted and salvaged) is not static and exhibits important tempor

reater edema formation in infarcted tissue than in salvaged myocardium (22,7

e MI, the infarct border can be highly irregular with islands and peninsulas of ne
12). “Fuzzy borders” at the edge an acute infarct can arise from partial volume

ental models, edema after I/R is bimodal (70,80,127). There is an initial reper
sion. A second healing-related wave of edema initiates days after reperfusion

, the dynamics of post-I/R edema is less well established. At least in some pat
table in the time window between days 3 and 7 post-MI (15,45,82,83,90).

edes IMH in reperfused infarctions (15,128).

ial topic (majority but not all panelists in agreement).

ramyocardial hemorrhage; I/R ¼ ischemia/reperfusion; MI ¼ myocardial infarction; MVO ¼
MI size should be consistent in the choice of the im-
aging time point to reduce variability and bias in
outcome measure.

PATHOPHYSIOLOGY AND SPATIAL DISTRIBUTION

OF POST-I/R EDEMA. In the healthy heart, myocar-
dial water content is mostly intracellular, with a very
small interstitial component (17). Upon MI, myocar-
dial edema occurs initially as cardiomyocyte swelling
ot resemble human pathophysiology. It is not recommended to translate

t to human pathophysiology and may be considered complimentary*

al changes in size and composition (14).

0).

crosis but with a sharp boundary and no “intermediate zone” at a cellular
effect due to limited spatial resolution of imaging (13).

fusion-related wave of edema that significantly attenuates hours after
and lasts longer (15,50).

ients it might exhibit a 2-wave pattern (45,81–83). Edema appears to be

microvascular obstruction.



FIGURE 2 Dynamics of LGE in Dense Versus Patchy Infarctions

In the normal (noninfarcted) myocardium, gadolinium washes out rapidly and there is no hyperenhancement on late gadolinium enhancement

(LGE) images (voxel [circle] is black). Severe I/R injury leads to the death of all myocardial cells in the region. Regardless of myocardial

swelling in the acute phase or shrinkage in the chronic phase, small regions of tissue in the infarct zone lack any viable cardiomyocytes and

representative voxels on LGE (circles) are “bright” both in the acute and chronic phases. Conversely, patchy necrosis (bottom) can lead to

LGE in the acute phase. The hyperenhancement in the acute phase is partially due to the edema-related increase in the size of the infarcted

portion, occupying a large part of the voxel. In the chronic phase, LGE can disappear. This is partially due to the shrinkage of the patchy dead

myocardium, with neighbor alive cardiomyocytes occupying a large part of the voxel. CMR ¼ cardiac magnetic resonance.
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during the early stages of ischemia (18). Edema is
then abruptly exacerbated on restoration of blood
flow to the ischemic region. This reperfusion-
associated increase in edema is caused by increased
interstitial (extracellular) edema secondary to
rupture of myocytes, reactive hyperemia, and leakage
from damaged capillaries (19–21). Myocardial edema
observed days or weeks after reperfusion is mostly
extracellular, given that energetic recovery is rela-
tively rapid in surviving cardiomyocytes, and related
to tissue healing (17).

In relation to the spatial extent of post-MI edema,
classic pathology studies have demonstrated larger
amounts of edema in the actual infarcted myocar-
dium than in the “reversible” injured tissue (i.e.,
salvaged myocardium) (18,22). These classical
studies showed that infarcted myocardium has an
increase in water content of #90%, while salvaged
myocardium only has an increase of water content
of #9% for <24 h. As discussed in more detail in
subsequent sections, the dynamics of post-MI
edema is highly complex.
PATHOPHYSIOLOGY OF MICROVASCULAR

INJURY: MICROVASCULAR OBSTRUCTION AND

INTRAMYOCARDIAL HEMORRHAGE. As the ischemia
progresses capillary permeability increases, and upon
reperfusion, the increased interstitial pressure over-
whelms the intravascular pressure and can lead to
microvascular obstruction (MVO) by external
compression (1). When reperfusion is delayed, the
endothelial walls are compromised at reperfusion by
the sudden appearance of a positive pressure in the
microvasculature resulting in microvascular destruc-
tion causing intramyocardial hemorrhage (IMH).
Accordingly, MVO appears to precede IMH in reper-
fused infarctions, which implies that hemorrhagic
infarctions will always show evidence of MVO. MVO
has been shown to evolve over time and stabilize by
48 to 72 h (23).

Given that microvascular damage is associated
with late reperfusion, it is not surprising that
ischemic time is associated with larger MVO and IMH
areas. In this regard, a chronic marker of microvas-
cular injury is persistent iron deposits, which have



FIGURE 3 Partial Volume Effect on LGE Images in the Acute and Chronic Phase

The border of the infarcted region can be highly irregular, with apparent islands and

peninsulas of necrosis. This can lead to small regions of tissue that are only partially

infarcted, but on the scale of a voxel on LGE imaging, are of sufficient extent to render the

voxel as “bright.” In the chronic phase, infarct shrinkage will occur both in the infarct

core and periphery. Islands of infarction at the border may no longer be of sufficient

size to render a voxel of tissue as bright on LGE imaging. TTC ¼ tetrazolium chloride;

other abbreviations as in Figure 2.
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been shown to occur in large animal models and in
humans (24–26). These chronic iron deposits have
been associated with significant prolonged proin-
flammatory burden, poor LV remodeling, and major
adverse cardiovascular events. Thus, markers of se-
vere forms of tissue injury, particularly MVO and
IMH, appear to be key targets for post-infarction
therapy (27). See Table 1 for consensus related to I/R
concepts and animal models.

