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Determination of a time-dependent free boundary in
a two-dimensional parabolic problem

M.J. Huntul1,2 and D. Lesnic1
1Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
2Department of Mathematics, College of Science, Jazan University, Jazan, Saudi Arabia

Abstract

The retrieval of the timewise-dependent intensity of a free boundary and the temperature
in a two-dimensional parabolic problem is, for the first time, numerically solved. The
measurement, which is sufficient to provide a unique solution, consists of the mass/energy
of the thermal system. A stability theorem is proved based on the Green function theory
and Volterra’s integral equations of the second kind. The resulting nonlinear minimization
is numerically solved using the lsqnonlin MATLAB optimization routine. The results
illustrate the reliability, in terms of accuracy and stability, of the time-dependent free
surface reconstruction.

Keywords: Inverse problem; Free boundary; Two-dimensional parabolic equation.

1 Introduction

Free boundary problems for parabolic equations occur naturally in many branches of
physics, engineering, chemistry, biology and other areas, see [5, 9, 12] to mention only a
few. For instance, the simultaneous identification of transient coefficients and multiple
unknown free boundaries were recently investigated by the authors in [15], whilst in [17],
free boundary problems with nonlinear diffusion were considered. The numerical solution
for inverse free boundary and Stefan problems, utilizing a meshless method, was obtained
in [14, 20]. The heat/diffusion equation with an unknown timewise-dependent diffusivity
or source, along with a free boundary was also investigated in [16] and [23], respectively.
In [18], the authors investigated the determination of multiple time-dependent coefficients
together with an unknown free boundary. Aggregation and nonlocal diffusive processes
were discussed in [8]. However, only a few papers are concerned with time-dependent
free boundary for parabolic equations in two-dimensions or more, [1,2,19]. These studies
are theoretical and they are important because they establish sufficient conditions for the
well-poseness of the inversely formulated problems. However, no numerical realization
has been attempted and it is the goal of this paper to numerically recover the unknown
time-dependent free boundary coefficient in a stable and accurate manner, along with the
temperature from over-determination mass (average temperature) data.

2 Mathematical formulation

Consider the moving region ΩT := {(y1, y2, t)| 0 < y1 < h, 0 < y2 < g(t)Ψ(y1), 0 <
t < T}, with a free boundary of unknown intensity g = g(t) > 0, but with known space
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variation Ψ(y1) > 0, we consider the two-dimensional parabolic equation

ut = ∆u+ b1(y1, y2, t)uy1 + b2(y1, y2, t)uy2 + c(y1, y2, t)u+ f(y1, y2, t), (y1, y2, t) ∈ ΩT , (1)

for the unknown dependent variable u(y1, y2, t), herein called temperature, given the
known convection coefficients b1 and b2, reaction coefficient c and heat source f . At
time t = 0 we have prescribed

u(y1, y2, 0) = ϕ(y1, y2), 0 ≤ y1 ≤ h, 0 ≤ y2 ≤ g(0)Ψ(y1), (2)

and the Dirichlet boundary conditions are














u(0, y2, t) = µ1(y2, t), 0 ≤ y2 ≤ Ψ(0)g(t), 0 ≤ t ≤ T,
u(h, y2, t) = µ2(y2, t), 0 ≤ y2 ≤ Ψ(h)g(t), 0 ≤ t ≤ T,
u(y1, 0, t) = µ3(y1, t), 0 ≤ y1 ≤ h, 0 ≤ t ≤ T,
u(y1,Ψ(y1)g(t), t) = µ4(y1, t), 0 ≤ y1 ≤ h, 0 ≤ t ≤ T.

(3)

The additional mass/energy specification is given by

∫ h

0

dy1

∫ g(t)Ψ(y1)

0

u(y1, y2, t)dy2 = µ5(t), 0 ≤ t ≤ T. (4)

Of course, the additional condition (4) giving the mass/energy of the heat conducting
system [6, 7] is measured in practice, and is needed in order to supply for the missing
information represented by the unknown function g(t). Alternative additional information
to (4) such as an internal temperature measurement

u(y01, y
0
2, t) = µ0

5(t), 0 ≤ t ≤ T, (5)

at a fixed interior point (y01, y
0
2) with 0 < y01 < h, 0 < y02 < g(t)Ψ(y1), or a heat flux

measurement

∂u

∂n
(y11, y

1
2, t) = q(y11, y

1
2, t), (6)

at a point (y11, y
1
2, t) on the boundary ST := {0} × {(y2, t)| 0 ≤ y2 ≤ Ψ(0)g(t), t ∈ (0, T ]}

∪{h}×{(y2, t)| 0 ≤ y2 ≤ Ψ(h)g(t), t ∈ (0, T ]} ∪[0, h]× ({0}∪ {(y1, y2, t)| y1 ∈ [0, h], y2 =
Ψ(y1)g(t), t ∈ (0, T ]}) can also be considered. In (6), n denotes the outward unit normal
to the boundary ST .

