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A Novel Block Sparse Reconstruction Method for

DOA Estimation With Unknown Mutual Coupling
Xiaowei Zhang, Tao Jiang, Member, IEEE, Yingsong Li, Senior Member, IEEE, and Yuriy Zakharov, Senior

Member, IEEE

Abstract—In this letter, we consider the direction-of-arrival
(DOA) estimation in the presence of unknown mutual coupling
in application to uniform linear arrays (ULAs). A novel method is
proposed that treats the DOA estimation as a block sparse signal
reconstruction problem with a modified array manifold matrix
which utilizes the information of entire array output. A block
smoothed ℓ0 norm approximation technique is introduced to solve
the problem. Finally, an iterative proximal algorithm is proposed.
Simulation results are presented that show the superiority of the
proposed method against other known techniques.

Index Terms—Direction-of-arrival (DOA), mutual coupling,
block sparse reconstruction, block smoothed ℓ0 (BSL0).

I. INTRODUCTION

D
IRECTION-OF-ARRIVAL (DOA) estimation is a prob-

lem important in a variety of fields, including radar,

sonar, mobile communications [1], [2]. Conventional high-

resolution DOA estimators, such as MUSIC and ESPRIT,

are well suited for ideal scenarios when there is no mutual

coupling (MC) between antennas. In practice, the received

signals obtained by arrays are usually disturbed by MC,

which severely degrades the DOA estimation performance. For

example, in multiple-input multiple-output (MIMO) systems,

which are widely investigated for future generations of com-

munications, antennas are closely spaced which causes a high

risk of MC among antennas [3].

The MC effect is generally characterized by MC matrix

(MCM) which depends on both the array geometry and

antenna type. The MCM of a uniform linear antenna (ULA)

array has a banded symmetric Toeplitz structure [4]. It is

pointed out in [5] that MC is independent of DOAs for omni-

directional array elements.

Several methods have been devised for the DOA estimation

under MC [5]–[7]. In [5], the direction independent MC

is treated as direction dependent complex array gains, and

the DOAs and MCM are jointly estimated. A rank-reduction

method is proposed in [6] for uniform rectangular arrays. In

[7], a subspace-based iterative method is proposed for uniform

circular array.

In the past few years, sparse signal representation (SSR)

and compressed sensing techniques have made remarkable
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achievements in fields of statistical signal analysis and param-

eter estimation. Due to the superiority in resolution and ro-

bustness to noise, SSR exploiting the spatial sparsity has been

introduced into DOA estimation. In [8], a sparse reconstruction

model for DOA estimation is presented and an algorithm

named ℓ1-SVD is proposed to analyze this model. An ℓ1-SVD-

like method under unknown MC for ULA has been proposed

in [9], which takes advantage of the banded symmetric Toeplitz

structure of MCM, but this method sacrifices the array aperture

so that some array output data is not being used. The authors

in [10] studied a joint sparse recovery of DOAs and array

perturbation, in which the perturbation matrix is estimated by

solving a sparse matrix completion problem. Inspired by the

method in [5], an effective block sparse representation model

is considered for DOA estimation in the presence of unknown

MC for ULA by [11]. In order to further exploit the block

sparsity of the signal, a reweighted ℓ1-norm method [12] is

introduced to solve the block sparse DOA estimation with MC,

where the weighted matrix is determined by a MUSIC-like

spectrum. In [13], a sparsity-inducing method over covariance

matrix is proposed, which provides larger degrees of freedom

and array aperture. A unified self-calibration framework for

DOA estimation in the presence of non-ideal array is proposed

in [14] using the sparse Bayesian learning perspective.

In this letter, a novel block sparse reconstruction method

is devised and analyzed for DOA estimation with unknown

MC, which first formulates a modified array manifold matrix

without MC compensation, and establishes block sparse recon-

struction model which differs from the models in [11], [12].

Then a family of block smoothed ℓ0 approximation functions

are utilized to exploit the block sparsity. According to proximal

splitting approach, the block sparse problem is solved with the

help of a iterative proximal algorithm. The proposed method

utilizes entire array output data and does not require the

hypothesis that the scalar parameters related to DOAs and MC

are not zero [5], [11], [12].

