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Abstract

Deep learning based camera localization from a single image has been explored re-

cently since these methods are computationally efficient. However, existing methods

only provide general global representations, from which an accurate pose estimation can

not be reliably derived. We claim that effective feature representations for accurate pose

estimation shall be both "informative" (focusing on geometrically meaningful regions)

and "discriminative" (accounting for different poses of similar images). Therefore, we

propose a novel multi-layer factorized bilinear pooling module for feature aggregation.

Specifically, informative features are selected via bilinear pooling, and discriminative

features are highlighted via multi-layer fusion. We develop a new network for camera lo-

calization using the proposed feature pooling module. The effectiveness of our approach

is demonstrated by experiments on an outdoor Cambridge Landmarks dataset and an

indoor 7 Scenes dataset. The results show that focusing on discriminative features signif-

icantly improves the network performance of camera localization in most cases. Codes

will be available soon.

1 Introduction

Camera localization is a task to determine the absolute pose (position and orientation) of the

camera in the scene given an observed image. It is a vital task of many computer vision

applications such as SLAM, augmented reality, autonomous driving and visual navigation.

Early methods estimate the camera pose based on feature matching between a given 2D

image and the whole scene information provided in the form of either a 3D model or an
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(a) Input (b) ResNet + AP (c) ResNet + MLFBP

(d) Original features (e) Bilinear features (f) Multi-layer bilinear features

Figure 1: Comparison of the saliency map (b)(c) and activation map (d)(e)(f) between using

average pooling (AP) and multi-layer factorized bilinear pooling (MLFBP). It is obvious that

bilinear pooling can drive the network to focalize more informative regions such as building

parts, and multi-layer fusion helps enlarge discriminative parts for more accurate results.

image database. While these methods work for many scenes, erroneous or no pose estimation

might be given in cases where hand-crafted features fail to be correctly matched, such as in

textureless or repetitive scenes. Also, searching for correct matches in a large-scale 3D model

or retrieving the most similar image in a large dataset is time-consuming, which requires

efficient retrieval techniques [1, 2, 21]. Recently, deep learning approaches have drawn much

attention due to their ability to extract more representative features. Some attempts [11, 12,

13, 24] have been made to directly regress the camera pose from an input image with the

powerful feature learning capability of CNN. These methods are computationally efficient

and work when feature-based methods fail.

Nonetheless, previous methods like PoseNet [13] use average pooling to aggregate fea-

ture maps into a holistic feature vector for pose estimation. Such feature representation is

not optimal since a larger area than required is activated. Some uninformative features might

produce unreliable pose results and should be discarded. Thus, camera localization requires

more discriminative details that account for precise camera pose estimation. These details

should satisfy two conditions. First, they should be "informative", i.e., the activated features

should lie in geometrically meaningful regions. For example, in the outdoor scenes in Fig-

ure 1(b-e), building parts should be more focused, but sky or roads are trivial since they are

common in many images. Second, the details should be "discriminative", i.e., distinct parts

in informative regions can be located when facing similar images captured for different loca-

tions. Figure 1(f) highlights more essential parts of the building, leading to more reasonable

result.

To highlight informative details, inspired by the recent works from fine-grained image

recognition [18], we propose to employ bilinear pooling techniques to enhance the features

for camera localization. Bilinear pooling forms a global image descriptor by computing

the outer product of feature maps from CNN. Specifically, it calculates the correlation be-

tween different channels of feature maps, and amplifies the activation of informative areas

implicitly. Different from spatial pooling methods like average pooling and max pooling that

introduce invariance to image deformation, bilinear pooling obtains statistics that maintain
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feature selectivity. In camera localization, bilinear pooling helps the network to focus more

on those geometrically meaningful parts, and suppresses the activations in trivial regions that

produce uncertain pose estimation.

Although trivial regions for localization can be suppressed, single-layer bilinear pooling

at the last layer may overemphasize some parts but underrate other informative regions, like

those accounting for different locations with similar appearances. Combining multi-layer

features is an option to complement some missing details in features from the last layer.

We adopt the same bilinear pooling model to form cross-layer features between the bilinear

feature from the last layer and original features from the preceding two layers, respectively.

