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Determination of a time-dependent free boundary in
a two-dimensional parabolic problem

M.J. Huntul'? and D. Lesnic!
! Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK
2Department of Mathematics, College of Science, Jazan University, Jazan, Saudi Arabia

Abstract

The retrieval of the timewise-dependent intensity of a free boundary and the temperature
in a two-dimensional parabolic problem is, for the first time, numerically solved. The
measurement, which is sufficient to provide a unique solution, consists of the mass/energy
of the thermal system. A stability theorem is proved based on the Green function theory
and Volterra’s integral equations of the second kind. The resulting nonlinear minimization
is numerically solved using the [sqnonlin MATLAB optimization routine. The results
illustrate the reliability, in terms of accuracy and stability, of the time-dependent free
surface reconstruction.

Keywords: Inverse problem; Free boundary; Two-dimensional parabolic equation.

1 Introduction

Free boundary problems for parabolic equations occur naturally in many branches of
physics, engineering, chemistry, biology and other areas, see [5,9,12] to mention only a
few. For instance, the simultaneous identification of transient coefficients and multiple
unknown free boundaries were recently investigated by the authors in [15], whilst in [17],
free boundary problems with nonlinear diffusion were considered. The numerical solution
for inverse free boundary and Stefan problems, utilizing a meshless method, was obtained
in [14,20]. The heat/diffusion equation with an unknown timewise-dependent diffusivity
or source, along with a free boundary was also investigated in [16] and [23], respectively.
In [18], the authors investigated the determination of multiple time-dependent coefficients
together with an unknown free boundary. Aggregation and nonlocal diffusive processes
were discussed in [8]. However, only a few papers are concerned with time-dependent
free boundary for parabolic equations in two-dimensions or more, [1,2,19]. These studies
are theoretical and they are important because they establish sufficient conditions for the
well-poseness of the inversely formulated problems. However, no numerical realization
has been attempted and it is the goal of this paper to numerically recover the unknown
time-dependent free boundary coefficient in a stable and accurate manner, along with the
temperature from over-determination mass (average temperature) data.

2 Mathematical formulation

Consider the moving region Qr = {(y1,y2,8)| 0 < y1 < h, 0 < yo < g(t)¥(y1), 0 <
t < T}, with a free boundary of unknown intensity g = ¢(¢) > 0, but with known space



variation W(y;) > 0, we consider the two-dimensional parabolic equation

u = Au+ bl(y17y27t)uy1 + bQ(ylay%t)uyz + C(Z/l?yQat)u + f(ylay%t)a <y17y27t) € QTa (1)

for the unknown dependent variable u(yi,ys,t), herein called temperature, given the
known convection coefficients b; and b,, reaction coefficient ¢ and heat source f. At
time ¢t = 0 we have prescribed

w(yr,y2,0) = p(y1,y2), 0<wy1 <h, 0<y <g(0)¥(y), (2)

and the Dirichlet boundary conditions are

U(O Y2, ) ,ul(y%t) 0 < Y2 < \IJ(O) ( )7 0 S t S T7
u(h, y27 t) = p2(ya,t), 0=<y <W(h)g(t), 0<t<T, (3)
u(y1,0,t) = pa(yr,t), 0<y<h, 0<t<T,
ulyn, W(y)g0),8) = palyst). 0<y<h, 0<t<T
The additional mass/energy specification is given by
h 9(t) ¥ (y1)
/ dy1/ u(yr, yo, t)dy = ps(t), 0<t<T. (4)
0 0

Of course, the additional condition (4) giving the mass/energy of the heat conducting
system [6, 7] is measured in practice, and is needed in order to supply for the missing
information represented by the unknown function g(¢). Alternative additional information
to (4) such as an internal temperature measurement

u(yy,yg,t) = pa(t), 0<t<T, (5)

at a fixed interior point (y?,99) with 0 < ¢ < h, 0 < y9 < g(t)¥(y;), or a heat flux
measurement

ou
a (y17y27 )_Q(yhy%,t), (6>

at a point (yi,ys,t) on the boundary Sy := {0} x {(ya,t)| 0 < yo < W(0)g(t), t € (0,7}
U{h} X {(y2,1)] 0 < yo < W(h)g(),t € (0,T]} U0, h] x ({0} U{(y1, 92, 1) 1 € [0, h], 2 =
U(y1)g(t),t € (0,T]}) can also be considered. In (6), n denotes the outward unit normal
to the boundary St.

The unique local solvability of the inverse problem (10)—(13) hold, as proved in [19],
and read as follows.

