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We investigate the temperature dependence of photon coherence properties through two photon
interference (TPI) measurements from a single QD under resonant excitation. We show that the
loss of indistinguishability is only related to the electron-phonon coupling without being affected
by spectral diffusion. Through these measurements, and a complementary microscopic theory, we
identify two independent separate decoherence processes each associated to phonons. Below 10K,
we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of
TPI visibility. This process is non-Markovian in nature, and corresponds to real phonon transitions
resulting in a broad phonon sideband in the QD emission spectra. Above 10K, virtual phonon
transitions to higher lying excited states in the QD become the dominant dephasing mechanism,
this leads to broadening of the zero phonon line, and a corresponding rapid decay in the visibility.
The microscopic theory we develop provides analytic expressions for the dephasing rates for both
virtual phonon scattering and non-Markovian lattice relaxation.

Many recent developments in quantum information
processing rely on the use of solid-state qubits that can
emit indistinguishable single photons on demand [1, 2].
However, maintaining the coherence between consecu-
tively emitted photons remains a true challenge for re-
alising a deterministic source of identical photons. A
promising candidate for the development of such a source
are self-assembled semiconductor quantum dots (QDs)
embedded in photonic nanostructures [3, 4].

Despite impressive milestones in the development of
these devices, a QD naturally couples strongly to its sur-
rounding solid-state matrix, constituting an inherently
open quantum system. The excitonic degrees of freedom
are heavily influenced by the vibrational modes [5–8],
fluctuating charges [9], and nuclear spins [10] of the host
material, all of which lead to dephasing, therefore sup-
pressing the coherence properties of the emitted photons.
Decoherence may be reduced by enhancing the emis-
sion rate through the Purcell effect, or using resonant
excitation to minimise laser-induced dephasing, leading
to bright single-photon sources with near unity indistin-
guishability [11–15].

Still, there are a number of open questions regarding
the role of phonon processes on the coherence properties
of emitted photons. Recent experimental and theoreti-
cal work has demonstrated the importance of a micro-
scopic model to understand the role of phonons on the
emission properties of QDs [8, 16–26]. Examples include
excitation-induced dephasing of excitonic Rabi oscilla-
tions [5, 27]; sideband linewidth in resonance fluorescence
(RF) [21, 28, 29]; and temperature-dependent Rabi fre-
quency renormalisation [6, 21]. In the examples given,

the excitonic degrees of the QD are assumed to couple
linearly to the phonon environment, inducing thermal-
isation in the QD eigenbasis [7, 8], leading to a broad
non-Markovian sideband in the QD emission spectra [30].

Here, we present a combined experimental and theo-
retical investigation of the coherence properties of pho-
tons emitted by a quantum dot, allowing us, unambigu-
ously, to separate real and virtual de-coherence processes
due to phonons and their temperature dependencies. To
do so, we take temperature dependent measurements
of two-photon interference (TPI) in a Hong-Ou-Mandel
(HOM) configuration using strictly resonant excitation
conditions. We show that TPI measurements are not af-
fected by spectral diffusion due to fluctuating charges, as
this process is slow compared to the emission time inter-
val between the two interfering photons. Therefore loss of
indistinguishability is attributed only to electron-phonon
scattering. Through temperature dependent TPI mea-
surements, we demonstrate that linear electron-phonon
coupling is not sufficient to capture the trend in TPI vis-
ibility. In order to describe the behaviour observed, we
develop a microscopic model, based on polaron theory,
to include phonon induced virtual transitions to higher
lying states in the QD [31, 32]; this leads to temperature
dependent broadening of the Zero Phonon Line (ZPL).
Our formalism, allows us to derive analytic forms for
the dephasing due to both virtual phonon processes and
non-Markovian lattice relaxation. This provides novel
insights into the dephasing mechanisms relevant to QD
based single photon sources.
Experiment - In contrast to previous temperature

dependent TPI measurements [33], our geometry (see
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FIG. 1. (a) Scheme of the experimental set-up. A tunable
Ti:sapphire (82 MHz) laser delivers 3-ps pulses and, for HOM
experiments, pairs of pulses separated by 3 ns. The laser is
focused by a microscope objective on the cleaved edge of one
ridge and the RF is collected from the top surface by a second
microscope objective. The sample and the two objectives are
inside a closed-cycle He temperature-variable cryostat. The
signal is coupled to a fibered set-up for either standard spec-
troscopy, or Michelson interferometry (g(1)) or TPI experi-

ments (g(2)) using a 3 ns unbalanced Mach-Zenhder interfer-
ometer. (b) Scanning electron microscopy image of one ridge
with the dots schematically drawn in the layer.

Fig. 1) [34] allows us to use strictly resonant (s-shell)
excitation removing dephasing due to relaxation from
higher excited states and time-jitter [35]. Furthermore,
the only filtering used in our measurements is due to
a low-Q cavity which increases the collection efficiency.
We present results on three different self assembled
InAs/GaAs QDs from different samples (labelled QD1,
QD2 and QD3 hereafter) excited with resonant π-pulses.
Depending on the QD under study, an additional very
weak (few nW) He-Ne laser is added to enhance or re-
cover the RF as reported previously [15, 36, 37]. Exper-
imental details can be found in the Supplemental Mate-
rial [38].