The unique local solvability of the inverse problem (10)–(13) hold, as proved in [19],
and read as follows.

Theorem 1. Assume that:

(A1) ϕ ∈ C([0, h]× [0,∞)), µi ∈ C([0,∞)× [0, T ]), i = 1, 2, µj ∈ C([0, h]× [0, T ]),

j = 3, 4, µ5 ∈ C1[0, T ], bk, c, f ∈ C([0, h]× [0,∞)× [0, T ]), k = 1, 2;

(A2) ϕ(y1, y2) ≥ ϕ0 > 0, (y1, y2) ∈ [0, h]× [0,∞), µi(y2, t) ≥ µi0 > 0,

(y2, t) ∈ [0,∞)× [0, T ], i = 1, 2, µj(y1, t) > 0, (y1, t) ∈ [0, h]× [0, T ], j = 3, 4,

µ5(t) > 0, t ∈ [0, T ], f(y1, y2, t) ≥ 0, (y1, y2, t) ∈ [0, h]× [0,∞)× [0, T ],

Ψ(y1) > 0, y1 ∈ [0, h];
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(A3) µ1 ∈ C2,1([0, K1Ψ(0)]× [0, T ]), µ2 ∈ C2,1([0, K1Ψ(h)]× [0, T ]),

µi ∈ C2,1([0, h]× [0, T ]), i = 3, 4, b1, b2, c, f ∈ C1,0(Q), where

Q := {(y1, y2, t) : 0 < y1 < h, 0 < y2 < K1Ψ(y1), 0 < t < T},

ϕ ∈ C2(D0), where D0 := {(y1, y2) : 0 < y1 < h, 0 < y2 < g(0)Ψ(y1)},

Ψ ∈ C2[0, h], lim
y1→0

Ψ′(y1) = +∞, lim
y1→h

Ψ′(y1) = −∞;

(A4) consistency conditions of order zero [21] between (2) and (3) hold;

(A5) ϕ ∈ C([0, h]× [0,∞)), µi ∈ C([0,∞)× [0, T ]), i = 1, 2, µj ∈ C([0, h]× [0, T ]),

j = 3, 4, µ5 ∈ C1[0, T ], bk, c, f ∈ C1,0([0, h]× [0,∞)× [0, T ]), k = 1, 2, Ψ ∈ C1[0, T ].

If the assumptions (A1)–(A3) hold then there exists a number T0 ∈ (0, T ] for which the
problem (1)–(4) has a solution (g(t), u(y1, y2, t)) ∈ C1[0, T0]×

(

C2,1(ΩT0
) ∩ C1,0(ΩT0

)
)

=:
AT0

with g(t) > 0 for t ∈ [0, T0].
If (A2), (A4) and (A5) are satisfied the same existence result holds in the set

(g(t), u(y1, y2, t)) ∈ C1[0, T0]× (C2,1(ΩT0
) ∩ C

(

ΩT0))
)

with g(t) > 0 for t ∈ [0, T0].

In (A3), the positive constant K1 represents an upper bound for g(t) on the interval
t ∈ [0, T ], which is obtained from (13) and the max-min principle for the function u, which
under assumptions (A1) and (A2), yields, [19],

u(y1, y2, t) ≥ M0 > 0, (y1, y2, t) ∈ ΩT (7)

for some positive constant M0. Thus, we can take

K1 = max
0≤t≤T

|µ5(t)|/(M0h( min
0≤y1≤h

Ψ(y1))).

Note also that under assumptions (A1) and (A2), equation (4) applied at t = 0 yields
the value of g(0) as the unique positive solution of the nonlinear equation

∫ h

0

dy1

∫ g(0)Ψ(y1)

0

ϕ(y1, y2)dy2 = µ5(0). (8)

Theorem 2. Assume that:

(A6) bi, c, f ∈ C1,0([0, h]× [0,∞)× [0, T ]), µi ∈ C3,1([0,∞)× [0, T ]), i = 1, 2,

0 < Ψ ∈ C2[0, h],

∫ h

0

Ψ(y1)µ4(y1, t)dy1 6= 0 for t ∈ [0, T ];

(A7) ϕ(y1, y2) ≥ ϕ0 > 0, (y1, y2) ∈ [0, h]× [0,∞).

Then, if C1[0, T ] ∋ µ5(t) 6= 0, t ∈ [0, T ], the inverse problem (1)–(4) cannot have more
than one solution (g(t), u(y1, y2, t)) in the class AT , with g(t) > 0 for t ∈ [0, T ].