Theorem 1. Assume that:

(A1) ¢ € C([0,h] x [0,00)), p; € C([0,00) X [0,T]), i =1,2,u; € C([0, ] x [0,T7),
j=3,4, us € C0,T), by, c, f € C([0,h] x [0,00) x [0,T]), k=1,2;

(A2)  ©(y1,y2) = @0 >0, (y1,92) € [0,h] x [0,00), pi(y2;t) > prio > 0,
(y2,t) € [0,00) x [0,T), i =1,2, p;(y1,t) >0, (y1,t) € [0,h] x [0,T), j = 3,4,
ps(t) >0, t € [0,T], f(yi,92,t) >0, (y1,¥2,t) € [0,h] x [0,00) x [0,T],
U(y1) >0, y1 € [0, h];



(43) g € C¥([0, K, W(0)] x [0,T), z € C1([0, Kyw(h)] x [0, T)),
pi € C2H[0,h] x [0,T)), i = 3,4, by,ba,c, f € CY°(Q), where
Q = {(y1,92,t) : 0 <y; < h,0<ys < K1V(11),0 <t <T},
@ € C*(Dy), where Dy = {(y1,2) : 0 <91 < h,0 < yp < g(0)¥(yy)},
U € C?0,h], lim ¥'(y;) = 400, lim ¥'(y;) = —o0;
y1—0 y1—h

(A4)  consistency conditions of order zero [21] between (2) and (3) hold;
(45) o € [0, h] x [0,00)), i € C([0,00) x [0,T]), i = 1,2, 1y € C([0, ] x [0, T]).
j=3,4, us € C0,T), bi,c, f € CH°([0,h] x [0,00) x [0,T]), k=1,2, ¥ C0,T).

If the assumptions (A1)—(A3) hold then there exists a number Ty € (0,T] for which the
problem (1)-(4) has a solution (g(t), u(y1,y2,t)) € C*0,Tp] x (C*'(Qp,) N CH0(Qy,)) =
Ar, with g(t) > 0 fort € [0, Ty).

If (A2), (A4) and (Ab) are satisfied the same existence result holds in the set
(9t), ulyr, 92, 1)) € CU10,To] x (C?}(9,) (1 C (V) with g(t) > 0 for t € [0,Ty].

In (A3), the positive constant K; represents an upper bound for ¢(t) on the interval
t € [0, T], which is obtained from (13) and the max-min principle for the function u, which
under assumptions (A1) and (A2), yields, [19],

w(yr, Y2, t) > Mo >0, (y1,y2,t) € Qp (7)

for some positive constant M,. Thus, we can take

Ky = max |us(1)l/(Moh( min W (y1))).

0<t<T

Note also that under assumptions (A1) and (A2), equation (4) applied at ¢t = 0 yields
the value of ¢(0) as the unique positive solution of the nonlinear equation

h 9(0)¥(y1)
/ din / ©(y1,y2)dys = 15(0). (8)
0 0

Theorem 2. Assume that:
(A6) by, c, f € CHO([0,h] x [0,00) x [0,T]), u; € C*(]0,00) x [0,T]), i =1,2,

h
0 < W e C?0,h], / U (y1)pa(yr, t)dyy # 0 for t €0, T];
0

(A7) @(y1,92) = @0 >0, (y1,92) € [0, h] x [0,00).

Then, if C*[0,T] > ps(t) # 0, t € [0,T], the inverse problem (1)-(4) cannot have more
than one solution (g(t),u(y1,ya,t)) in the class Ar, with g(t) > 0 fort € [0,T].

Remark that assumption (A7) is needed to determine uniquely ¢(0) from (8).
The following theorem establishes the stability of the inverse problem (1)—(4) under
small perturbations in the measured additional mass/energy data (4).



Theorem 3. Assume that (A6) and (A7) are satisfied. Let ps(t) # 0 and pg(t) for
t € [0, T, be two given data (4) in C*[0,T] satisfying

|15 — psllerpon< € 9)

for some non-negative constante. Then, if it exists, the unique solution (g(t), u(y1,y2,t)) €
Ar with g(t) > 0 fort € [0,T], of the inverse problem (1)-(4) under the perturbation ug(t)
of us(t) in (4), satisfying (9), is stable for small € > 0.

Proof. First we perform the change of variables z; = y;, 20 = y2/¢g(t), to transform (1)—
(4) into a new inverse problem for the unknown ¢(¢) and the new ’temperature’ function
w(z1, 22, t) := u(z1, 229(¢), 1), as follows:

1 by (21, 229(t), t) + 204’ (¢
Wi = Wyz T 575 Wagzy + bl(Zl, Zzg(t), t)wzl + < 2( 1 Zg(g)(t)) 29 ( )) w,,