The coherence time T2, corresponding to the width
of the RF line, can be measured by Fourier transform
(FT) spectroscopy using a Michelson interferometer. The
contrast of the interference fringes is adjusted by a
pseudo-Voigt profile, with an inhomogeneous contribu-
tion η (see [38]), usually attributed to spectral diffusion
effects [39]. In Table I we give the values of the measured
radiative lifetime T1, of η and the ratio T2/2T1 for the
three QDs. The corresponding FT spectra for the three
QDs are given in Fig. 2 of the Supplemental Material [38].

Second-order correlation measurements have been per-
formed, allowing characterisation of the single-photon
emission purity and indistinguishability. Fig. 2 shows the
results obtained for QD1 at 4 K. Single-photon inter-
ferences in a Hanbury-Brown-Twiss (HBT) experiment
(Fig. 2a) clearly show an antibunching with a low mul-

tiphoton probability g
(2)
HBT, the values are given for the

three QDs in Table I. We attribute the background cor-
relations at 0 and ±3 ns delay to the remaining scat-
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FIG. 2. Second-order correlation measurements for QD1 at
4K for one hour acquisition time. (a) Coincidences histogram

for HBT experiment, we extract g
(2)
HBT = 0.12 ± 0.02. (b)

Coincidences histogram for TPI experiment. After correction
by the remaining laser background, we obtain VTPI = 0.79±
0.03.

tered laser. The unusual shape of the histogram of coin-
cidences is explained by the fact that the single photons
pass through the two arms of the Mach-Zehnder interfer-
ometer used for the HOM setup (see Fig. 1a and [38]). A
multi-exponential decay fit (red line) is used to extract

the value of g
(2)
HBT taking into account the overlapping of

the different peaks. Fig. 2b shows the raw histogram of
the TPI coincidences for QD1 at 4 K. The signature of
the indistinguishability of two successively emitted pho-
tons corresponds to the small area of peak 2 compared
with peaks 1 and 3. The TPI visibility VTPI (see Table I)
is deduced from the second-order correlation function at
zero delay g

(2)
HOM corrected by the remaining scattered

laser and by the experimental imperfections (contrast of
the Mach-Zehnder interferometer and not perfect 50/50
fibered beam splitters) [38, 40].

In the literature, it is commonly accepted that the
visibility of TPI experiments can be obtained from the
ratio T2/2T1, assuming random dephasing processes by
phonons and charges [41], and labelled Ṽ hereafter. The
values of Ṽ are given in Table I and correspond to a
poor degree of indistinguishability. This is in strik-
ing contrast with the results obtained by TPI experi-
ments where VTPI ∼ 0.80 for all QDs at 4 K. The sig-
nificant difference can be explained by recognising the
distinct characteristic timescales of the two kind of ex-
periments which probe different physical dephasing pro-
cesses [11, 12, 33, 42, 43]. Indeed, because of the long

T1 (ps) η T2/2T1 g
(2)
HBT VTPI Ṽ

QD 1 1100 0.45 0.35 0.12 0.79 0.33

QD 2 750 0.55 0.23 0.11 0.83 0.22

QD 3 670 0.10 0.71 0.07 0.83 0.68

Errors 2 % ±0.1 10 - 15 % ±0.02 ±0.04 10 - 15 %

TABLE I. Values of the experimental parameters (see text for

definitions) for the three QDs under resonant excitation. Ṽ
is the expected TPI visibility from T1 and T2 measurements
assuming random dephasing processes (see text).
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FIG. 3. Plot showing the visibility of the measured TPI for
QD1 as a function of temperature (black points). The data
are fitted with Eq. 2; the full expression is used to produced
the solid red curve, which fits accurately over the full temper-
ature range. The dashed purple curve, shows only the effect
of the phonon sideband on the TPI visibility.

acquisition time (seconds) during T2 measurements, the
visibility Ṽ integrates the interaction processes with the
acoustic phonon bath (ps range) and the electrostatic en-
vironment (µs range [44]). In contrast, TPI experiments
have a characteristic timescale defined by the nanosec-
ond time-delay between pulses, therefore only the QD–
acoustic phonon interactions are probed, thus leading to
a much higher visibility. This is corroborated by the
inhomogeneous contribution η, which is large when the
interaction between the QDs and the charges is domi-
nant [39], and corresponds then to low value of Ṽ . At
variance with our results, it has been recently reported
that TPI experiments probe both charge fluctuations and
phonon-induced dephasing [11, 33]. However, in these
experiments a non-resonant excitation has been used ex-
plaining a probable laser-induced dephasing. Moreover,
very recently, Wang et al. [45] have also shown by increas-
ing the time-delay between the emission of the two pho-
tons, that spectral diffusion has no effect (in the ns range)
on the visibility when the QD is resonantly pumped.

The clear separation of timescales described above
means that TPI measurements effectively isolate the
phonon processes from other dephasing mechanisms.
Thus, through temperature dependant TPI experiments
performed on a resonantly-driven single QD we can di-
rectly asses the importance of phonon processes on the
coherence properties of subsequently emitted photons.
The measured VTPI as a function of the temperature for
QD1 is presented in Fig. 3 where a clear loss of indis-
tinguishability around 10 K is observed. To describe this
behaviour below we develop a theoretical model, which
fully captures the observed trend in visibility.