Remark that assumption (A7) is needed to determine uniquely g(0) from (8).
The following theorem establishes the stability of the inverse problem (1)–(4) under

small perturbations in the measured additional mass/energy data (4).
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Theorem 3. Assume that (A6) and (A7) are satisfied. Let µ5(t) 6= 0 and µǫ
5(t) for

t ∈ [0, T ], be two given data (4) in C1[0, T ] satisfying

||µ5 − µǫ
5||C1[0,T ]≤ ε (9)

for some non-negative constant ε. Then, if it exists, the unique solution (g(t), u(y1, y2, t)) ∈
AT with g(t) > 0 for t ∈ [0, T ], of the inverse problem (1)–(4) under the perturbation µǫ

5(t)
of µ5(t) in (4), satisfying (9), is stable for small ε > 0.

Proof. First we perform the change of variables z1 = y1, z2 = y2/g(t), to transform (1)–
(4) into a new inverse problem for the unknown g(t) and the new ’temperature’ function
w(z1, z2, t) := u(z1, z2g(t), t), as follows:

wt = wz1z1 +
1

g2(t)
wz2z2 + b1(z1, z2g(t), t)wz1 +

(

b2(z1, z2g(t), t) + z2g
′(t)

g(t)

)

wz2

+c(z1, z2g(t), t)w + f(z1, z2g(t), t), (z1, z2, t) ∈ QT , (10)

where QT := {(z1, z2, t) : 0 < z1 < h, 0 < z2 < Ψ(z1), 0 < t < T},

w(z1, z2, 0) = ϕ(z1, z2g(0)), (z1, z2) ∈ D, (11)















w(0, z2, t) = µ1(z2g(t), t), (z2, t) ∈ [0,Ψ(0)]× [0, T ],
w(h, z2, t) = µ2(z2g(t), t), (z2, t) ∈ [0,Ψ(h)]× [0, T ],
w(z1, 0, t) = µ3(z1, t), (z1, t) ∈ [0, h]× [0, T ],
w(z1,Ψ(z1), t) = µ4(z1, t), (z1, t) ∈ [0, h]× [0, T ],

(12)

g(t)

∫∫

D

w(z1, z2, t)dz1dz2 = µ5(t), t ∈ [0, T ], (13)

where D := {(z1, z2) : 0 < z1 < h, 0 < z2 < Ψ(x1)}. Remark that now the domain
QT = D × (0, T ) is fixed, whilst the original domain ΩT was moving (in time).

The problem (10)–(13) is equivalent to the problem (1)–(4) and, it possesses a unique
solution (g(t), w(z1, z2, t)) ∈ C1[0, T ] ×

(

C2,1(QT ) ∩ C1,0(QT )
)

=: ÃT with g(t) > 0 for
t ∈ [0, T ], if this solution exists. A similar problem, corresponding to the perturbed data
µǫ
5(t) instead of µ5(t) in (13), can be formulated for the solution (gε(t), wε(z1, z2, t)) ∈ ÃT

with gε(t) > 0 for t ∈ [0, T ]. Denote G(t) := g(t)− gε(t) and W (z1, z2, t) := w(z1, z2, t)−
wε(z1, z2, t). Then,

Wt = Wz1z1 +
1

g2(t)
Wz2z2 + b1(z1, z2g(t), t)Wz1

+
(b2(z1, z2g(t), t) + z2g

′(t))

g(t)
Wz2 + c(z1, z2g(t), t)W +

(

1

g2(t)
−

1

g2ε(t)

)

(wε)z2z2

+

(

g′(t)

g(t)
−

g′ε(t)

gε(t)

)

z2(wε)z2 + (b1(z1, z2g(t), t)− b1(z1, z2gε(t), t)) (wε)z1

+

(

b2(z1, z2g(t), t)

g(t)
−

b2(z1, z2gε(t), t)

gε(t)

)

(wε)z2 + (c(z1, z2g(t), t)

−c(z1, z2gε(t), t))wε + f(z1, z2g(t), t)− f(z1, z2gε(t), t), (z1, z2, t) ∈ QT , (14)
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W (z1, z2, 0) = 0, (z1, z2) ∈ D, (15)







W (0, z2, t) = µ1(z2g(t), t)− µ1(z2gε(t), t), (z2, t) ∈ [0,Ψ(0)]× [0, T ],
W (h, z2, t) = µ2(z2g(t), t)− µ2(z2gε(t), t), (z2, t) ∈ [0,Ψ(h)]× [0, T ],
W (z1, 0, t) = W (z1,Ψ(z1), t) = 0, (z1, t) ∈ [0, h]× [0, T ],

(16)

∫∫

D

W (z1, z2, t)dz1dz2 =
µ5(t)

g(t)
−

µε
5(t)

gε(t)
, t ∈ [0, T ]. (17)

Let us rewrite equation (14) in a condensed form as

LW = F (z1, z2, t, G(t), G′(t)), (18)

where

L :=
∂

∂t
−

∂2

∂z21
−

1

g2(t)