II. DATA MODEL

Consider K narrowband signals located at far-field im-

pinging on a ULA of M omnidirectional sensors with half-

wavelength spacing. The steering vector for the direction θ is

expressed as

a(θ) = [1, e−jπ sin(θ), . . . , e−jπ(M−1) sin(θ)]T . (1)

Hence, the array output vector at snapshot t is given by

y(t) = As(t) + n(t), (2)
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where A = [a(θ1), . . . ,a(θK )] ∈ C
M×K denotes the ideal array

manifold matrix, and s(t) = [s1(t), . . . , sK (t)]
T ∈ CK×1 are

signal sources. Suppose n(t) is the complex white Gaussian

noise vector with zero mean and covariance σ2I and I denotes

the identity matrix.

In practice there are negative effects from MC, which are

charactered by an MCM. For ULA, the MCM has a banded

symmetric Toeplitz structure, which is modeled as

C = Toeplitz([cT , 01×(M−m)]), (3)

where c = [c0, c1, . . . , cm−1]
T ∈ Cm×1 with 0 < |cm−1 | <

|cm−2 |, . . . , |c1 | < |c0 | = 1 is a complex mutual coupling co-

efficients vector, and Toeplitz(·) is symmetric Toeplitz matrix

operator. Then the array output is reformulated as

y(t) = CAs(t) + n(t). (4)

III. PROPOSED METHOD

Herein, a novel block sparse reconstruction model for DOA

estimation in the presence of unknown MC is derived using

a modified array manifold matrix and an iterative proximal

method.

A. Modified Array Manifold Matrix With Mutual Coupling

In order to estimate the DOAs and MC coefficients, the data

model in (4) should be reformulated. According to (4), it can

be seen that the ideal manifold matrix A is distorted by MCM,

and hence, the new array steering vector ã(θ) can be defined

as

ã(θ) = Ca(θ). (5)

The MCM (3) can be represented as

C =

m−1∑

l=0

Elcl, (6)

where El is a symmetric matrix of the same size as C, and

whose (i, j)th entry is given by

El(i, j) =

{
1, C(i, j) = cl

0, otherwise.
(7)

Then the new steering vector ã(θ) can be represented as

ã(θ) =

m−1∑

l=0

Elcla(θ)

= c0E0a(θ) + c1E1a(θ) + · · · + cm−1Em−1a(θ)

= [E0a(θ),E1a(θ), . . . ,Em−1a(θ)]



c0

c1

...

cm−1


=H(θ)c, (8)

where H(θ) = [E0a(θ),E1a(θ), . . . ,Em−1a(θ)]. When the

array geometry and MCM are fixed, the matrix H(θ) is a

function of the DOA θ.

The array output model (4) can now be rewritten in the

following form:

y(t) = [ã(θ1), ã(θ2), . . . , ã(θK )]s(t) + n(t)

= [H(θ1)c,H(θ2)c, . . . ,H(θK )c]s(t) + n(t)

= [H(θ1),H(θ2), . . . ,H(θK )]s̃(t) + n(t)

= Ãs̃(t) + n(t), (9)

where Ã = [H(θ1),H(θ2), . . . ,H(θK )] ∈ CM×Km is the

modified array manifold matrix, and s̃(t) ∈ CKm×1 is a vector

defined as

s̃(t) = s(t) ⊗ c =



s1(t)c

s2(t)c
...

sK (t)c


= [s̃T1 (t), s̃

T
2 (t), . . . , s̃

T
K (t)]

T , (10)

where ⊗ denotes the Kronecker product, and s̃i(t) = si(t)c ∈

C
m×1, i = 1, 2, . . . ,K, denotes a new block signal.

B. Block Sparse Reconstruction Model for DOA Estimation

With Mutual Coupling

To utilize the spatial sparsity, let θ̄ = {θ̄1, · · · , θ̄N } with

N ≫ M denotes the uniform discrete sampling grid points of

spatial continuous DOA, and assume that the true DOAs θ

exactly lie on the sampling grid θ̄ (i.e θ ⊂ θ̄). Then an over-

complete array manifold dictionary in terms of θ̄ is written

as

Ā = [H(θ̄1),H(θ̄2), . . . ,H(θ̄N )], (11)

where Ā ∈ CM×Nm has a block structure and each M×m block

array steering matrix H(θ̄k), k = 1, 2, · · · , N, corresponds to

a potential DOA. As a result, the sparse-based model for the

array output is given by

y = Ās̄blk + n, (12)

where

s̄blk = [s̄1c
T , s̄2c

T , · · · , s̄Nc
T ]T

= [s̄T1 , s̄
T
2 , · · · , s̄

T
N ]

T

is an Nm × 1 block sparse vector with block size m. Since

there are no zero entries in the coefficients vector c, the

block sparsity of s̄blk is the same as the sparsity of s̄ =

[s̄1, s̄2, · · · , s̄N ]
T .