Microscopic model - In principle, the many-body
electron-phonon interaction Hamiltonian contains all
possible electronic configurations of the QD [46]. How-
ever, when calculating the effect of phonons on the exci-
ton dynamics the energy separation between the s- and
p-orbitals of the QD is typically a few tens meV, and
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FIG. 4. Schematic of real and virtual transition in a QD
(left). (a) and (b) show the impact of these transitions to the
QD spectra. Virtual transitions give broadening of the ZPL
as in (a). Real transitions lead to a broad phonon sideband
illustrated in (b).

thus significantly higher than the average phonon ener-
gies in low temperature experiments. With this in mind,
any transitions from the first excited to another elec-
tronic state of the QD must be virtual in nature. Follow-
ing Muljarov and Zimmerman [31] we derive an effective
Hamiltonian theory [47], treating the charge density op-
erator as a perturbation, with the first- and second-order
terms capturing real and virtual phonon transitions re-
spectively, as shown schematically in Fig. 4.

We start by explicitly considering the ground state
|0i, and single exciton in the s-shell denoted |Xi, with
excitonic splitting !X . By using an effective Hamilto-
nian theory [47] we can eliminate off diagonal transi-
tions to higher lying phonon states [31], yielding the
Hamiltonian, H = H0 + |Xi〈X|(V̂ + V̂Q). Here H0 =

!X |Xi〈X|+∑
k
νkb

†
k
bk is the free Hamiltonian of the QD

and phonon environment, where bk is the annihilation op-
erator of a phonon with wave vector k and frequency νk.
The electron-phonon interaction has two contributions,
the first is the standard linear electron-phonon coupling
V̂ =

∑

k
gk(b†

k
+ bk), describing the displacement of the

lattice due to the change in charge configuration of the
QD [8]. The coupling strength is quantified through the
matrix element gk =

∑

a=e,hM
11
a,k, where for deforma-

tion potential coupling,

M ij
a,k =

√

νk
2̺c2sV

Da

∫

d3rψ∗
ia(r)ψja(r)eik·r,

is the matrix element corresponding to phonon induced
transition between the ith- and jth electronic states. Here
̺ is the mass density, cs is the speed of sound in the mate-
rial, and V is the phonon normalisation volume. This ma-
trix element is dependent on the wavefunction ψi,e/h(r),
of the confined electron/hole, and the corresponding de-
formation potential Da.

The second term is quadratic in phonon operators [31]

VQ =
∑

k,k′ fk,k′(b†
k

+ bk)(b†
k′ + bk′), and describes vir-

tual phonon transitions between the first exciton state
and higher lying excited states. The effective coupling
strength for the quadratic coupling takes the form fk,k′ =



4

∑

a=e,h

∑

j>1M
1j
a,kM

j1
a,k′ [!a

m − !a
1 ]−1, where !

e/h
m is the

energy of the mth electron/hole energy level.

To model the impact of the phonon processes on the
photon indistinguishability we make use of the polaron
transformation [8, 16, 18, 48] through the operator, U =

|0i〈0| + |Xi〈X|eS , where S =
∑

k
gk(b†

k
− bk)/νk. This

transformation leads to a state dependent displacement
of the phonon environment, removing the linear electron
phonon coupling. Applying this transformation to our
quadratic Hamiltonian we obtain HV = U†HU = (!̃X +

V̂Q)|Xi〈X| +
∑

k
νkb

†
k
bk. Notice the residual quadratic

electron-phonon coupling, and that the QD resonance is
shifted !̃X = !X +

∑

k
g2
k
/νk . From this Hamiltonian

we may derive a master equation for the reduced density
matrix of the QD in the polaron frame, χ, which takes
the simple pure dephasing form:

χ̇(t) = −i!̃X

[

σ†σ, χ(t)
]

+ ΓLσ[χ(t)] + 2γpdLσ†σ[χ(t)],

where σ = |0i〈X| is the dipole transition operator, and
LO[χ] = OχO† −

{

O†O,χ
}

/2. Here Γ is the radiative
recombination rate of the QD. If we consider only virtual
transitions between the lowest exciton states and the next
highest states [49], then we may find an analytic form
for the pure dephasing rate due to the virtual phonon
transition [38]:

γpd =
α2µ

ν4c

∞
∫

0

ν10e−2ν2/ν2
cn(ν)(n(ν) + 1)dν, (1)

where n(ν) = [e−βν−1]−1. α and µ describe the electron-
phonon coupling strength and the probability of virtual
phonon processes respectively. The cut-off frequency, νc,
is directly related to the QD confinement length.