∂2

∂z21
− b1(z1, z2g(t), t)

∂

∂z1
−

b2(z1, z2g(t), t)

g(t)

∂

∂z2
−c(z1, z2g(t), t)I, (19)

and I is the identity operator.
Following [19], let us define the satisfier function

χ(z1, z2, t, G(t)) :=
(

1−
z1
h

)

(µ1(z2g(t), t)− µ1(z2gε(t), t)) +
z1
h
(µ2(z2g(t), t)

−µ2(z2gε(t), t))−
z2

Ψ(z1)

[

(

1−
z1
h

)

(µ1(Ψ(z1)g(t), t)− µ1(Ψ(z1)gε(t), t))

+
z1
h
(µ2(Ψ(z1)g(t), t)− µ2(Ψ(z1)gε(t), t))

]

,

to homogenise the boundary conditions at z1 = 0 and z1 = h in (16), for the new function

W̃ (z1, z2, t) = W (z1, z2, t)− χ(z1, z2, t, G(t)), (20)

which satisfies

LW̃ = F (z1.z2, t, G(t), G′(t))− Lχ(z1, z2, t, G(t)), (z1, z2, t) ∈ QT . (21)

Solving the problem given by (21) with homogeneous initial and Dirichlet boundary con-
ditions using the Green function G(z1, z2, t; ξ1, ξ2, τ) we obtain

W (z1, z2, t) = χ(z1, z2, t, G(t)) +

∫ t

0

∫∫

D

G(z1, z2, t; ξ1, ξ2, τ)
[

F (ξ1, ξ2, τ, G(τ), G′(τ))

−Lχ(ξ1, ξ2, τ, G(τ))
]

dξ1dξ2dτ, (z1, z2, t) ∈ QT . (22)

Condition (17) yields

G(t) = −
g(t)gε(t)

µ5(t)

∫∫

D

W (z1, z2, t)dz1dz2 +
g(t)

µ5(t)
(µ5(t)− µε

5(t)), t ∈ [0, T ]. (23)
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Differentiate (13) and use (10) to obtain, [19],

g′(t) =
1

∫ h

0
Ψ(z1)µ4(z1, t)dz1

{

µ′
5(t)− g(t)

[

∫ Ψ(0)

0

wz1(0, z2, t)dz2

−

∫ Ψ(h)

0

wz1(h, z2, t)dz2 + µ4(h, t)− µ4(0, t)

+

∫∫

D

(

b1(z1, z2g(t), t)wz1(z1, z2, t) +
b2(z1, z2g(t), t)

g(t)
wz2(z1, z2, t)

+c(z1, z2g(t), t)w(z1, z2, t) + f(z1, z2g(t), t)
)

dz1dz2

]

−
1

g(t)

∫ h

0

(

wz2(z1, 0, t)− wz2(z1,Ψ(z1), t)
)

dz1

}

, t ∈ [0, T ]. (24)

Denoting q(t) := G′(t) = g′(t)− g′ε(t), from equation (24) written for g′(t) and g′ε(t) and
subtracted, we obtain

q(t) =
1

∫ h

0
Ψ(z1)µ4(z1, t)dz1

{

µ′
5(t)− (µε

5)
′(t) +

G(t)

g(t)gε(t)

∫ h

0

(

(wε)z2(z1, 0, t)

−(wε)z2(z1,Ψ(z1), t)
)

dz1 −
1

g(t)

∫ h

0

(

Wz2(z1, 0, t)−Wz2(z1,Ψ(z1), t)
)

dz1

−g(t)

[

∫ Ψ(0)

0

Wz1(0, z2, t)dz2 −

∫ Ψ(h)

0

Wz1(h, z2, t)dz2

+

∫∫

D

[

b1(z1, z2g(t), t)Wz1(z1, z2, t) +
b2(z1, z2g(t), t)

g(t)
Wz2(z1, z2, t)

+c(z1, z2g(t), t)W (z1, z2, t) +
(

b1(z1, z2g(t), t)− b1(z1, z2gε(t), t)
)

(wε)z1(z1, z2, t)

+

(

b2(z1, z2g(t), t)

g(t)
−

b2(z1, z2gε(t), t)

gε(t)

)

(wε)z2(z1, z2, t)

+
(

c(z1, z2g(t), t)− c(z1, z2gε(t), t)
)

wε(z1, z2, t) + f(z1, z2g(t), t)

−f(z1, z2gε(t), t)
]

dz1dz2

]

−G(t)

[

∫ Ψ(0)

0

(wε)z1(0, z2, t)dz2

−

∫ Ψ(h)

0

(wε)z1(h, z2, t)dz2 + µ4(h, t)− µ4(0, t)

+

∫∫

D

[

b1(z1, z2gε(t), t)(wε)z1(z1, z2, t) +
b2(z1, z2gε(t), t)

gε(t)
(wε)z2(z1, z2, t)