Multi-layer features is formed as a rich feature representation for discriminative details by

concatenating both bilinear features and cross-layer features. As shown in Figure 1(e)(f), the

activation map of using multi-layer bilinear pooling captures more discriminative parts than

those from single-layer bilinear pooling.

Our work makes the following novel contributions. (1) We analyze the camera localiza-

tion problem from the perspective of feature aggregation, and propose that both informative

and discriminative features are important for pose regression. (2) We propose a multi-layer

factorized bilinear pooling module to the feature pooling layer of the pose regression net-

work. We utilize the factorized bilinear pooling approach to the last conv layer of the CNN

to focus on geometrically meaningful regions, and adopt a multi-layer feature fusion strategy

to address discriminative features that account for precise pose estimation. (3) Our method

achieves superior performance on two camera localization datasets, Cambridge Landmarks

and 7 Scenes, using only a single image as input. Visualization results show that our method

consistently activates informative and discriminative regions.

2 Related Works

Absolute camera pose regression tries to get camera poses directly from a given image by

training a specific CNN, treating the weights of the network as a map representation for the

task. PoseNet [13] is the first attempt towards end-to-end learning of 6DoF poses by append-

ing a pose regression module to the pretrained GoogLeNet. Acting as the feature extractor,

GoogLeNet pretrained on classification datasets like ImageNet or Places produces features

that are not informative enough to pose regression. Subsequent works use Bayesian methods

to estimate uncertainty of pose results [4, 11], and learn weights between the camera position

and orientation loss as well as incorporating the reprojection loss given the scene model [12].

Both works don’t address the impact of the features from pretrained CNN. Walch et al. [24]

introduced LSTM units to the network for structured dimensionality reduction on the feature

vector from CNN and improving localization results. Melekhov et al. [19] used an hourglass

network to promote features by recovering fine-grained details. These approaches improve

features from CNN in a global view without emphasizing informative details. Some other

methods attempt to involve more information than a single input image in pose regression,

such as sequences of images[6], other sensory perception (visual odometry, GPS, etc.) [3] or

a multi-task framework (with visual odometry and semantic segmentation) [20, 23]. Afore-

mentioned approaches involve more input than a single image, and thus are beyond the scope

of this paper.

Bilinear pooling is a common technique of emphasizing the most informative part in

the feature map from a holistic perspective by aggregating the pairwise feature interactions.

This method is widely used in fine-grained image recognition [17, 18] whose goal is to distin-
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guish subordinate categories that have similar appearances. By calculating the second-order

statistics, feature selectivity is maintained and bilinear features gain more representational

power. Recent works try to reduce computational burdens of bilinear pooling due to very

high-dimensional feature representation via compact kernel design [7, 9] or low-rank ap-

proximation [5, 14, 15, 16, 25]. While most works apply bilinear pooling only after the

last convolution layer, inter-layer part interactions are neglected. Cai et al. [5] models the

interactions between layers by concatenating the activation maps from multiple convolution

layers. The most recent work [25] employs bilinear pooling in a cross-layer manner, cap-

turing inter-layer feature relations and archiving the best performance in fine-grained recog-

nition task. While these methods mostly focus on fine-grained image recognition task, our

proposed approach is designed for camera localization problem from a feature learning and

fusion perspective.

3 Methodology

In this section, we develop our framework for regressing the camera pose directly from an

input image of the scene. Our goal is to train a network to learn a mapping f from an image

I to its absolute pose p, I
f
→ p. The mapping f is done via a neural network, composed of

a CNN feature extractor, a feature aggregator (commonly using a pooling layer) and a fully

connected pose regressor. In this paper, we focus on feature aggregator and reckon that it

should play two roles: selecting the most informative features for accurate pose regression

and fusing discriminative features that account for different poses of similar images. From

this perspective, we propose a multi-layer factorized bilinear pooling module for feature

selection and fusion. Based on this module, we design a network for camera pose regression,

whose architecture is illustrated in Figure 2.

3.1 Factorized Bilinear Pooling for Feature Correlation

Previous deep learning methods, such as PoseNet, use an average pooling layer after the

last convolution layer to gather the information of each feature channel. Although spatial

pooling methods like average pooling provide adequate information for image recognition

tasks, such feature aggregation neglects details that account for different poses in camera

localization, hence leads to improper activation. As illustrated in Figure 1(b), networks with

average pooling will activate some uninformative areas like sky or roads.