POST-MYOCARDIAL INFARCTION TISSUE

CHARACTERIZATION BY CMR

The aim of this section is to provide an overview of
CMR methods for imaging the processes occurring in
the post-I/R myocardium. For a technical description
of the methods, the reader is referred to contempo-
rary Society for Cardiovascular Magnetic Resonance
consensus documents (2–5).

CMR IMAGING OF INFARCT SIZE. Late gadol in ium
enhancement . T1-weighted (T1W) late gadolinium
enhancement (LGE) has clearly been established as
the best in vivo surrogate for infarct size.
Gadolinium-chelates are extracellular contrast
agents. Following intravenous administration of
gadolinium, the contrast agent perfuses locally
through myocardial capillaries and diffuses within
the interstitial compartment, reaching a dynamic
equilibrium allowing quantification of the
extracellular volume (ECV) (28). In the early post-
infarcted tissue, the rupture of cardiac cells
increases the interstitial volume, which reduces the
washout rate, and results in an increase in contrast
concentration compared with healthy tissue;
gadolinium persists within the infarct zone for a
longer time than in unaffected tissue, leading to
a regional hyperintense (bright) area on T1W
imaging (Figure 2). At later post-MI stages, dead
cardiomyocytes are replaced by extracellular matrix
resulting in chronic increased ECV, also resulting
in increased volume of distribution of gadolinium
with similar imaging effects. Contrast-enhanced
LGE typically involves breath-hold inversion-
recovery imaging 10 to 20 min after intravenous
administration of a gadolinium-based contrast
agent. 3-Dimensional (3D) navigator-gated LGE
acquisitions are now feasible expanding volumetric
coverage of myocardial tissue (29). 3D single breath-
hold acquisitions have the advantage of a better
delineation of complex lesions, with greater signal
intensity and contrast-to-noise ratio compared
with 2-dimensional approaches (30). Expanded
information about LGE imaging principles can be
found in the Online Appendix.
Effect of infa rct s ize dynamics and part ia l vo l-
ume effects on LGE interpretat ion . The size of
apparently “dead” myocardium may evolve over
time, and this is an important consideration when
interpreting LGE images (14–16). The shrinkage in
LGE size between a scan performed in the early days
after MI and a repeat scan performed days to weeks
later may be misconstrued as evidence that LGE
represents both viable and nonviable myocardium
acutely, whereas LGE represents only nonviable
myocardium chronically. Given the rapidly dynamic
tissue changes happening acutely, the validity of a
direct comparison between LGE size and histological
infarct size is arguable if quantification with each
method is not performed at the same time/day.

Infarct involution during healing can also interact
with partial volume effects to accentuate changes
that might occur in LGE size from the acute to chronic
setting. Voxels containing islands or peninsulas of
necrosis at the infarct border are often partially
“bright” (or “grey”) on LGE imaging and may be
above the arbitrary threshold used to define abnormal
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myocardium. But, at a later time point, shrinkage of
these peninsulas or islands leads to a changed partial
volume effect, and voxels at the infarct border may
no longer be considered hyperenhanced since they
are now below the cutoff threshold (31) (Figure 3).

For certain types of injuries, the combination of
infarct shrinkage and partial volume effect can lead to
LGE findings that are particularly prone to misinter-
pretation. If there is patchy necrosis, hyperenhance-
ment in the acute setting may resolve and be absent
in the chronic setting (Figure 2).

Given the dynamics of acutely infarcted myocar-
dium, there are several implications to the design
and interpretation of CMR studies evaluating infarct
size. Differences in size of injured myocardium as
assessed by the same or different imaging tech-
niques on separate days should not be considered to
reflect different underlying pathophysiological
components without accounting for the dynamic
changes in size. Similarly, size-based findings on
CMR should not be compared to a pathology refer-
ence standard unless both were performed on the
same day.
Pre- and post-contrast T1 mapping for assessment of
acute infarct size. ECV mapping is determined by
obtaining repeated T1 maps before (native T1 map)
and again after contrast media administration (3).
ECV agrees well with final infarct size revealed by
LGE (32). Despite the fact that native T1 and ECV
mapping might overcome some of the limitations of
LGE imaging, it is subjected to the same consider-
ations regarding infarct size dynamics. In addition,
the spatial resolution of ECV mapping is inherently
less than that of LGE imaging.

A section dedicated to post-processing of LGE and
edema images is presented in the Online Appendix.