+c(z1, z2gε(t), t)wε(z1, z2, t) + f(z1, z2gε(t), t)
]

dz1dz2

]}

, t ∈ [0, T ]. (25)

Thus, the problem (14)–(17) has been recast as the system of integral equations (23) and
(25) for G(t) and q(t), where the function W (z1, z2, t) and its first-order partial derivatives
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are obtainable from (22). For the differences of values of functions present in (25), we use
the identity

Z(., α1(t))− Z(., α2(t)) = (α1(t)− α2(t))

∫ 1

0

∂Z

∂s
(., s)

∣

∣

∣

∣

∣

s=α2(t)+θ(α1(t)−α2(t))

dθ.

Remark that the dependence of W (z1, z2, t) on G(t) and q(t) is linear. The right-hand
side of the system of equations (23) and (25) is given by

RHS(t) =

(

g(t)

µ5(t)
(µ5(t)− µε

5(t)) ,
µ′
5(t)− (µε

5)
′(t)

∫ h

0
Ψ(z1)µ4(z1, t)dz1

)T

, t ∈ [0, T ]. (26)

Assumptions of theorem ensure that the linear system (23) and (25) of two Volterra in-
tegral equations of the second kind with integrable kernels is well-posed and therefore, it
possesses a unique solution G(t) = g(t) − gε(t) and q(t) = g′(t) − g′ε(t) which tends to
zero, as ε ց 0 . This proof of the stability theorem is completed.

The stability Theorem 3 obviously implies, by taking ε = 0, the uniqueness Theorem 2.
Theorem 3 ensures the stability in case the data (4) is smooth of class C1[0, T ]. However,
the presence of the derivative (µε

5)
′(t) of the ’noisy’ non-smooth function µε

5(t), coming
from measurement, in (26) highlights the practical ill-posedness of the inverse free surface
problem under investigation.

3 Numerical discretization of the direct problem

For the numerical discretization in a fixed domain it is useful to employ further the
change of variables x1 = y1, x2 = y2/(g(t)Ψ(y1)), to transform (1)–(4) into the following
inverse problem for the time-dependent free boundary intensity function g(t) and the new
’temperature’ v(x1, x2, t) := u(x1, x2g(t)Ψ(x1), t):

vt = vx1x1
+

1

g2(t)Ψ2(x1)
vx2x2

+ b1(x1, x2g(t)Ψ(x1), t)vx1

+

(

b2(x1, x2g(t)Ψ(x1), t) + x2g
′(t)Ψ(x1)

g(t)Ψ(x1)

)

vx2
+ c(x1, x2g(t)Ψ(x1), t)v

+f(x1, x2g(t)Ψ(x1), t), (x1, x2, t) ∈ Ω× (0, T ), (27)

v(x1, x2, 0) = ϕ(x1, x2g(0)Ψ(x1)), (x1, x2) ∈ Ω, (28)

v(0, x2, t) = µ1(x2g(t)Ψ(0), t), v(h, x2, t) = µ2(x2g(t)Ψ(h), t), (x2, t) ∈ [0, 1]× [0, T ], (29)

v(x1, 0, t) = µ3(x1, t), v(x1, 1, t) = µ4(x1, t), (x1, t) ∈ [0, h]× [0, T ], (30)

g(t)

∫∫

Ω

Ψ(x1)v(x1, x2, t)dx1dx2 = µ5(t), t ∈ [0, T ], (31)
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where Ω = (0, h)× (0, 1).
Next, we consider solving the direct problem (27)–(30), where the functions g, Ψ, b1,

b2, c, f , ϕ and µi for i = 1, 4, are known and the solution v(x1, x2, t) is to be computed.
We sub-divide Ω× (0, T ) into M1, M2 and N uniform intervals of lengths ∆x1, ∆x2 and
∆t, where ∆x1 = h/M1, ∆x2 = 1/M2, and ∆t = T/N, respectively. At the node (i, j, n),
denote vni,j := v(x1i, x2j, tn), where x1i = i∆x1, x2j = j∆x2, tn = n∆t, gn := g(tn), Ψi :=
Ψ(x1i), b

n
1i,j

:= b1(x1i, x2jgnΨi, tn), b
n
2i,j

:= b1(x1i, x2jgnΨi, tn), c
n
i,j := c(x1i, x2jgnΨi, tn)

and fn
i,j := f(x1i, x2jgnΨi, tn) for i = 0,M1, j = 0,M2 and n = 0, N .

3.1 Alternating direction explicit (ADE) method

In this subsection, alternating direction explicit (ADE) method, [3,4,25], which is uncondi-
tionally stable, will be described for solving numerically the nonlinear the two-dimensional
parabolic equation (27) with initial and boundary conditions (28)–(30).