Bilinear pooling models interactions of features by computing the outer product of two

feature vectors. Compared to common first-order pooling methods, bilinear pooling brings

more powerful representations by capturing feature correlations. Thus it can encourage net-

work to suppress the activation from unrelated regions to the task. Therefore, we use bilinear

pooling to replace average pooling for feature aggregation. Figure 1(c) plots the saliency map

MLFBP

Figure 2: Network architecture of our proposed method.
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of Cambridge Landmarks dataset. Notice that bilinear pooling focuses more on distinctive

building elements, compared with the result of average pooling.

Denoting the feature maps by χ ∈R
c×hw and each feature vector by xi ∈ {xi|xi ∈R

c
, i ∈

S}, where h, w and c are the height, width, and number of channels, respectively, bilinear

pooled features can be computed as:

B(χ) = χχT = ∑
i∈S

xix
T
i (1)

However, bilinear pooling generally has a large dimensional output, e.g. c× c = 262,144

when c = 512, leading to high computational cost and a risk of overfitting. Recently, many

researchers [9, 14, 16] present factorized bilinear model to reduce the output dimensionality

of bilinear pooling. When appending a fully connected layer after bilinear pooling as a

classification layer or a projection matrix for feature embedding [16], the bilinear pooling

can be rewritten as:
z = b+Wvec(B(χ)) = b+Wvec(∑

i∈S

xix
T
i ) (2)

z j = b j +WT
j vec(∑

i∈S

xix
T
i ) = b j +∑

i∈S

xT
i WR

j xi (3)

where W ∈ R
c2×d is the projection matrix and WR

j ∈ R
c×c is a matrix reshaped from W j

which is the j-th row of W. A low-rank bilinear method is suggested to reduce the rank of

the weight matrix WR
j to have less parameters for regularization [14]. Specifically, WR

j is

decomposed as WR
j = U jV

T
j where U j and V j are one-rank vectors. So equation (3) can be

rewritten as:
z j = b j +∑

i∈S

xT
i U jV

T
i xi = b j +∑

i∈S

UT
j xi ◦VT

j xi = SumPooling(UT
j x◦VT

j x) (4)

where SumPooling is a pooling operation which sums the value of all spatial locations in

each feature map and ◦ is the Hadamard product. Redefining U,V ∈ R
c×d as low rank

projection matrices, equation (2) becomes:

z = SumPooling(UT x◦VT x) (5)

To further increase the model capacity and avoid overfitting, nonlinear activation, like tanh

or ReLU , and dropout can be added after the projection operation. We replace the traditional

average pooling by the factorized bilinear pooling to enhance the correlation of features,

encouraging the network to focus on the meaningful areas of the input image.

3.2 Multi-layer Bilinear Pooling for Feature Fusion

Some recent work show that deeper convolutional filters can work as weak part detec-

tors [22, 27] and activations from different convolutional layers can be treated as represen-

H
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H

M

Layer4_1

Layer4_3

Layer4_2

H

P

M

Hadamard Product

Projection

Multi-Layer Fusion Pooling

Bilinear Model

Feature Maps

Feature Vector

Figure 3: Multi-layer Bilinear Pooling Module.
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tations of different part properties [5, 25]. Therefore, modeling inter-layer part interactions

can help the network to extract more discriminative features. Motivated by this observa-

tion, we propose to integrate the features from multiple convolutional layers to capture the

interaction of multiple discriminative part attributes. In the recent methods of Visual Ques-

tion Answering (VQA), bilinear model has been regarded as a multi-modal fusion approach

for combining representations from different modalities into a single representation [8, 26].

In addition, Yu et al. developed a cross-layer bilinear pooling to model the interactions of

different convolution layers [25] to improve the capability of fine-grained feature learning.

Inspired by these works, we develop a multi-layer bilinear model by combining the bilinear

feature of the last block with features of the preceding two blocks in ResNet.