9*(t)
+C(Zlv Z2g(t)’ t)w + f(Z17 Z2g(t)7 t)v (Zlv 22 t) € QTv (10)

where Qp := {(21,22,t) : 0< 21 < h,0< 20 <W(z),0<t<T},

w(z1, 22,0) = @(21,229(0)), (21, 22) € D, (11)
w(07227t> = ,ul(z2g(t)7t)7 (Z27t) € [O>‘II(O)] X [OaT]a
w(haz%t) = ,u2<229(t)7t)7 (227t) S [07\Ij(h)] X [OvT]7 (12>
w(zl,(],t) = M3 Zlat)a (Zlat) S [07h] X [OuT]a
’LU(Zh\I/(Zl 7t) = M4(21,t), (217t) S [07 h] X [OvT]7
o) / Wz, 2, Ddadzs = ps(t), € [0, 7], (13)

where D := {(21,22) : 0 < z1 < h,0 < 29 < ¥(xy)}. Remark that now the domain
Qr =D x (0,7T) is fixed, whilst the original domain Q7 was moving (in time).

The problem (10)—(13) is equivalent to the problem (1)—(4) and, it possesses a unique
solution (g(t), w(z1, 22, t)) € CH0,T] x (C*X(Qr) N C*(Qr)) =: Ar with g(t) > 0 for
t € [0, 7], if this solution exists. A similar problem, corresponding to the perturbed data
1 (t) instead of p5(t) in (13), can be formulated for the solution (g.(t), w. (21, z0,t)) € Ar
with g.(t) > 0 for t € [0,T]. Denote G(t) := g(t) — g-(t) and W (21, 22, ) := w(z1, 22, ) —
we(z1, 29,t). Then,

1
Wt = Wzlzl + gz—(t>W2222 + bl (217 ZQQ(t), t)Wzl
(b2(z1, 229(t), 1) + 229'(t)) L
+ (t) Wz2 +C(Z17z2.g(t)7t>w+ <gz(t) gg(t) ( 5)2222
g0 g0\, . . (o2 w
# (205 ) s+ (e 2a0(0,0) — o1, 200,10

ba(21,220(t), ) ba(21, 2000(), 1) (o =
+< k. = )< s + (clz1, 29(8), 1)

_C<Zla Z2gs(t>7 t))ws + f(zla ZZg(t)’ t) - f(zla 2295(t>7 t)’ (21, 22, t) € QT7 (14)
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W0, 22,t) = p1(229(t), ) — pa(229e(t),1),  (22,1) € [0, ¥(0)] x [0, 77,
W(h7 225 t) = MQ(ZQQ(t)v t) - ,u2(22g5(t), t)v ('227 t) S [07 \Il(h” X [0? T]? (16)
W(z1,0,t) = W(z1,¥(z),t) =0, (z1,t) € [0,h] x [0,T],
_ o) pE(t)
é/ W (21, 29, t)dz1dze = o0 o) t €[0,T]. (17)
Let us rewrite equation (14) in a condensed form as
LW = F(z1, 2,t,G(t), G'(1)), (18)
where
L 0 82 1 82 0 bz(Zl,ZQQ(t),t) 0
—c(z1, 229(t), 1)1, (19)

and [ is the identity operator.
Following [19], let us define the satisfier function

X120, G(0) = (1= 2) (1 (229(8),8) = g (229:(8). 1)) + S (pa(a9(0). 1)

—p2(220:(), 1)) —

U(z) (1 - %) (1 (W (21)g(t), 1) — (¥ (21)g: (1), 1))

+%(M2(\I/(zl)g(t),t) — MQ(\I/(Zl)ga(t)vt)) >

to homogenise the boundary conditions at z; = 0 and z; = h in (16), for the new function
W (21, 20,t) = W(z1, 22, 1) — X(21, 22, 1, G(1)), (20)
which satisfies

LW = F(21.20, £, G(1), G'(£)) — Lx(21, 2,1, G(1)), (21, 20,%) € Qr. (21)

Solving the problem given by (21) with homogeneous initial and Dirichlet boundary con-
ditions using the Green function G(z1, 29, t; &1, &2, 7) we obtain

W(z1, 22,t) = x(21, 22,1, G(t)) + /Ot //g(zl,zmt%fla&ﬂ') [F(fl,&,ﬂG(T)aG,(T))
D

—Lx(&1, o, G(T))}dgldgzdf, (21,2, 1) € Qr. (22)
Condition (17) yields

9()ge(?) e D do . IE) .
Glr) = L0850 é/ W(er, oo+ L0 (nft) = (1), 1€ 0T (23

5



Differentiate (13) and use (10) to obtain, [19],

"(t) = L L(t) — o w Z Z
g <t> = fohqj<zl)u4(21’t)d21 {N5(t> g(t) [/0 z1<07 2,t)d 2

w(h)
_ / oy (hy 20 )z + ja(ho ) — 11a(0,1)
0

—i—// (bl(zl’ZQg(t)’t)wzl(Zth,t) i bQ(Zl,Z’zg(t),t)

wzg (Zh 22, t)