To calculate the visibility of two photon interference
we must associate the excitonic degrees of freedom in
the QD to the emitted field. In the polaron frame one
obtains the Heisenberg picture field operator Ê(t) =
√

Γ/2πσ(t)B−(t), where the standard expression for a
dipole emitter is modified by the phonon displacement
operator B±(t) = e±S(t) [24, 26]. With this expres-
sion we obtain the polaron frame first-order correlation
function, g(1)(t, τ) = Γ

2π 〈B+(τ)B−i〈σ†(t + τ)σ(t)i. The
second term in this equation describes emission through
the ZPL. The first term is the phonon correlation func-
tion which takes the form 〈B+(τ)B−i = B2 exp(ϕ(τ)),
where B = exp(−ϕ(0)/2) is the Frank-Condon factor,
and ϕ(τ) = α

∫∞

0
ν exp(−ν2/ν2c )(coth (βν/2) cos(ντ) −

i sin(ντ))dν. This function decays on a timescale related
to the inverse of the cut-off frequency, which is typi-
cally on the order of picoseconds, leading to a the broad
phonon sideband in the spectra of the system. A detailed
derivation of these expression is given in the supplement.

Following Ref. [26] we obtain an analytic form for the
indistinguishability including the phonon sideband con-

tribution [38]:

I =
Γ

Γ + 2γpd

( |h(0)|2B2

|h(0)|2B2 + F(1 −B2)

)2

, (2)

where |h(0)|2 = (κ/2)2(δ2 + (κ/2)2)−1 with κ the cavity
width and δ the QD–cavity detuning. The first factor
gives the contribution of photons emitted through the
ZPL, while the second describes the reduction of the
indistinguishability from photons emitted through the
phonon sideband. The temperature dependent factor, F ,
quantifies the unfiltered fraction of the phonon sideband
extracted from the low-Q cavity [50].

We use the above expression to fit the experimental
data given in Fig. 3, using a least min squared fitting,
we find an optimum fit for parameters α = 0.0082 ps2,
νc = 7.9 ps−1 and µ = 4.4 × 10−4ps2. α and µ depend
only on the material parameters and reasonable agree-
ment is found when compared to the theoretical values.
The cut-off frequency gives a characteristic confinement
length of the order of one nanometre which is the right
order of magnitude for typical self assembled QD. The
fit captures the qualitative and quantitative behaviour of
the data. Furthermore, from the simple form of the ex-
pression given in Eq. 2, we can analyse the contributions
to the indistinguishability due to the phonon sideband,
and the virtual transitions to higher lying QD states.
Similar results have been obtained on QD2 and are pre-
sented in the Supplemental Material [38].

Below 10 K, the average energy of phonons kBT is not
sufficient to induce virtual transitions (γpd ≪ Γ). If we
use the extracted parameters to consider only the side-
band contribution (dashed curve) we observe a good fit at
low temperatures, with a ∼ 10% reduction in the indis-
tinguishability, suggesting that emission via the phonon
sideband is the principal cause for the reduction of TPI
visibility. However, above 10 K the data demonstrate a
rapid decrease in the indistinguishability not captured
by the sideband theory. At these temperatures kBT is
sufficient to induce virtual transitions between the s−
and p−states of the QD, leading to pure dephasing of
the ZPL (γpd ∼ Γ), and consequently a suppression of
the indistinguishability.

The fact that real and virtual phonon processes oc-
cur on separate temperature scales is of vital importance
to the development of solid-state single photons sources.
Although the phonon sideband is a persistent problem at
low temperatures, it may be easily removed through spec-
tral filtering, or use of a high Q-cavity [26]. Though this
could reduce the efficiency of the source, transform lim-
ited photons may be obtained as γpd ≈ 0 at low temper-
ature. In contrast, the broadening of the ZPL cannot be
removed through simple filtering, instead one must rely
on Purcell enhancement to reduce its influence. However,
the sensitivity of virtual phonon processes to tempera-
ture will place significant limitations on the operating
regimes of QD systems.

In summary, through temperature dependent TPI
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measurements, we have demonstrated that both real and
virtual phonon transitions, occurring on very different
timescales, play a role in reducing the indistinguishability
of photons emitted from QDs under resonant excitation.
Using a rigorous microscopic theory, we provide analytic
expressions for the dephasing due to these mechanisms,
providing new insights into potential operating regimes
of QD single photon sources. Furthermore, we expect
such a general microscopic approach could be used to de-
scribe other specific discrete quantum systems coupled to
a bosonic reservoir.
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[17] M. Glässl, L. Sörgel, A. Vagov, M. D. Croitoru, T. Kuhn,
and V. Axt, Phys. Rev. B 86, 035319 (2012).

[18] C. Roy and S. Hughes, Phys. Rev. Lett. 106, 247403
(2011).

[19] P. Kaer, T. R. Nielsen, P. Lodahl, A.-P. Jauho, and
J. Mørk, Phys. Rev. B 86, 085302 (2012).

[20] A. Majumdar, E. D. Kim, Y. Gong, M. Bajcsy, and
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der, M. Kamp, S. Höfling, C. Y. Lu, and J. W. Pan,
Phys. Rev. Lett. 116, 213601 (2016).

[46] G. D. Mahan, Many-particle physics (Springer, 2013).
[47] C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, and

P. Thickstun, Atom-photon interactions: basic processes
and applications (Wiley Online Library, 1992).

[48] K. Roy-Choudhury and S. Hughes, Phys. Rev. B 92,
205406 (2015).