CMR IMAGING OF EDEMA. The identification of the
myocardial edematous regions has become part of
clinical and research CMR studies for different cardiac
conditions (mainly myocarditis and post-MI). For
several years, the extent of post-MI edema (as iden-
tified by different CMR methodologies) has been used
as a surrogate for AAR and thus utilized in a multi-
tude of experimental and clinical studies aiming at
quantification of myocardial salvage. The concept of
post-MI edema extension as equivalent to AAR has
recently been challenged, and there are many un-
certainties about its accuracy. Conversely, the degree
(and extent) of post-MI edema is increasingly
acknowledged as a marker of injury itself.

CMR as a tool to detect myocard ia l edema. CMR
offers the possibility of identifying areas of increased
myocardial free water content or edema (3). The
differentiation between intracellular and extracel-
lular edema is technically challenging; however, CMR
better reflects an increase in the extracellular
compartment (33). As the extracellular compartment
is the one showing the largest change in water con-
tent after MI, CMR closely correlates with changes in
total myocardial water content (34,35). Nevertheless,
there might be other factors affecting the edema-
related post-MI CMR signal, such as changes in wa-
ter fractions (protein-bound vs. free) (36) or the
paramagnetic effect of hemoglobin denaturation in
the presence of tissue hemorrhage (37). Here, a brief
description of different CMR sequences for edema
imaging is presented. More extensive information can
be found in the Online Appendix.
T2-weighted pulse sequences. The transverse relaxa-
tion time (T2) directly reflects tissue composition and
hydration. Hyperintense zones on T2-weighted (T2W)
CMR images are indicative of myocardial edema. The
post-MI edema formation, as assessed both ex vivo
and in vivo (34,38), has been shown to correlate
with acute myocardial injury (39–45). By allowing
the detection of edema post-acute ischemic injury
(46), T2W-CMR might help its discrimination from
chronic MI (41,47).

Dark-blood T2W-CMR methods are widely used for
clinical and research purposes (42–45,48–52). More
recently, bright blood T2W-CMR techniques have
emerged as potential alternatives to dark blood T2W-
CMR (53–55).
T2 mapping. Parametric T2-mapping techniques pro-
vide voxel-based tissue characterization on a
continuous quantitative scale. By displaying T2
values in milliseconds on a fixed scale, subjective
signal intensity-based ascertainment is avoided.
T2 mapping has been validated against pathology
for myocardial water content quantification in
experimental MI models (35,56). A comparative
study using repeatedly 4 different edema sequences
showed higher intraobserver and interobserver
agreement and greater test-retest reproducibility in
the quantification of edema using T2 mapping (57).
T1 mapping. When the proton is contained in a large
molecule, such as fat, energy transfer is very efficient,
resulting in short T1. On the contrary, for small mol-
ecules, such as water, this effect is less efficient,
resulting in longer T1. Myocardial injury due to MI or
inflammation increases water content, lengthening
local T1 relaxation times (3). The extent of edema
delineated by T1 maps agrees well with other mea-
sures (58–60).
Retrospect ive AAR s ize est imat ion by CMR: an
evolv ing controversy . The “AAR” concept. The
acutely ischemic myocardium downstream of an
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FIGURE 4 Absolute Infarct Size (% LV) Versus Relative IS (% AAR)

Two subjects with the same absolute infarct size may have different amounts of salvage. The illustrated cases correspond to experimental

ischemia/reperfusion (I/R) (pig model). (A and F) Arterial enhanced multidetector computed tomography (MDCT) perfusion scans during

index coronary occlusion to delineate true area at risk (AAR) (dark areas not perfused). (C and H) The same as A and F, but with the AAR traced.

(B and G) LGE CMR 1 week after I/R (in D and I, the infarct size [IS] has been traced). (E and J) Representation of AAR and IS overlaid (yellow

corresponds to AAR and pink to IS). In the left case, the entire AAR is transmurally infarcted with no salvage at all. In the case to the right,

AAR is much larger, but infarction occupies only the subendocardial area, suggesting large amount of salvaged myocardium. The case to the

right corresponds to a subject undergoing a given cardioprotective strategy (IPC in this case). Abbreviations as in Figure 2.
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occluded coronary artery defines the myocardium at
risk of death, the so-called AAR. The portion of the
AAR that survives, if any, represents myocardium
that has been salvaged (eventually by a given
intervention).

Although infarct size provides an approximate
(inverse) estimate of myocardial salvage, the extent
of the AAR is highly variable and dependent on the
infarct-related artery, coronary distribution, and
location of the culprit lesion. Thus, a better measure
of therapeutic efficacy would be the proportion of the
AAR that is infarcted rather than absolute infarct size.
The rationale is that for 2 equally sized infarcts, the
one representing a larger proportion of the AAR cor-
responds to a greater amount of salvaged tissue (61)
(Figure 4). Thus, the quantification of infarct size
relative to AAR theoretically overcomes the limitation
of interindividual AAR extent variability and, thus,
might allow an accurate estimation of the effective-
ness of protective therapies while reducing the
necessary sample size. This methodology, despite
being conceptually correct, is dependent on the
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accuracy of the technique(s) used for AAR and infarct
size quantifications.
Dynamic changes in the AAR of the Acutely Infarcted

Myocardium. The post-I/R region (the AAR) is usually
composed of separate myocardial compartments that
are biologically diverse. For instance, in the setting of
a subendocardial infarction, the necrotic tissue in the
subendocardial zone of the AAR has a different
biological milieu than the viable tissue in the
subepicardial zone. Besides a large difference in
electrolytes, metabolites, inflammatory cells, and
many other biochemical and biophysical properties,
the underlying structure by light and electron
microscopy are wholly dissimilar (18,19,22,62,63).
This raises reservations regarding the use of such
characteristics to provide an accurate depiction of the
AAR (61).