Now, the DOA estimation problem with unknown MC

can be reformulated into the following block sparse signal

reconstruction problem:

min
s̄blk

‖s̄blk ‖2,0 s.t . ‖y − Ās̄blk ‖2 ≤ ε, (13)

where ‖ · ‖2,0 denotes ℓ2/ℓ0 mixed norm operator defined as

‖s̄blk ‖2,0 =
∑N

k=1 I(‖s̄k ‖2), and I(·) is an indicator function

I(x) =

{
0, x = 0

1, otherwise.
(14)

The block reconstruction problem in (13) is mathematically

intractable because it is NP-hard. To simplify the solution,
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an alternative block smoothed ℓ0 approximation is considered.

Specifically, complex zero-mean Gaussian family of functions

are introduced to replace the ℓ0 norm function. The smoothed

ℓ0 approximation can better exploit the sparsity than ℓ1 norm

which is a convex norm closest to ℓ0 norm.

Consider a complex zero-mean Gaussian family of func-

tions:

fσ(x) = 1 − exp

(

−

∑m
j=1 |xj |

2

σ2

)

, (15)

where x = [x1, x2, · · · , xm]
T . Then, we have

‖s̄blk ‖2,0 = lim
σ→0

N∑

k=1

fσ(s̄k) = lim
σ→0

Hσ(s̄blk), (16)

where Hσ(s̄blk) =
∑N

k=1 fσ(s̄k), and σ is a scalar parameter

which provides a trade-off between the approximation accu-

racy and smoothness. A decreasing sequence for σ can be

used to circumvent jumping into the trap of local minimum

[15]. As a result, the block sparse reconstruction problem with

the block smoothed ℓ0 norm penalty is expressed as

min
s̄blk

Hσ(s̄blk) s.t . ‖y − Ās̄blk ‖2 ≤ ε. (17)

By defining a set

Aε , {s̄blk : ‖y − Ās̄blk ‖2 ≤ ε}, (18)

the constrained optimization problem (17) can be reformulated

as the following unconstrained optimization problem

min
s̄blk

Hσ(s̄blk) + Iε(s̄blk) (19)

where Iε(·) is an indicator function, given as

Iε(s̄blk) =

{
0, s̄blk ∈ Aε

+∞, s̄blk < Aε .
(20)

Note that the function Hσ(s̄blk) is non-convex but gradient

Lipschitz continuous [16]. The indicator function Iε is convex

because the set Aε is convex. As a result, (19) is a non-convex

optimization problem which can easily fall into the trap of

local minimum.

For jumping out the trap of local minimum, the

majorization-minimization (MM) [16] approach is introduced

to solve the optimization (19). Since Hσ is gradient Lipschitz

continuous, for all x, y, we have [17]

Hσ(x) ≤ Qσ(x, y), (21)

where

Qσ(x, y) =Hσ(y) + 〈x − y,∇xHσ(y)〉 +
L

2
‖x − y‖2

2

is a quadratic upper-bound of Hσ at y, and L is the Lipschitz

constant of ∇Hσ . The non-convex function Hσ(s̄blk) is

replaced by the surrogate function Qσ(s̄blk, s̄
t
blk

), and then

the non-convex problem (19) can be solved by the following

iterative proximal algorithm

s̄t+1
blk = arg min

s̄blk

Qσ(s̄blk, s̄
t
blk) + Iε(s̄blk)

= arg min
s̄blk

Hσ(s̄
t
blk) + 〈s̄blk − s̄tblk,∇Hσ(s̄

t
blk)〉

+

L

2
‖s̄blk − s̄tblk ‖

2
2 + Iε(s̄blk)

= arg min
s̄blk

1

2
‖s̄blk − (s̄tblk −

1

L
∇Hσ(s̄

t
blk))‖

2
2 + Iε(s̄blk)

=proxIε
(s̄tblk −

1

L
∇Hσ(s̄

t
blk)) (22)

where the superscript denotes the iteration number and

proxIε
(·) is the prox-operator of Iε . Since Iε is an indicator

function, the prox-operator proxIε
is the projection onto the

set Aε:

proxIε
(x) = ΠAε

(x) = arg min
v∈Aε

‖v − x‖2
2 . (23)

Finally, the proposed iterative algorithm involves two levels

of iterations as follows.