[49] This is a manifold of three degenerate states with p-
symmetry.

[50] The value of F varies between 0.19 for T ∼ 4 K and 0.33
for T ∼ 22 K.

http://dx.doi.org/10.1103/physrevlett.116.213601
http://dx.doi.org/10.1103/PhysRevB.92.205406
http://dx.doi.org/10.1103/PhysRevB.92.205406


7

SUPPLEMENTARY MATERIAL

SAMPLES AND EXPERIMENT

InAs/GaAs self-assembled QDs were grown by molecular beam epitaxy (MBE) on a planar (001) GaAs substrate
and embedded in a planar microcavity made of unbalanced Bragg mirrors, with 24 pairs below and 12 pairs above the
QDs. To create single-mode one-dimensional waveguides, ridges ranging from 1µm to 3µm wide, depending on the
sample, were etched approximatively 1.5µm deep by inductively coupled plasma etching. Passivation of the surface
has further improved the quality of the heterointerfaces, leading to an important suppression of the scattered laser
and allowing the realization of resonant excitation [1, 2]. Indeed, in this geometry, the excitation laser propagates
along the 1D waveguide, while RF is collected in a perpendicular direction as shown in Fig. 1a of the main text. The
cavity has little effect as a spectral filter but rather enhances the QDs RF collection by a factor of 20 to 50. The
quality factor is rather low around Q ∼ 200 − 300 corresponding to width κ ≈ 4 − 5 meV. We show in Fig. 5 high
power non resonant excitation spectra for QD1 and QD2. We clearly see that only the QDs in the cavity mode can be
observed and we extract the transfer function of the cavity by fitting the background luminescence (removing the QDs
luminescence). We indicate by an arrow the luminescence lines of QD1 and QD2 on which TPI have been performed
and we extract for each one the width of the cavity and the detuning between the QDs under study and the cavity
mode. These values are used in the fitting procedure in Fig. 3 of the main text and in Fig. 9 in the Supplement.

κκ

FIG. 5. High power non resonant excitation spectra for QD1 and QD2 at 4K. The red line is the transfer function of the cavity
and is extracted by fitting the background luminescence (removing the QDs luminescence). The single exciton transition used
in each sample is indicated in the figure by the arrow.

FOURIER TRANSFORM SPECTROSCOPY MEASUREMENTS

We determine the coherence time T2 of the RF of the QDs from first-order correlation function measurements using
a Michelson interferometer. As said in the main text, the contrast of the interference fringes is fitted by a pseudo-Voigt
profile (see Eq. (3)) which allows to extract T2 and the inhomogeneous contribution η.

f(t) = (1 − η)e−|t|/T2 + ηe−(t/T2)
2

(3)

This inhomogeneous contribution gives rise to a Gaussian shape of the interference contrast and reflects the slight
energy shift of the RF because of fluctuating charges trapping in the vicinity of the QD [3, 4]. Figure 6 shows the
results of Fourier transform spectroscopy (FTS) for the three QDs mentioned in the main text. The errors on T2
are of the order of 10 − 15 % for QD 1 and 3 of the order of 5 % for QD 2. They are mainly due to the path-length
difference between the two arms of the interferometer that should be large compare to cT2, c being the light velocity.
For the same reason, the errors on η are of the order of 0.1.

SECOND ORDER CORRELATION FUNCTION AND TPI VISIBILITY MEASUREMENTS

Second order correlation function for HBT experiment

As said in the main text, the unusual shape of the histogram of coincidences for HBT experiment is due to the fact
that the single photons pass through the two arms of the Mach-Zehnder interferometer used for the HOM setup (see
Fig. 1a in the main text). For this experiment, the laser delivers single 3-ps pulses at 82MHz. The contribution to
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FIG. 6. Fourier transform spectra for the three studied QDs. The acquisition time for each position of the delay line is 1 s
which means that we average all decoherence processes that take place at shorter time scale. The red solid lines are fits using
Eq. (3).

the coincidences histogram at 0 and ±3 ns is attributed to the remaining scattered laser. Indeed, the peak labelled
2 (at zero delay) in Fig 2a of the main text, corresponds to coincidences of photons taking the same path of the
Mach-Zenhder interferometer. The peaks labelled 1 and 3 (at ±3 ns delay) are due to coincidences of photons taking
each a different path of the Mach-Zenhder interferometer.

We measure g
(2)
HBT by normalizing the three central peaks integrated intensity by the averaged integrated intensity

of the two three-peaks bunches at (12, 9, and 15 ns) and (-12, -9, and −15 ns). The red solid-line corresponds to a
multi-exponential decay fit which allows to take into account the overlapping of the different peaks.