Another important concept to take into consider-
ation in this regard is that the tissue composition of
the post-IR region (the AAR) is dynamic in composi-
tion. Within the infarcted component, there is a clear
time course of histopathological changes as necrotic
myocardium heals into collagenous scar (50). Many
features, such as acute inflammation, may not be
stable even within the first week. This has conse-
quences for imaging the AAR if the imaging method is
dependent on a highly dynamic attribute of MI.
Edema-based CMR methodologies for retrospective

AAR size estimate. Landmark experimental studies
suggested the possibility of ex vivo (64) and in vivo
(38) retrospective (i.e., after I/R) AAR quantification
by noncontrast T2W-CMR (edema). The first clinical
study on this topic showed that after MI, areas of
increased T2 signal extended beyond that of areas of
LGE (39), showing that T2W-CMR of myocardial
edema could detect reversibly injured myocardium in
STEMI patients. After these pioneer works, several
experimental and clinical studies have studied the
relationship between the extent of edema-CMR ab-
normalities (T2W, T2 mapping, T1 mapping) and
different AAR standards showing positive associa-
tions (59,60,65–72). There were also initial experi-
mental studies concluding against the validity of
edema CMR imaging for retrospective AAR quantifi-
cation (20,44).

One limitation to most of these studies is that CMR
imaging was performed at a single time point after
reperfusion under the assumption that edema was
stable for several days. The second assumption of
these studies was that edema was not affected by
cardioprotective strategies and/or experimental con-
ditions (e.g., duration of ischemia). Recent experi-
mental and clinical evidences have challenged both
assumptions, and thus, there is uncertainty regarding
the concept that edema equates AAR across different
experimental/clinical scenarios.

Contrast-based CMR methodologies have also been
proposed for retrospective AAR quantification: early
gadolinium enhancement (73), ECV imaging (70), and
contrast-enhanced steady-state free precession
(10,74–76) (Online Appendix). The mechanistic
explanation for the possible retrospective AAR esti-
mation by these contrast-based methods is not clear.
The advantage of contrast enhanced steady-state free
precession is that it does not require any additional
sequence.

CMR methods for retrospective AAR quantification
not relying on edema have been proposed: the
endocardial extent of infarction on LGE images
(termed infarct-endocardial surface length) is based
on the wave front progression of necrosis. The rela-
tionship between this method and different stan-
dards have been tested with positive results (77,78).
However, other studies are questioning its accuracy
in STEMI patients with minimal or no LGE (11,67,68).
Dynamics of post -MI edema: the c lass i c concept
of “stable” myocard ia l edematous react ion
rev i s i ted . Post-MI edema was initially believed to be
stable during the days following an acute MI (14,66).
Recent studies have provided new insights. In the
experimental setting, it has been demonstrated that
the edematous reaction during the first week after MI
is not stable, and follows a bimodal pattern (79,80).
The 2 waves of edema are secondary to different
pathophysiological phenomena (Figure 1), and are
amenable to being modified by interventions
(15,21,50).

In a longitudinal clinical study of 16 STEMI pa-
tients, including CMR within the hyperacute post-
reperfusion period (i.e., 2 h after reperfusion), the
post-MI bimodal edema pattern was observed in a
significant proportion of patients (45). Infarcted
(either with or without IMH) and, to a lesser extent,
“reversibly” injured myocardium displayed a similar
2-wave time course (45), as shown in the experi-
mental setting (15,70). In another longitudinal study
of 30 STEMI patients, edema was shown to be stable
across different time points #10 days in all patients
except those with IMH (81). Given the dynamic
changes in the post-MI myocardium early after
reperfusion, the discrepancies between these studies
might be explained by the different post-reperfusion
timings of the CMR scans between studies. More
recently, a third clinical study showed that intensity
of post-STEMI edema according to T1 mapping
relaxation times was bimodal, while the extent of T1
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TABLE 2 Consensus Related to CMR Methodologies for Myocardial Tissue

Characterization

Conceptually, the AAR is the myocardium downstream to an occluded coronary artery that
becomes ischemic (1).

Infarct size and AAR should be ideally measured at the same time point. If measured at different
time points, salvage quantification might show implausible results (e.g., negative values)
(14–16,90).

LGE grey zones should not be interpreted as dead, since they likely represent a mixture of
bright (dead) and dark (alive) myocardium. Grey myocardium can be due to partial volume
effect (15,31).

Edema development should be interpreted as a manifestation of myocardial I/R injury and should
not be considered as a reliable marker of AAR* (15,44,89).

T1W is the recommended methodology for LGE imaging after MI (2,4).