Using factorized bilinear pooling as a feature fusion approach, equation (5) can be further

applied between two sets of feature maps χ and γ , similar to the cross-layer bilinear pooling

operation [25]:

F(χ,γ) = SumPooling(UT χ ◦ST γ) (6)

Since the feature maps from deeper layers have semantic information which is more related

to the target task, and the bilinear feature map of the last conv layer is more informative, we

employ the bilinear features of the last layer as one of the features in equation (6). Such op-

eration can be seen as using features from preceding layers to complement the final bilinear

features. Therefore, our complete multi-layer bilinear model can be written as:

F(χ,γ,ζ ) = PTConcat(SumPooling((UT χ ◦VT χ)◦ (ST γ)),

SumPooling((UT χ ◦VT χ))◦ (WT ζ ),SumPooling(UT χ ◦VT χ))
(7)

where P ∈ R
d×n is a projection matrix for feature embedding, concat indicates concatena-

tion operation and U,V,S,W are the projection matrices of the feature maps respectively.

Different from [25], we first calculate bilinear features of the last conv layer and then fuse

the bilinear feature maps with preceding feature maps for more discriminative feature repre-

sentations. The overall multi-layer bilinear pooling module is shown in Figure 3.

3.3 Network Architecture and Loss Function

Network Architecture. Our work is built upon previous works in DNN-based pose estima-

tion methods [3, 6, 11, 12, 13, 19, 24]. ResNet-34 pretrained on Places dataset is adopted

as feature extractor backbone [3]. We replace the global average pooling layer after the last

conv layer in other camera pose regression network by our proposed multi-layer factorized

bilinear pooling module, with feature maps from the last three ResBlocks as the input of the

module. In the module we set the hyperparameter d = 8192 and n = 2048. This module pro-

duces a 2048-dimensional feature vector, followed by ReLU and dropout with rate p = 0.2.

A final fully connected layer is followed that outputs a 6DoF camera pose.

Loss Function and Parameterization. The camera pose p = [t,q] is represented by the

position t ∈ R
3 and a quaternion q ∈ R

4 for the orientation. We use the same loss function

as that in PoseNet [12]:

Li = ‖ti − t̂i‖γ +β‖qi −
q̂i

‖q̂i‖
‖γ (8)

where γ is a distance norm and we use γ = 1 in this paper, [t,q] and [t̂, q̂] are ground truth

and estimated positions and orientations, respectively. Since a quaternion q is identical to

−q, we constrain all quaternions to one hemisphere to make each rotation be a unique value.

The parameter β is the scale factor that balances the position and orientation losses. We tune
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the scale factor β to optimally learn both position and orientation simultaneously, and set

β = 500 for outdoor scenes and β = 10 for indoor scenes.

4 Experiments and Results

In this section, we present the results of our method on two well-known public datasets,

prove its efficacy and give visualized analysis to show that our bilinear model can extract

more discriminative features to improve camera localization accuracy.

Dataset. We evaluate our model on two well-known public datasets — Cambridge Land-

marks [13] for large-scale outdoor scenes and 7 Scenes [10] for small-scale indoor scenes.

Cambridge Landmarks is an outdoor dataset which was collected using a smart phone and

provides labeled video data to train and test pose regression algorithms. 7 Scenes is an

indoor dataset which contains RGB-D image sequences of seven indoor environments cap-

tured with a Kinect sensor. We follow the same training/test split of these two dataset as in

PoseNet [13].

Implementation Details. We use ResNet34 as the network backbone which is initialized

with the pretrained weight of Places dataset [28]. We implement our algorithm with PyTorch,

using the SGD optimizer with learning rate 5e−4 and a weight decay of 5e−4, and employ

the Plateau learning rate policy to reduce the learning rate. All experiments are performed

on an 11GB NVIDIA RTX 2080Ti with batch size 64 for Cambridge Landmarks and batch

size 16 for 7 Scenes. For Cambridge Landmarks dataset, the input images are rescaled to

256 × 256 pixels before cropping to the 224 × 224 pixels and normalized with the mean

and standard deviation computed from the ImageNet dataset. For 7 Scenes dataset, only

rescaling and cropping are implemented. Then we use the pixel mean and deviation same

as in MapNet [3] to normalize the cropped input images. For both datasets, we use random

crops during training and central crops during testing.

Comparison with Previous Methods. We compare our method with six state-of-the-art

CNN-based approaches: PoseNet [13], Bayesian PoseNet [11], PoseLSTM [24], PoseNet

(learn weight) [12], PoseNet (Geometric Reprojection) and MapNet [3]. MapNet only pub-

lished the results on 7 Scenes, so we only compare it on the same dataset. We compare the

median localization errors in different scenes with the previous methods as shown in Table 1.