Let ṽni,j and ũn
i,j satisfy the following multilevel finite difference discretisations of equa-

tion (27):

ṽn+1
i,j − ṽni,j

∆t
=

ṽni+1,j − ṽni,j − ṽn+1
i,j + ṽn+1

i−1,j

(∆x1)2
+

1

g2nΨ
2
i

( ṽni,j+1 − ṽni,j − ṽn+1
i,j + ṽn+1

i,j−1

(∆x2)2

)

+bn1i,j

( ṽni+1,j − ṽn+1
i−1,j

2(∆x1)

)

+
(bn2i,j + x2jg

′
nΨi

gnΨi

)( ṽni,j+1 − ṽn+1
i,j−1

2(∆x2)

)

+ cni,j

( ṽn+1
i,j + ṽni,j

2

)

+
1

2

(

fn+1
i,j + fn

i,j

)

, i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N − 1, (32)

ũn+1
i,j − ũn

i,j

∆t
=

ũn+1
i+1,j − ũn+1

i,j − ũn
i,j + ũn

i−1,j

(∆x1)2
+

1

g2nΨ
2
i

( ũn+1
i,j+1 − ũn+1

i,j − ũn
i,j + ũn

i,j−1

(∆x2)2

)

+bn1i,j

( ũn+1
i+1,j − ũn

i−1,j

2(∆x1)

)

+
(bn2i,j + x2jg

′
nΨi

gnΨi

)( ũn+1
i,j+1 − ũn

i,j−1

2(∆x2)

)

+ cni,j

( ũn
i,j + ũn+1

i,j

2

)

+
1

2

(

fn+1
i,j + fn

i,j

)

, i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N − 1. (33)

Furthermore, let the ṽni,j and ũn
i,j also satisfy the initial and boundary conditions (28)–(30),

namely

ṽ0i,j = ũ0
i,j = ϕ(x1i, x2j), i = 0,M1, j = 0,M2, (34)

ṽn0,j = ũn
0,j = µ11(x2jgnΨ(0), tn), ṽnM1,j

= ũn
M1,j

= µ12(x2jgnΨ(h), tn), j = 0,M2,

n = 1, N, (35)

ṽni,0 = ũn
i,0 = µ21(x1i, tn), ṽni,M2

= ũn
i,M2

= µ22(x1i, tn), i = 0,M1, n = 1, N. (36)

In expressions (32) and (33), the derivative of g is approximated, for simplicity, using
forward finite differences as

g′n := g′(tn) ≈
g(tn)− g(tn−1)

∆t
=

gn − gn−1

∆t
, n = 1, N, (37)
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though, more accurate, central finite differences may also be employed. Equations (32)
and (33) are rearranged in order to obtain explicit expressions for ṽn+1

i,j and ũn+1
i,j . They,

respectively, become

ṽn+1
i,j = An

i,j ṽ
n
i,j +Bn

i,j(ṽ
n
i+1,j + ṽn+1

i−1,j) + Cn
i,j(ṽ

n
i,j+1 + ṽn+1

i,j−1)

+Dn
i,j(ṽ

n
i+1,j − ṽn+1

i−1,j) + En
i,j(ṽ

n
i,j+1 − ṽn+1

i,j−1) +G∗
i,j,

i = 1,M1 − 1, j = 1,M2 − 1, n = 0, N − 1, (38)

ũn+1
i,j = An

i,jũ
n
i,j +Bn

i,j(ũ
n+1
i+1,j + ũn

i−1,j) + Cn
i,j(ũ

n+1
i,j+1 + ũn

i,j−1)

+Dn
i,j(ũ

n+1
i+1,j − ũn

i−1,j) + En
i,j(ũ

n+1
i,j+1 − ũn

i,j−1) +G∗
i,j,

i = M1 − 1, 1, j = M2 − 1, 1, n = 0, N − 1, (39)

where

An
i,j =

1− λn
i,j

1 + λn
i,j

, Bn
i,j =

∆t

(∆x1)2(1 + λn
i,j)

, Cn
i,j =

∆t

g2nΨ
2
i (∆x2)2(1 + λn

i,j)
,

Dn
i,j =

(∆t)bn1i,j
2∆x1(1 + λn

i,j)
, En

i,j =
∆t

2∆x2

(

bn2i,j + x2jg
′
nΨi

gnΨi(1 + λn
i,j)

)

,

G∗
i,j =

∆t

2(1 + λn
i,j)

(

fn+1
i,j + fn

i,j

)

, λn
i,j = ∆t

(

1

(∆x1)2
+

1

g2nΨ
2
i (∆x2)2

−
cni,j
2

)

. (40)

From (38), (39) and (34)–(36) for ṽ and ũ, ṽn+1
i,j and ũn+1

i,j can be explicitly computed, and
the simple arithmetic mean approximation

vn+1
i,j =

ṽn+1
i,j + ũn+1

i,j

2
(41)

finally yields the solution vn+1
i,j .