T2-mapping is the recommended methodology for edema imaging after MI (3,35).

T1W LGE is the recommended methodology for MVO imaging (hypointense areas within the LGE
area) (95).

T2* mapping is the recommended methodology for IMH imaging after MI (3).

*Controversial topic (majority but not all panelists in agreement).

AAR ¼ area at risk; LGE ¼ late gadolinium enhancement; other abbreviations as in Table 1.
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abnormalities was not (82). Dynamic tissue water
changes (T2 values) were also suggested in a recent
longitudinal clinical study (83), but not in other
retrospective studies (76,84,85).

In summary, there is robust evidence for the
bimodal edema pattern at the experimental level. In
patients, some (not all) studies have also demon-
strated a bimodal edema reaction within the first
week of MI.
Effect of protect ive therap ies on edema:
implications for edema-based AAR quantification.
Thuny et al. (86) were the first group to study the
effect of a cardioprotective strategy (post-condition-
ing) on the extension of edema, evaluated by T2W
abnormalities. A total of 50 STEMI patients were
randomized to the cardioprotective maneuver post-
conditioning or control. The extent of edema (T2W)
was significantly smaller in the post-conditioning
group. In other studies where post-conditioning was
not associated with protection, the effect of this ma-
neuver on edema was not observed (15,87). In a sub-
sequent clinical study, White et al. (88) evaluated the
effect of remote ischemic conditioning (RIC) on
infarct size (LGE extension) and edema development
(T2 mapping) in 83 STEMI patients. The extent of
edema on T2 mapping was significantly smaller in the
group undergoing RIC. In addition, mean T2 relaxa-
tion times in the ischemic area were significantly
shorter in the group of patients undergoing RIC
compared with control.

In the pig model of I/R, Fernandez-Jimenez et al.
(15) evaluated the effect of the cardioprotective ma-
neuver local ischemic preconditioning (IPC) on edema
formation. The extension of edema was significantly
smaller in pigs undergoing IPC than in controls. T2
relaxation times at the ischemic area were signifi-
cantly shorter in IPC pigs (15). Some degree of edema
is still present days after MI in the absence of LGE
(15), suggesting that edema might be a marker of
injury. In a different study undertaken in a mouse
model, Dongworth et al. (65) investigated the effect of
IPC on edema development assessed by T2 mapping
and found that IPC reduced the extent of edema
(T2 mapping).

In agreement with these experimental data, very
recently Bulluck et al. (89) reported a meta-analysis
of randomized clinical trials testing the infarct-
limiting effect of different interventions using CMR
within the first week after STEMI. A total of 5 trials
reported that the active intervention resulted in
smaller infarctions, and in these, the extension of
edema (T2W abnormalities) was also significantly
reduced. Conversely, in trials where the active inter-
vention was not associated with smaller infarctions
than controls, the extension of edema was not
different either (89).

Overall, there is compelling experimental and
clinical data showing that cardioprotective therapies
potent enough to reduce irreversible injury (i.e.,
infarct size), also limit the size and degree of edema.
Duration of ischemia also affects edema formation
following acute MI. Edema development, therefore,
should be seen as a manifestation of myocardial I/R
injury and not a simple marker of AAR.

The assumption that the extent of edema after
myocardial infarction accurately represents AAR in all
experimental/clinical scenarios is under intense
debate, and thus, edema-based methodologies for
AAR assessment in testing novel cardioprotective
therapies cannot be recommended. The panel wants
to make clear that this conclusion and recommenda-
tion does not mean that seminal studies showing
correlations between CMR-based edema extension
and standard-based AAR were not correct. These
studies were performed with only 1 experimental
condition (fixed ischemia duration without testing
cardioprotective strategies), and at 1 single time point
after I/R. This recommendation should not be inter-
preted as the last nail in the coffin of the field of using
edema as surrogate for AAR. Further ad hoc research
must be undertaken to better understand the inter-
play between injury and edema formation/dynamics.

Salvage index concept and its quantification. The most
commonly used and robust CMR measurement for
assessing the efficacy of novel cardioprotective ther-
apies in STEMI patients is an absolute reduction in
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Recommended CMR endpoints and illustrative images. LGE predicts 1-year death and incident heart failure. The best time point for quan-

tification is 3 to 7 days post-MI. The main criteria for selection of endpoints were associations with MACE, and consistent evidence in multiple

studies. Secondary endpoints proposed are those with consistent links to MACE. Other secondary endpoints are those with associations with

MACE that are inconsistent among studies and/or do not persist after adjustment for other CMR variables. Exploratory endpoints are those

with no or anecdotal evidence of an association with MACE. Representative images for some surrogates are presented at the bottom of the

figure (A: infarct size on LGE, B: extensive MVO within LGE area, C: IMH in the lateral wall on T2* mapping, D: intense edema in anteroseptal

wall on T2 mapping; E: T1 mapping abnormalities in lateral wall). A, B, and D correspond to pig I/R experiments (images courtesy of Borja

Ibanez and Rodrigo Fernández-Jiménez, CNIC), whereas C and E correspond to human post-STEMI cases (clinical images courtesy of Colin
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infarct size. However, given the variability in the size
of the AAR, the number of individuals required in
clinical cardioprotection studies to demonstrate a
reduction in absolute MI size can be quite high
(approximately 200 to 300 STEMI patients in total
depending on the patient population and effect size)
(90). Normalization of infarct size by the AAR theo-
retically reduces variability of outcome measure and
thus considerably reduces sample size. Thus,
myocardial salvage index (MSI) is defined as the
proportion of the AAR that remains viable after MI.