In the internal loop, for a fixed σ, the source signals are

updated by

s̃t+1
blk = s̄tblk −

1

L
∇Hσ(s̄)

t
blk (24)

and s̃t+1
blk

is projected onto Aε:

s̄t+1
blk = ΠAε

(s̃t+1
blk). (25)

In the outer loop, the σ is updated by σ = ρ · σ, where

0 < ρ < 1 is a decreasing factor for σ.

Once optimization (19) is solved, the DOAs θ̂ can be

obtained from the spatial spectrum of sblk , which is block

sparse, and a source signal is given as ŝi = ŝblk[(m−1)i+1], i =

1, 2, . . . ,K , where ŝblk are estimates containing only non-zero

block entries. The MC coefficients vector c is estimated using

ĉ =
∑K

i=1 ŝi/ŝi , where ŝi denotes a non-zero block in sblk .

IV. SIMULATION RESULTS

In this section, simulation results are presented to show

the performance of the proposed DOA estimation method

in comparison with the Dai’s method [9], Wang’s method

[11], MUSIC [2] and the Cramer-Rao lower bound (CRB)

[18]. Herein, a ULA with M = 14 sensors is considered to

receive two narrowband signals from directions θ1 and θ2,

respectively. Assume that the number of MC coefficients in c

is m = 3 with c1 = 0.4864−0.4776 j and c2 = 0.2325+0.1914 j.

For accelerating the running speed, it is not need to wait for

the internal loop to converge, and so the maximum number

of iterations is set to I = 5. The initial value of σ is set to

σ = 5 · maxi ‖s̄i ‖2 and the decreasing factor is set to ρ = 0.9.

The spatial angle set (−90◦, 90◦] is discretized by uniform

sampling grid with spacing of 1◦.

In the first simulation, the normalized spatial spectrum for

two uncorrelated signals from directions θ1 = −10◦ and θ2 =

10◦ is shown in Fig. 1a, with signal-noise ratio SNR = 10 dB. It

can be seen that all the three methods can accurately estimate

direction θ1, and but only the proposed method can accurately

estimate the direction θ2.
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Fig. 1. (a) Normalized spatial spectrum versus DOA; (b) Bias of proposed
method versus source separation for two sources. SNR = 10 dB
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Fig. 2. RMSE of the DOA estimates versus SNR

One important aspect of the proposed method is the capa-

bility of resolving closely spaced sources. The bias between

the true DOA and the estimated one is defined as Bias =∑T
i=1 |θ − θ̂i |/T where T denotes the number of trials used to

evaluated the resolution performance of the proposed method.

Suppose two uncorrelated signals with equal power are located

at θ1 = −10◦ and θ2 = −10◦ + ∆θ, respectively, where ∆θ

denotes the source separation ranging from 1◦ to 20◦ with 1◦

step. The estimated bias curves for our method with respect

source separation ∆θ is presented in Fig. 1b. It is seen that the

bias is close to zero when source separation are higher than

about 14◦.

In the second simulation, we consider a scenario where two

uncorrelated sources come from directions θ1 = −10.1◦ and

θ2 = 10.9◦. The average root mean square error (RMSE) of

DOA estimation over SNR is shown in Fig. 2, where for each

SNR value we run 300 Monte-Carlo trials. It is clear that

the proposed method outperforms other methods by achieving

a smaller RMSE over the entire SNR range, but there is an

obvious gap between the RMSE of DOA estimation obtained

by the sparse-based methods and CRB. The main reason is

that these sparse-based methods are based on the hypothesis

that DOAs are exactly positioned at the potential points, which

will lead to model error when the true DOAs are not located

on the potential points. Additionally, the MUSIC algorithm

also fails due to unknown MC and rank-deficiency.

V. CONCLUSION

In this letter, a novel sparse-based method has been pro-

posed for DOA estimation in the presence of unknown mutual

coupling for ULA. In our method, the DOAs are obtained

from a block sparse reconstruction framework with a block

smoothed ℓ0 norm sparsity-promoting function, and it is solved

by an iterative proximal algorithm. The proposed method can

be extended to different array configurations because there

is no restriction on the structure of the MCM in the deriva-

tion. Simulation results demonstrate that the proposed method

achieves remarkable performance in comparison with existing

sparse-based DOA estimation methods. The grid mismatch

problem will be overcome in future work.
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