On Cambridge Landmarks dataset, the position regression results of our model outperform

all the methods except PoseLSTM in "Old Hospital" scene. On 7 Scenes dataset, the posi-

tion results of our model outperform all the methods expect MapNet in "chess" and "office"

scene. Notice that PoseNet with Geometric Reprojection introduced depth information to

form the geometric reprojection error and MapNet minimized both the loss of the per-image

absolute pose and the loss of the relative pose between image pairs. Our methods only re-

quires a single RGB image as input, without the need of depth information or image pairs

to regress the camera pose. Nevertheless, our position results outperformed both MapNet

and PoseNet with Geometric Reprojection. The orientation results of our model are not al-

ways at the first place, but are better than those from PoseNet and Bayesian PoseNet, and are

comparable with other methods.

Ablation Study of Pooling Options. We provide an ablation study among different

pooling options for feature aggregation in camera localization. Previous methods use global

average pooling as the feature aggregator which computes the average values of each channel

of the final feature map to generate a feature vector. To extract more informative and dis-

criminative features, we propose to use bilinear pooling and multi-layer factorized bilinear
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Scene Area of Volume

Singe Image Input With Scene models provided

PoseNet Beyasian PoseNet PoseLSTM
PoseNet

(learn Weight)
ours

PoseNet

(Geometric Reprojection)

King’s College 5600 m2 1.66m, 4.86◦ 1.74m, 4.06◦ 0.99m, 3.65◦ 0.99m, 1.06◦ 0.76m, 1.72◦ 0.88m, 1.04◦

Old Hospital 2000 m2 2.62m, 4.90◦ 2.57m, 5.14◦ 1.51m, 4.29◦ 2.17m, 2.94◦ 1.99m, 2.85◦ 3.20m, 3.29◦

Shop Facade 875 m2 1.41m, 7.18◦ 1.25m, 7.54◦ 1.18m, 7.44◦ 1.05m, 3.97◦ 0.75m, 5.10◦ 0.88m, 3.78◦

St Mary’s Church 4800 m2 2.45m, 7.96◦ 2.11m, 8.38◦ 1.52m, 6.68◦ 1.49m, 3.43◦ 1.29m, 5.01◦ 1.57m, 3.32◦

Scene Area of Volume

Single Image Input With Scene models provided Image Pairs Input

PoseNet Beyasian PoseNet PoseLSTM
PoseNet

(learn Weight)
ours

PoseNet

(Geometric Reprojection)
MapNet

Chess 6 m2 0.32m, 6.6◦ 0.37m, 7.24◦ 0.24m, 5.77◦ 0.14m, 4.50◦ 0.12m, 5.82◦ 0.13m, 4.48◦ 0.08m, 3.25◦

Fire 2.5 m2 0.47m, 14.0◦ 0.43m, 13.7◦ 0.34m, 11.9◦ 0.27m, 11.8◦ 0.26m, 11.99◦ 0.27m, 11.3◦ 0.27m, 11.69◦

Heads 1 m2 0.30m, 12.2◦ 0.31m, 12.0◦ 0.21m, 13.7◦ 0.18m, 12.1◦ 0.14m, 13.54◦ 0.17m, 13.0◦ 0.18m, 13.25◦

Office 7.5 m2 0.48m, 7.24◦ 0.48m, 8.04◦ 0.30m, 8.08◦ 0.20m, 5.77◦ 0.18m, 8.24◦ 0.19m, 5.55◦ 0.17m, 5.15◦

Pumpkin 5 m2 0.49m, 8.12◦ 0.61m, 7.08◦ 0.33m, 7.00◦ 0.25m, 4.82◦ 0.21m, 7.05◦ 0.26m, 4.75◦ 0.22m, 4.02◦

Red Kitchen 18 m2 0.58m, 8.34◦ 0.58m, 8.34◦ 0.37m, 8.83◦ 0.24m, 5.52◦ 0.22m, 8.14◦ 0.23m, 5.35◦ 0.23m, 4.93◦

Stairs 7.5 m2 0.48m, 13.1◦ 0.48m, 13.1◦ 0.40m, 13.7◦ 0.37m, 10.6◦ 0.26m, 13.55◦ 0.35m, 12.4◦ 0.30m, 12.08◦

Table 1: Median localization results for Cambridge Landmarks and 7 Scenes datasets. The

best results, as well as the best results of methods with a single image as input, are shown in

bold.