In the experimental setting, the gold-standard
method for delineating the AAR in animal models of
I/R is to quantify the perfusion defect following in-
jection of either fluorescent microspheres or dyes
(such as Evans blue). Alternatively, an arterial
enhanced multidetector computed tomography
(MDCT) performed during the index coronary occlu-
sion is a valid technique to delineate the theoretical
AAR in vivo (15,20,72). In the clinical setting, the
gold-standard method for quantifying the perfusion
defect in STEMI patients is by cardiac single-photon
emission computed tomography imaging of the
perfusion defect within hours after reperfusion
following the peripheral injection of a radioisotope
(e.g., technetium) prior to opening of the infarct-
related artery (66).

In the experimental setting, MSI can be quanti-
fied pathologically (tetrazolium chloride and
microspheres/blue dyes for infarct and AAR quan-
tifications, respectively), but this is not possible in
the clinical setting. To overcome these limitations,



TABLE 3 Consensus Related to CMR Endpoints in Myocardial Infarction Experimental and Clinical Studies

It is recommended that the index CMR scan be performed 5 � 2 days after reperfusion. At this time point, several key parameters have been shown to
be relatively stable.

LGE extent, expressed both in absolute (grams) and relative (percentage of LV mass) terms, is the recommended CMR primary endpoint (106,107).

In experimental studies, if LGE extent is expressed as a ratio to AAR, the latter should not rely on edema and ideally both AAR and LGE have to be
obtained at the same day post-MI (e.g., perfusion imaging during coronary occlusion by MDCT) and LGE by CMR) (15,89,90).

LVEF (%) and MVO (areas of hypoenhancement within LGE, in grams or as % of LV) are recommended as main secondary endpoints (105,108).

Edema extent (T2 mapping) may be used as secondary endpoint to assess the effect of cardioprotective therapies (89).

LV volumes (ml; ml/m2), RVEF (%), RV LGE (presence), and IMH (% of LV) can be included as secondary endpoints (111–114).

Myocardial mapping indexes (T1 [ms]; T2 [ms]; ECV [percentage of LV mass]), and strain (feature tracking) may be considered as exploratory
endpoints (15,65,88,117–119).

The use of edema-sensitive CMR sequences as a surrogate for AAR (as well as edema-based MSI) is not recommended because edema is not stable in
the days following MI, and is potentially affected by duration of ischemia, and by cardioprotective strategies* (15,45,89).

Due to its easy implementation, ESL-based salvage index may be used as an exploratory outcome but not in cases with small amounts of LGE or
aborted infarction, i.e., when a high degree of cardioprotection is expected* (11,67,68,77,78).

For LGE post-processing, automated techniques using signal-intensity thresholding, manual delineation, and visual scoring (the 2 latter at intermediate signal-intensities) have
similar good accuracy and reproducibility (129). For delineation of edema, T2 mapping (automated >2SD thresholding with manual correction) showed greater intraobserver
and interobserver agreement (57). For MVO quantification, the most widely used is the manual delineation of dark areas within LGE region. Extended information is provided in
the Online Appendix. *Controversial topic (majority but not all panelists in agreement).

AAR ¼ area at risk; ECV ¼ extracellular volume; ESL ¼ endocardial surface length; LVEF ¼ left ventricular ejection fraction; MSI ¼ myocardial salvage index; RV ¼ right
ventricle/ventricular; other abbreviations as in Table 1.
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CMR has been used to quantify both infarct size
(LGE) and AAR in a single imaging session. Based on
the assumption that T2-based CMR sequences were
identifying the AAR and that LGE is a valid surro-
gate for infarct size, CMR-based MSI has become a
popular outcome measure in experimental and
clinical trials. The use of CMR-based MSI as the
primary endpoint in trials has been proposed as a
methodology to allow a reduction in sample size by
one-half (91). Studies have proposed that CMR-MSI
calculated by a single CMR in the first week
following STEMI can predict long-term clinical out-
comes (90), suggesting that it is a viable surrogate
endpoint for assessing cardioprotection. Based on
the recent evidences highlighting that edema is not
stable after MI, and that cardioprotective in-
terventions may affect the development of edema,
edema-based MSI should not be used as an
endpoint in experimental or clinical trials. Similarly,
endocardial surface length LGE methodologies for
AAR assessment in testing novel cardioprotective
therapies should be used with caution, since they
are not reliable in cases of very limited LGE, and are
not recommended as a primary or secondary
outcome measure.