The double integral in (31) is approximated using the trapezoidal rule [11, 13], as
follows:

∫ h

0

∫ 1

0

Ψ(x1)v(x1, x2, t)dx2dx1 =
1

4M1M2

[

Ψ(0)v(0, 0, tn) + Ψ(h)v(h, 0, tn)

+Ψ(0)v(0, 1, tn) + Ψ(h)v(h, 1, tn) + 2

M1−1
∑

i=1

Ψ(x1i)v(x1i, 0, tn)

+2

M1−1
∑

i=1

Ψ(x1i)v(x1i, 1, tn) + 2

M2−1
∑

j=1

Ψ(0)v(0, x2j, tn) + 2

M2−1
∑

j=1

Ψ(h)v(h, x2j, tn)

+4

M2−1
∑

j=1

M1−1
∑

i=1

Ψ(x1i)v(x1i, x2j, tn)

]

, n = 1, N. (42)

4 Inverse numerical solution

For the inverse problem solution of (27)–(31) we minimize

F (g) : =
∥

∥

∥
g(t)

∫ h

0

∫ 1

0

Ψ(x1)v(x1, x2, t; g)dx2dx1 − µ5(t)
∥

∥

∥

2

L2[0,T ]
(43)
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or, in discretizations form,

F (g) =
N
∑

n=1

[

gn

∫ h

0

∫ 1

0

Ψ(x1)v(x1, x2, tn; g)dx2dx1 − µ5(tn)
]2

, (44)

where g = (gn)n=1,N and v(x1, x2, t; g) solves (27)–(30) for given g. This minimization is
accomplished using the lsqnonlin MATLAB toolbox routine, [10, 22].

5 Results and discussion

We define the root mean square errors (rmse) as

rmse(g) =

[

T

N

N
∑

n=1

(

gn − gExact(tn)
)2
]1/2

. (45)

We take h = T = 1, for simplicity. The lower and upper bounds for the coefficient g(t)
are taken as 10−9 and 102, respectively. The initial guesses for g(t) is taken as the value
of g(0), which is obtainable from (31).

The inverse problem given by equations (27)–(31) is solved subject to the noisy data
(31)

µǫ
5(tn) = µ5(tn) + ǫn, n = 1, N, (46)

where ǫ = (ǫn)n=1,Nt
:= normrnd(0, σ,N), σ = p×maxt∈[0,1]|µ5(t)| and p is the percentage

of noise.

Let us solve the inverse problem (1)–(4) with the input data:

Ψ(y1) = 1, b1(y1, y2, t) =
1

2
(y1 + y2 + t), b2(y1, y2, t) =

1

2
(y1 + y2 + t),

c(y1, y2, t) =
1

2
(y1 + y2 + t), ϕ(y1, y2) = 3− (−1 + 2y1)

2 − (−1 + y2)
2,

µ1(y2, t) = 2 + t− (−1 + y2)
2, µ2(y2, t) = 2 + t− (−1 + y2)

2,

µ3(y1, t) = 2 + t− (−1 + 2y1)
2, µ4(y1, t) =

1

9
(14 + 13t− t2 + 36y1 − 36y21)

−(−1 + 2y1)
2, f(y1, y2, t) = 11 + 2(−1 + 2y1)(t+ y1 + y2)

+(−1 + y2)(t+ y1 + y2)−
1

2
(t+ y1 + y2)(1 + t+ 4y1 − 4y21 + 2y2 − y22), (47)

µ5(t) =
1

81
(1 + t)(53 + 34t− t2). (48)

Conditions of Theorem 2 hold and hence, the solution’s uniqueness is guaranteed. In fact,
the exact solution of (27)–(30) is

v(x1, x2, t) = u(x1, x2g(t)Ψ(x1), t) = 3 + t− (1− 2x1)
2 −

1

9
(−3 + x2 + tx2)

2, (49)

and

g(t) =
1

3
(1 + t). (50)
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Also,

u(y1, y2, t) = 3 + t− (−1 + 2y1)
2 − (−1 + y2)

2. (51)

First, we assess the accuracy of the direct problem given by (1)–(3) (or (27)–(30)) with
the input data (47) when g(t) is known and given by (50). Table 1 illustrates that the
analytical and numerical solutions for the data (4) (or (31)), which analytically is given
by (48), obtained with various numbers of space grids M1 = M2 ∈ {5, 10, 20} and with
various numbers of time steps N ∈ {20, 40, 80} are in excellent agreement.

Table 1: The numerical and exact (48) solutions for µ5(t), with various M1 = M2 ∈
{5, 10, 20} and N ∈ {20, 40, 80}, for the direct problem.