(a) Median position errors in Cambridge Landmarks. (b) Median orientation errors in Cambridge Landmarks.

(c) Median position errors in 7Scenes. (d) Median orientation errors in 7Scenes.

Figure 4: Performance comparison of average pooling (AP), bilinear pooling (BP) and multi-

layer factorized bilinear pooling (MLFBP).

pooling. In Figure 4, it is obvious that bilinear pooling performs better than commonly used

average pooling, while multi-layer factorized bilinear pooling achieves the best performance.

Visualization Analysis. We use saliency maps to demonstrate that our proposed pool-

ing module can extract more informative features to improve localization accuracy and use

activation map to further demonstrate why our multi-layer bilinear pooling can extract mean-

ingful and discriminative features. Here saliency map is the magnitude of the gradient of the

mean of the network output [3] and the value of each position is the importance of each

pixel of the input image, so it reveals the informative parts. And the activation map is the

magnitude of feature activations across channels and it can reflect the effects of the bilinear

model and multi-layer fusion on feature aggregation.

We visualize the saliency maps of PoseNet, PoseLSTM ands our model in Cambridge

Landmark. Limited by the paper space, we sample a typical example as shown in Fig-

ure 5. PoseNet uses average pooling for feature aggregation traditionally and PoseLSTM

uses LSTM module for feature correlation. Compared with them, our proposed model fo-
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(a) Input (b) PoseNet (1.65m, 3.62◦) (c) PoseLSTM (1.25m, 3.01◦) (d) Ours. (0.62m, 1.08◦)

Figure 5: Comparison of the saliency map and the errors of different models. Notice that

strong responses of our proposed model lie in geometrically meaningful regions but others in

uninformative sky or roads, so that our model produces higher accuracy. Localization error

of each image is shown inside the brackets.

(a) Input (b) L1 (c) L2 (d) L3 (e) B3 (f) B1+3 (g) B2+3 (h) MB

Figure 6: Visualization of activation maps of different layers on sample images from the

Cambridge Landmarks and 7 Scenes datasets. Li: original features from Layer4_i. Bi: bi-

linear features from Layer4_i. Bi+j: features from bilinear fusion of Layer4_i and Layer4_j.

MB: multi-layer bilinear features. Note that bilinear features focus on essential parts of

objects and multi-layer bilinear features cover larger discriminative regions.

calizes main parts of the building, but relatively strong responses of PoseNet erroneously

lie in roads and that of PoseLSTM is located in parts of sky and roads. This phenomenon

indicates our modal extracts more informative features than PoseNet and PoseLSTM. From

the localization results, our method performs better than PoseLSTM, the improved variant of

PoseNet. It suggests that extracting informative features is important to improve localization

accuracy.

Compared with the original ResNet outputs in Figure 6(b)(c)(d), the bilinear feature maps

in Figure 6(e)(f)(g) have more accurate and stronger activations at highly specific semantic

parts, such as the cabinet and the chessboard, and show reduced feature activations in the

background. This suggests that the original network output only provides rough localization

of the important objects, while the bilinear model further draws attention to more essential

parts of the objects. Among bilinear feature activations in Figure 6(e)(f)(g), there are also

diversity of strongly activated regions, while all of them are more concentrated than the

original features. This indicates that different levels of features can serve as complements

to the bilinear feature of the last layer. Thus, combining multi-layer features can provide

more discriminative features than only using the bilinear features from the last conv layer. In

conclusion, our proposed multi-layer bilinear model not only focus on the essential parts for

camera localization but also finds more discriminative features from multiple layers.
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5 Conclusion

We present a novel approach for camera localization problem from the perspective of feature

aggregation. To make the features more informative and discriminative, we propose a multi-

layer factorized bilinear pooling module for feature selection and fusion. Bilinear pooling

method is employed to select features that lie in geometrically meaningful regions, and multi-

layer feature fusion helps the network to focus on the discriminative features that account for

precise locations. Through the experiments on outdoor Cambridge Landmarks dataset and

indoor 7 Scenes dataset, we show that our method improves the performance of PoseNet and

its variants using only a single image as the input for position estimation.
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