CMR IMAGING OF MICROVASCULAR INJURY: MVO

AND INTRAMYOCARDIALHEMORRHAGE. Microvascular
obstruct ion . In experimental studies, the intra-
coronary administration of dye (Thioflavin-S) may
result in an excellent delineation of MVO in the
excised heart (92), but this is not feasible in the
clinical setting. On CMR, MVO is revealed as a hypo-
intense core within the hyperintense infarct zone
within the area of LGE (93–95). The imaging feature is
explained by failure of the contrast agent to penetrate
within the infarct core.

Native T1 mapping may allow the detection of
areas with short T1 values surrounded by prolonged
T1 values in the infarcted regions. Although initially
thought to be reflective of MVO, recent evidence has
led to a definition of a new biomarker of “infarct core”
(96). The mechanisms underpinning the shortening of
T1 values are not fully understood.

Intramyocardial hemorrhage. Deoxyhemoglobin has
paramagnetic effects that enable myocardial iron
accumulation to be detected using T2W and T2*W
CMR (97,98). IMH is visually defined as a hypointense
area in the center of a hyperintense zone in edema
sequences. Nevertheless, T2*-based imaging is the
most sensitive method for imaging hemorrhage as it
specifically images IMH based on reduced T2* relax-
ation times. Despite this, given that spatial resolution
is relatively low; it is also sensitive to off-resonance
artifacts, particularly in the lateral wall; and it is
influenced by motion and blood flow, T2* CMR image
quality can be suboptimal. Two different cut-offs are
used to identify zones of hemorrhage (mean-2SD and
T2* <20 ms). Whether both of the cut-offs yield the
same or different hemorrhage volume and whether
this depends on the imaging field strength remains to
be investigated. An alternative to T2* imaging that
has been extensively investigated is T2 imaging, as T2
images can be sensitized to hemorrhage. Although T2
images often provide far better image quality than
T2* images, their sensitivity in the acute phase to
hemorrhage is compromised by the presence of
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edema in the acute phase. Because T1 is sensitive to
the degradation products of hemorrhage, some
studies have also investigated the capacity to image
hemorrhage with T1 CMR. These studies have shown
that the opposite effects hemorrhage and edema
impose of T1, the sensitivity for detecting hemor-
rhage based on T1 after MI is often compromised (99).
See Table 2 for consensus related to CMR methodol-
ogies for tissue characterization.

CMR ENDPOINTS IN CLINICAL TRIALS AND

EXPERIMENTAL STUDIES

Large animal experimentation is necessary before
embarking in clinical trials testing new car-
dioprotective strategies. Given that all imaging
methodologies used in patients can be used in large
animal studies, to improve transferability of exper-
imental results, CMR endpoints in the latter should
be the same as in clinics. For this reason, all state-
ments and conclusions in this section apply both to
clinical trials and large animal experimental studies.
Additional information about experimental study
recommendations is provided in the Online
Appendix.

Besides the tissue characterization abilities, the
high reproducibility of CMR makes it the best
imaging modality for MI clinical trials. Interscan
reproducibility for the quantification of LV volumes,
LV mass, and LVEF are superior to that of echocar-
diography, enabling 55% to 93% reductions in sample
size to detect changes in these variables with com-
parable power (100). Similarly, LGE is highly repro-
ducible in both the acute and chronic MI setting
(mean bias <1% of LV mass) (101), which allows re-
ductions of approximately 42% of sample size in
comparison with single-photon emission computed
tomography (102).

To incorporate new interventions into clinical
practice, it must be demonstrated that these improve
clinical outcomes, particularly “hard” events, such as
death or relevant morbidity (HF, use of resources, and
so on). However, such trials typically require very
large sample sizes and/or follow-up, particularly in
the current era of continuously improving post-MI
prognosis, and frequently result in prohibitive costs
and/or logistic hurdles. Therefore, surrogate end-
points with proven links to hard outcomes are often
used as an alternative in early (pilot) clinical trials. A
number of CMR-based endpoints derived from dy-
namic (“functional”) or stationary (“morphologic”)
imaging have been proposed as valid surrogates.
Although most studies have examined the prognostic
value of individual CMR measures, some have com-
bined several into scores (103,104).

In 2014, El Aidi et al. (105) performed a systematic
review of 27 studies evaluating the ability of CMR to
predict outcomes when performed within 2 weeks of
reperfused MI. According to an arbitrary definition,
no single CMR measure demonstrated independent
prognostic value for the prediction of hard endpoints
(death, MI, or transplantation) with the exception of
LVEF, which was the only endpoint independently
associated with major adverse events. Consistent
prognostic value, although insufficient to qualify as
“independent,” was additionally noted for LGE size
and MVO.

Reduction of MI size is the ultimate goal of car-
dioprotection in the acute phase. A subsequent pooled
analysis of 10 randomized clinical trials evaluated the
prognostic significance of imaging-based MI size
measured at a median of 4 days post-reperfusion
(106). This study demonstrated clear progressive
rises in death or HF hospitalization with increasing MI
size, even after adjusting for relevant factors. Addi-
tional analyses indicated an association between
therapy-related reductions in MI size with decline in
HF hospitalizations, but not mortality (107).

A more recent analysis of the same randomized
trials identified MVO (measured at a median of 3 days
post-reperfusion and present in 57% of patients) as an
additional independent predictor of mortality after
accounting for clinical characteristics and LGE size
(108).