TPI visibility

To extract a quantitative value of the second order correlation function at zero delay for HOM experiment g
(2)
HOM,

we follow a procedure close to the one describes in ref. [5]. This method has the advantage to take into account the
presence of the remaining scattered laser (obtained by HBT measurements) and the imperfections of the experimental
setup. The coincidence histograms for HBT and HOM experiments are fitted by a multi exponential decay allowing to
extract the value of AHBT

i and AHOM
i (i ∈ {1, 2, 3}) which are respectively the areas of the peak labeled i in Figure 2a

and b of the main text. In the case of an ideal experimental setup and for perfect single photon emitter, the value of
the second order correlation function at zero delay for HOM experiment would be given by:

g
(2)
HOM(0) =

AHOM
2

AHOM
1 + AHOM

3

(4)

The first deviation to the ideal case describes above is due to the presence of the remaining scattered laser mixed
to the luminescence of the QD and send into the Mach-Zehnder interferometer. The areas of the peak 1, 2 and 3 are
then corrected as follow:

Bi = AHOM
i − 2

tHOM

tHBT
AHBT

i (5)

where tHBT and tHOM are the acquistion times for HBT and HOM experiments respectively. This correction shown
in Figure 7a and b allows to remove from the HOM histogram the laser/QD coincidences. The factor 2 comes to
the fact that for HOM experiment two pulses are sent into the interferometer. This procedure is equivalent to the
presence of the terms proportional to 2g in equation 2 of ref. [5] without assuming that the parameter g characterises
the two-photon emission probability but only characterising the multi-photon emission probability. Note that these
two procedures neglect the coincidences due to the laser between the two pulses.

The second deviation to the ideal case is due to the contrast of the Mach-Zenhder interferometer C 6= 1 and
not perfect 50/50 fibered beam splitter (FBS). In our case we measured, R = 0.430 ± 0.005, T = 0.570 ± 005 and
C2 = 0.98 ± 0.02. The value of the TPI visibility is then given by

VTPI =
R2 + T 2

2RTC2

(

1 − g
(2)
HOM

)

(6)
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FIG. 7. (a) Fits for the three central peaks for HOM (solid line) and HBT (dashed line) experiments for QD 1 at T = 4K
presented in Fig. 2 of the main text. For the HBT contribution, the fits have been multiplied by the factor 2tHOM/tHBT. (b)
Result of Eq. (5) allowing to take into account the remaining laser background.

EFFECTS OF THE PRESENCE OF AN HE-NE LASER ON THE TPI VISIBILITY

Let us notice that for QD1 we used a few nW of an additional He-Ne laser to enhance the RF while for QD2 and
QD3 this non resonant laser allows to recover the RF [2, 6]. We show here that this He-Ne laser has no influence on
the measured TPI visibility, by presenting results on QD1 at 4 K without the He-Ne laser (see Fig. 8). We measured
VTPI = 0.80 ± 0.05 whereas VTPI = 0.79 ± 0.03 with a low power of He-Ne laser (see Fig. 2 of the main text).
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FIG. 8. Second-order correlation measurements for QD1 at 4K without He-Ne laser to enhance the RF for tHBT = 8500 s and

tHOM = 5200 s. (a) Coincidences histogram for HBT experiment, we extract g
(2)
HBT = 0.14 ± 0.02. (b) Coincidences histogram

for TPI experiment. After correction by the remaining laser background, we obtain VTPI = 0.80± 0.05.

QUADRATIC ELECTRON-PHONON COUPLING

We start by consider the general electron-phonon coupling Hamiltonian He−ph = H0 + HI . Here H0 =
∑

m !m|mi〈m| +
∑

k
νkb

†
k
bk is the energy of the uncoupled QD and phonon environment, where |mi is the mth

electron-hole states of the QD and !m is its energy. The k
th-mode of the phonon environment is described by the

creation and annihilation operators, b†
k

and bk respectively, with frequency νk. For linear electron-phonon coupling [7],
the interaction Hamiltonian is given by:

HI =
∑

k

Mkρ(k)(b†
k

+ bk), (7)

where Mk = kv(k)/
√

2̺Vνk is the phonon matrix element, here ̺ is the mass density of the material, V is the
phonon quantisation volume, and v(k) is the deformation potential energy of the phonons. We have also defined

ρ(k) =
∫

d3reik·rρ(r) as the Fourier transform of the particle density operator ρ(r) =
∑

jj′ ψ
∗
j (r)ψj′(r)c†jcj′ , where c†j

is the fermionic creation operator of the jth-electronic state, and ψj(r) is its corresponding wavefunction.

This Hamiltonian couples all electronic states together through phonon transitions. To simplify our dynamical
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description of the system we follow Muljarov and Zimmerman [8]. This involves removing the off-diagonal transitions
to higher lying excited states in the QD through an effective Hamiltonian approach [9], restricting our description to
a TLS system with ground state |0i and the single exciton state |Xi, with splitting !X . This results in a Hamiltonian
that is quadratic in the electron-phonon coupling [8]:

H = !X |Xi〈X| + |Xi〈X|





∑

k

gk

(

b†
k

+ bk

)

+
∑

k,k′

fk,k′

(

b†
k

+ bk

)(

b†
k′ + bk′

)



+
∑

k

νkb
†
k
bk. (8)

The coupling constants are given by:

gk = 〈X|Mk̺(k)|Xi and fk,k′ =
∑

m>1

〈X|Mk̺(k)|mi〈m|Mk′̺(k′)|Xi
!X − !m

, (9)

where fk,k′ contains a sum over the states |mi describing the electronic configurations of the QD. We can gain analytic
expressions for these coupling constants by assuming the electron/holes in the QD are in an isotropic harmonic
potential, and the QD has mirror symmetry (i.e. the electron and hole experience the same confinement potential).