M1 = M2 N t = 0.1 t = 0.2 t = 0.3 ... t = 0.9 rmse(µ5)

5
20
40
80

0.7554
0.7556
0.7556

0.8741
0.8741
0.8742

1.0006
1.0007
1.0007

...

...

...

1.9232
1.9233
1.9234

0.0148
0.0147
0.0146

10
20
40
80

0.7629
0.7631
0.7632

0.8823
0.8825
0.8825

1.0096
1.0098
1.0098

...

...

...

1.9369
1.9372
1.9373

0.0039
0.0038
0.0037

20
20
40
80

0.7648
0.7649
0.7651

0.8841
0.8845
0.8846

1.0116
1.0120
1.0121

...

...

...

1.9398
1.9405
1.9408

0.0015
0.0011
0.0009

exact 0.7658 0.8853 1.0129 ... 1.9420 0

Next, we investigate the inverse problem. We fix M1 = M2 = 10 and N = 40, which
was found sufficiently dense to ensure that any finer mesh (such as M1 = M2 = 20 and
N = 80) did not influence the stability and accuracy of the numerical solution.

Figure 1 illustrates the absolute error between the exact solution (49) and the nu-
merical solutions for v(x1, x2, t). It can be observed that the accuracy of the numerical
solution improves, as the noise level p decreases.

The results for g(t) are illustrated in Figure 2. The rmse(g) obtained values (45) are
0.0014, 0.0127, 0.0250 and 0.0373 for p ∈ {0, 1, 2, 3}% noise, respectively. As expected, for
noise free data, i.e. p = 0, the unique solution (50), which is guaranteed from Theorem 2,
is retrieved very accurately. As noise p is included in the data (46), Figure 2 illustrates
that the numerical recoveries are reasonably accurate but start to build up oscillations as
the amount of noise p increases. To restore stability we penalise the least-squares function
(43) by adding a first-order smoothing term λ||g′(t)||2L2[0,T ] to it since the theory provides

g ∈ C1[0, T ], where λ > 0 is the Tikhonov’s regularization parameter to be selected.
Then, in discretised form this first-order Tikhonov functional recasts as

Fλ(g) = F (g) + λ
N
∑

n=1

(

gn − gn−1

∆t

)2

. (52)

For p = 5% noise, Figure 3 illustrates the analytical solution (50) and the numer-
ical solutions obtained by minimizing the objective functional (52) for various regu-
larization parameters. The rmse(g) values are 0.0618, 0.0440, 0.0292 and 0.0322 for
λ ∈ {0, 10−3, 10−2, 10−1}, respectively. It can be noted that the numerical unregularized
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solution obtained with λ = 0 manifests instability, however, inclusion of regularization
with λ = 10−2 to 10−1 provides a stable solution which is consistent in accuracy with
the p = 5% noise contaminating the input data (46). The last remaining thing to do is
to provide some reasoning on how to choose the regularization parameter λ > 0 in the
functional (52). One possible argument for this choice is given by the L-curve shown in
Figure 4. For several parameters λ for the obtained minimizer g

λ
of (52), we plot the

derivative norm ||g′
λ
||=

√

∑N
n=1

(

gn−gn−1

∆t

)2
versus the residual norm

√

F (g
λ
). The ’cor-

ner’ of the obtained L-curve around λ = 10−2, illustrated in Figure 4, is taken as a good
selection for λ compromising/balancing the fit of measured data (residual comparable to
the amount of noise included) with the stability of solution (bounded derivative solution
norm).
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Figure 1: The absolute error between the numerical and analytical (49) solutions for the trans-

formed temperature v(x1, x2, 1), for p ∈ {0, 1, 2, 3}% noise, without regularization.
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Figure 2: The numerical and analytical (50) solutions for the intensity g(t) of the free boundary,

for p ∈ {0, 1, 2, 3}% noise, without regularization.
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Figure 3: The numerical and analytical (50) solutions for the intensity g(t) of the free boundary,

for p = 5% noise, with various λ ∈ {0, 10−3, 10−2, 10−1}.
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6 Conclusion

The retrieval of the transient intensity of a free boundary and the temperature in a
two-dimensional parabolic problem from mass (energy) measurement has been studied.
This nonlinear inverse problem has been shown to be (locally) well-posed and a stability
theorem has been proven. The free boundary formulation has been changed to a fixed
domain, and the direct solver based on a ADE-FDM has been utilized. The inverse
solution has been obtained based on the lsqnonlin MATLAB optimisation procedure
for minimizing the least-squares function further penalised with first-order regularization
for noisy data. Numerical illustrations show that accurate and stable solutions have
been attained. Extension to three-dimensions is in principle straightforward. Future
work will consider recovering the intensity g(t) of the free boundary together with the
minor coefficient c (depending on the time t only) form the mass specification (4) and an
additional Stefan-type condition [24].
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