In their systematic review, El Aidi et al. (105) found
insufficient evidence for any incremental value of
other CMR-derived parameters such as segmental
wall motion or perfusion abnormalities (at rest and/or
stress), edema, or IMH. Although newer reports are
available since 2014, particularly regarding IMH,
edema, or MSI (103,109), overall evidence for an in-
dependent prognostic value for these indexes is far
less robust and consistent than for LGE, LVEF, and
MVO. Of note, CMR-based MSI on CMR performed 1 to
4 days after STEMI was proposed to entail long-term
prognostic value in a cohort of 202 patients (110).
However, as discussed in this consensus document,
the use of post-MI edema extent as a surrogate for
AAR is troublesome (15). Similarly, few small studies
suggested potential prognostic implications of alter-
native measures such as LV volumes (111,112), right
ventricular EF (113), right ventricular LGE (114), and
more recently, the evaluation of LV strain by feature
tracking CMR (115–117).

The extent of edema after reperfusion (as evalu-
ated by different T2 sequences [15]), as well as the
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signal intensity (T2W) (86) and T2 relaxation times
(15,65,88), can be affected by strong cardioprotective
interventions. Therefore, edema development might
be used as a secondary endpoint as a marker of injury
(not as a surrogate for AAR).

Newer parametric (mapping) techniques evalu-
ating changes in T1, T2, and/or ECV in both infarcted
and remote myocardium hold substantial promise for
more objective, operator-independent tissue charac-
terization. Although these variables have generally
been linked to adverse LV remodeling, there is pres-
ently a paucity of data regarding their associations
with clinical events, except for some early evidence
for native T1 values of remote myocardium (118,119).

In terms of the best post-MI timing for CMR per-
formance in clinical trials, some key parameters
holding robust association with hard endpoints (LGE,
MVO) change over time (45,90). To be able to quantify
different CMR parameters included as endpoints in
the same imaging session, and based on available
data, the ideal post-MI timing for the evaluation of
CMR endpoints appears to be between days 3 and 7
(45,90). LGE and MVO show relative stability and
proven prognostic value in this time window.

The Central Illustration shows the hierarchy of
recommended CMR outcomes in clinical trials and
experimental studies.

See Table 3 for consensus related to CMR endpoints
in myocardial infarction experimental and clinical
studies.

FUTURE DIRECTIONS

In the Online Appendix, there is a section presenting
several evolving CMR methodologies that may offer
insights into tissue characterization and LV function
following STEMI that are either already being inves-
tigated or have the potential to be applied to STEMI
patients.

CMR has become an indispensable technique for
post-MI tissue characterization. However, further
work is required to make CMR simpler, faster and
more standardized to realize the ultimate goal of
individualized patient management post-MI, tailored
according to risk. Advances in free-breathing and
motion-corrected T2 and T2* mapping as well as LGE
imaging (120–122), without the need for breath-
holding, have been already been developed to
address the clinical need to further accelerate CMR
data acquisition. Free-breathing, ungated, 3D
contrast-enhanced CMR, which is acquired at high-
resolution, is well positioned for see rapid uptake in
the clinical arena for myocardial tissue characteriza-
tion in the post-MI setting. Other developments in
real-time cine imaging for LVEF and future re-
finements in CMR fingerprinting techniques (123) (for
robust and fast acquisition of simultaneous T1 and
T2 mapping data per slice within 1 breath-hold) will
further reduce scan time and will pave the way to
make CMR more accessible to a wider number of
post-infarction patients. These efforts could reduce
the duration of the scan to 20 min or even less, which
could reduce scan costs and improve the participation
of more centers in MI-related CMR research.

The possibility of performing complete CMR
studies without an exogenous gadolinium-based
contrast agent has been proposed. However, the
prognostic role of noncontrast CMR in comparison to
standard contrast-enhanced techniques warrants
further investigation. Some gadolinium contrast
agents (lineal contrasts, not the ones used at present)
can accumulate in some tissues (124), but the clinical
significance is unknown.

Edema imaging needs to be optimized for compre-
hensive characterization of reversible and irreversible
myocardial injury after reperfusion. One of the
important challenges in the field is the development of
methods to differentiate intracellular from extracel-
lular water. The role of edema as potential therapeutic
target in I/R could serve as a basis for the study of
myocardial water distribution using CMR (15,33).

Imaging of remote myocardium after STEMI may
provide new insights into the pathophysiology of
post-MI remodeling and provide incremental risk
stratification value. Given the superior diagnostic
performance of quantitative mapping techniques,
potential novel imaging biomarkers have emerged.
Specifically, recent evidence shows an abnormal tis-
sue composition in the remote myocardium of STEMI
patients (118,119,125).

In summary, CMR holds great promise to become
accessible to more patients and to be used as a tool to
risk-stratify patients, guide treatment, evaluate car-
dioprotective therapies, and improve clinical out-
comes in STEMI patients. Addressing the previously
mentioned questions and directions will further
extend the already established role of CMR in the
assessment of myocardial infarction.
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