The linear coupling takes the standard form gk = (2̺Vcs)−1/2
√
k(De −Dh)e−c2

s
k2/2ν2

c , where we have assumed linear
dispersion for the phonons with speed of sound cs, and we have introduced the cut-off frequency of the phonon
environment νc.

For the quadratic coupling, we consider only virtual transition between the lowest excited state and the first
manifold of next excited states. This yields:

fk,k′ = −
∑

j∈{x,y,z}

cs
2̺Vν2c

(

D2
e

∆e
+
D2

h

∆h

)√
kk′kjk

′
je

−
c
2
s
(k2+k

′2)

2ν2
c , (10)

where kj are the Cartesian components of the wavevector.

POLARON TRANSFORMATION AND MASTER EQUATION

To derive an equation of motion for the above Hamiltonian, we make use of the polaron transformation, Up =

|Xi〈X|eS + |0i〈0|, where S =
∑

k ν
−1
k
gk(b†k − bk) [10]. Applying this to the Hamiltonian in Eq. 8, we obtain:

HV =

(

!X −
∑

k

g2
k

νk

)

|Xi〈X| +
∑

k

νkb
†
k
bk + |Xi〈X|

∑

kk′

fk,k′(b†
k

+ bk)(b†
k′ + bk′), (11)

where any residual linear coupling is zero due to spherical symmetry. We now wish to use this Hamiltonian to derive
a second-order master equation for the density operator of the QD, χ(t), which simply takes a pure dephasing form:

∂χ(t)

∂t
= −i [!̃x|Xi〈X|, χ(t)] + ΓLσ[χ(t)] + 2γpdLσ†σ[χ(t)], (12)

where !̃X = !X−
∑

k
g2
k
/νk is the polaron shifted resonance of the TLS, and LO[χ] = OχO†−

{

O†O,χ
}

/2. Notice that
have introduced a second dissipator to account for the optical transition in the QD with lifetime Γ. The pure dephasing

rate is then given by γpd = Re
[

∑

k,k′

∫∞

0
dτ |fk,k′ |2〈Bk(τ)Bk′(τ)Bk(0)Bk′(0)i

]

, where Bk(τ) = b†
k
eicskτ + bke

−icskτ .

We can make a technical simplification by assuming that the dominant contribution to the virtual phonon scattering
occurs due to phonons scattering into different modes, that is only scattering processes where k 6= k

′. This allows us
to factorise the k and k

′ components such that:

γpd =
π

cs

V2

(2π)6

∫

d3k

∫

d3k′|f(k,k′)|2 {n(k′)(n(k) + 1)δ(k − k′) + n(k)(n(k′) + 1)δ(k − k′)} , (13)

where we have taken the continuum limit and used the definition of the δ-function, δ(x) = π−1 Re[
∫∞

0
dτeixτ ]. We

have also defined the bosonic occupation number n(k) = [exp(−βνk)− 1]−1, where β−1 = kBT is the thermodynamic
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temperature. Resolving the δ-function, and using spherical symmetry we obtain:

γpd =
α2µ

ν4c

∞
∫

0

ν10e−2ν2/ν2
cn(ν)(n(ν) + 1)dν, (14)

where we have assumed linear dispersion to write the above in terms of frequency, and we have defined the constants
α = [4π2̺c5s]−1(De −Dh)2 and µ = π[De −Dh]−4(∆−1

e D2
e + ∆−1

h D2
h)2.

INDISTINGUISHABILITY IN THE POLARON FRAME

We now wish to calculate the indistinguishability/visibility of two photon interference. To do so, we use the
definition of the indistinguishability in frequency space [26]:

I = P−2

∞
∫

−∞

d!

∞
∫

−∞

dν|S(!, ν)|2, (15)

where S(!, ν) = 〈Ê†(!)Ê(ν)i =
∫∞

0
dt1
∫∞

0
dt2g

(1)(t1, t2)e−iωt1eiνt2 is the generalised two-colour spectrum,

g(1)(t1, t2) = 〈Ê†(t1)Ê(t2)i is the first-order correlation function, and P =
∫∞

−∞
〈Ê†(!)Ê(!)id! is the total light

emitted from the QD. Ê(t1) and Ê(!) are the Heisenberg picture field operators written in the time- and frequency-
domain respectively.

In order to relate the detected field operators to the emission of the QD, we must account for emission via the
sideband and spectral filtering due to the cavity. Though the low-Q cavity is much broader than the ZPL, its
presence will lead to some filtering of the phonon sideband. In frequency space the field after the filter takes the
form Ê(!) = h(!)ÊQD(!), where h(!) = (κ/2)[i(! − δ) + (κ/2)]−1 with κ defined as the cavity width, δ the

cavity-QD detuning, and where ÊQD(!) is the unfiltered field operator of the QD. In the time domain the QD

field in the polaron frame is given by ÊQD(t) =
√

Γ/2πσ(t)B−(t), where B± = e±S is the displacement operator
of the phonon environment [11, 12]. With this definition the first order correlation function for the QD becomes
g(1)(t, τ) = 2πΓ〈B+(τ)B−i〈σ†(t + τ)σ(t)i, where the first term describes the phonon sideband, and the second
the zero phonon line contribution to the spectra [11]. Using the quantum regression theorem, in addition to the
master equation given in Eq. 12, we can write an analytic form for the first order correlation function g(1)(t, τ) =
2πΓB2G(τ) exp(−Γt− (Γ + 2γpd)τ/2), where G(τ) = exp(ϕ(τ)) is the phonon correlation function, B = exp(−ϕ(0)/2)
is the Franck-Condon factor, and ϕ(τ) =

∫∞

0
dνν−2J(ν) (coth (ν/2kBT ) cos(ντ) − i sin(ντ)). We have introduced the

spectral density J(ν) =
∑

k
|gk|2δ(ν − νk) = αν3 exp(−ν2/ν2c ).

By recognising that phonon processes occur on a time scale much faster than optical transitions, we can separate
the phononic and photonic contributions [11] in the generalised two colour spectrum such that S(!, ν) = SZPL(!, ν)+

SSB(!, ν), where SZPL(!, ν) = B2h(!)∗h(ν)Γ(i(!−ν)+Γ+2γ)
[(

1
2 (Γ + 2γ) − iν

)

(Γ − i(ν − !))
(

1
2 (Γ + 2γ) + i!

)]−1
,

which reduces to a (Lorentzian filtered) Lorentzian line shape when ! = ν. The term associated with the sideband is
given by SSB(!, ν) = SSB(!, ν) + S∗

SB(ν, !), with

SSB(!, ν) ≈ B2h∗(!)h(ν)

∞
∫

0

dtei(ν−ω)tg(1)(t, 0)

∞
∫

0

dτ(G(τ) − 1)e−iωτ =
ΓB2h∗(!)h(ν)

Γ − i(ν − !)
SPH(!) (16)

where we have defined the sideband spectrum SPH(!) =
∫∞

0
dτ(G(τ) − 1)e−iωτ .

The phonon sideband is purely incoherent, thus it does not contribute to the numerator in the indistinguishability.
Furthermore, making the approximation that the cavity is flat across relevant ZPL features, we can set h(!) ≈ h(0),
and we therefore obtain I ≈ 4π2|h(0)|4P−2B4Γ[Γ + 2γpd]−1. Using again that the cavity is much broader than the
ZPL, we approximate P ≈ |h(0)|2PZPL + FPSB, where PZPL =

∫∞

−∞
SZPL(!, !)d! = 2πB2 is the power in the ZPL,

and PSB = 2π(1−B2) is the power in the phonon sideband in the absence of a filter, while F = P−1
SB

∫∞

−∞
SSB(!, !)d!

is the fraction of the phonon sideband not removed by the filter or cavity. Putting this together, we obtain:

I =
Γ

Γ + 2γpd

( |h(0)|2B2

|h(0)|2B2 + F [1 −B2]

)2

, (17)

which is Eq. (2) in the main text.
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of the phonon sideband on the TPI visibility. The phonon parameters extracted from the fitting procedure are α = 0.0071 ps2,
νc = 11.9 ps−1, µ = 5.6× 10−4ps2.

For the fitting procedure, we can simplify this expression further by assuming weak electron–phonon coupling.
Here, the phonon correlation function G(τ) = exp(ϕ(τ)) ≈ 1 − ϕ(τ), where we have considered only terms first-order
in α. The fraction of sideband unfiltered is given by F = 2B2P−1

SB

∫∞

−∞
d!|h(!)|2 Re[SPH(!)]. We can now carry out

the Fourier transform of the phonon correlation function analytically, such that

Re[SPH(!)] ≈ Re





∞
∫

0

ϕ(τ)e−iωτdτ



 = πα!e−ω2/ν2
c

(

coth

(

βν

2

)

− 1

)

, (18)

where we have invoked the definition of the δ-function. Using this expression, the filtered fraction becomes:

F = P−1
SB

∫ ∞

−∞

|h(!)|2!e−ω2/ν2
c coth

(

β!

2

)

d!. (19)

TPI VISIBILITY FOR QD2

We present in Fig. 9 temperature dependent measurement of the TPI visibility for QD2. These experiments were
realized in another cryostat with a minimum temperature of 7 K which explain the lack of data at low temperature.
As for QD1 we use Eq. 2 of the main text to fit the experimental data with the same fitting procedure. Again, we
observe very good agreement between the experimental data and the microscopic model. We extract the following
parameters for QD2: α = 0.0071 ps2, νc = 11.9 ps−1, µ = 5.6 × 10−4ps2 and F ∼ 0.1 at T ∼ 7 K. We notice the
importance of taking into account virtual transitions to higher lying QD states in order to fit the rapid loss of the
visibility for temperature higher than 10 K.

The blue squares represent the expected TPI visibility using the measured values of T1 and T2 and random dephasing
processes by phonons and charges [13]. We clearly see that these values do not reproduce the observed behaviour of
the TPI visibility, confirming that TPI and FTS using a Michelson interferometer do not probe the same dephasing
processes.
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