D g9(t)
+c(z1, 229(t), )w(z1, 22, 1) + f(21, 229(), t))dz1d22
_ﬁ/o (wZQ(zl,o,t) - wzz(z1,\11(21),t)>dzl}, te[0,7). (24)

Denoting ¢(t) := G'(t) = ¢'(t) — ¢.(t), from equation (24) written for ¢’(¢) and g.(t) and
subtracted, we obtain

o e I
“Q_J?m@»maimﬁ{%“)(%””+g@%uxé<(9”(““”

S USHER TE ) P ﬁ /Oh (Weal2,0.0) = Wiy, W(20).))

w(0) (k)
—g(t) / W (0, 29, t)dzg — / W (h, 2, )2
0 0

bQ(Zl, Zgg(t), t)
g(t)
+c(21, 229(t), )W (21, 22, 1) + (bl(zla 229(t),t) — b1(21, 229:(t), t)) (We)z (21, 22, 1)

bo(z1, 209(t), 1) ba(z1, 229-(1), 1)
( g(t) B ge(t) ) (We)z, (21, 22, 1)

+ <C(217 229(t>7 t) - C(Zla Z2g€(t)7 t)) ws(zb 22, t) + f(Zl, ZZg(t)v t)

+// [b1<217Z2g(t)at>W21(217227t) + sz(zlaz%t)
D

W(0)
—f(zl,ngE(t),t)]dzlsz —G(t) / ()2, (0, 20, t)dzs
0

W(h)
—/ (w2) s, (hy 22 )z + pra(h, 1) — 1a(0, 1)
0

bQ(zla 229e (t)v t)
+4/%M@MmMMMMmﬁ+ 0

(ws)zz (217 22, t)

+c(21, 200 (1), t)we (21, 22, ) + f(21,22g5<t>,t):| dzldzgl }, te[0,7]. (25)

Thus, the problem (14)—(17) has been recast as the system of integral equations (23) and
(25) for G(t) and ¢(t), where the function W (21, 22, t) and its first-order partial derivatives
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are obtainable from (22). For the differences of values of functions present in (25), we use
the identity

2(,00(1)) = Z(00(0) = (01(6) — aa(t)) | S (..5)

0

do.
s=a(t)+0(aq (t)—az(t))

Remark that the dependence of W(zy, 22,t) on G(t) and ¢(t) is linear. The right-hand
side of the system of equations (23) and (25) is given by

(9 . W — e\
mww—aﬂww@ %@%ﬁwmm@ww)’ te0,7].  (26)

Assumptions of theorem ensure that the linear system (23) and (25) of two Volterra in-
tegral equations of the second kind with integrable kernels is well-posed and therefore, it
possesses a unique solution G(t) = g(t) — g-(t) and ¢(t) = ¢'(t) — ¢.(t) which tends to
zero, as € \( 0 . This proof of the stability theorem is completed.

The stability Theorem 3 obviously implies, by taking ¢ = 0, the uniqueness Theorem 2.
Theorem 3 ensures the stability in case the data (4) is smooth of class C'[0, T]. However,
the presence of the derivative (uf)'(t) of the 'noisy’ non-smooth function pg(t), coming
from measurement, in (26) highlights the practical ill-posedness of the inverse free surface
problem under investigation.

3 Numerical discretization of the direct problem

For the numerical discretization in a fixed domain it is useful to employ further the
change of variables x1 = y1, 2 = y2/(9(t)¥(y1)), to transform (1)—(4) into the following
inverse problem for the time-dependent free boundary intensity function g(¢) and the new
"temperature’ v(xy, o, t) = u(xy, x2g(t)V(xq),t):

Vp = Vg + Vgyay + 01(71, T2g(1) ¥ (21), 1)z,

g2 (1) V3 (1)
ba(z1, 22g(1) ¥ (21), 1) + 9029'@‘1’(%))
+ ( Vg + (21, 22g(t) ¥ (21), t)V
g(t)¥(z1)
+f(x1, 229(t)W(x1),t), (21,29,t) € Qx (0,T), (27)
v(21, 9,0) = (21, 229(0)U(21)), (21,22) € Q, (28)

U(07x27t> = :ul(x2g(t)\lj(0>7t)7 U(h7x27t) = :u2<x2.g(t)\1;<h)7t)7 (x27t) < [07 1] X [OvT]7 (29)

v(x1,0,t) = ps(x,t), v(xy, 1,t) = pa(xy,t), (x1,t) € [0,h] x [0,T7], (30)

o(t) // U )o(a, 29, ) dzrdes = ps(t), ¢ € (0,7, (31)
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where 2 = (0,h) x (0,1).

Next, we consider solving the direct problem (27)—(30), where the functions g, ¥, by,
by, ¢, f, @ and p; for i = 1,4, are known and the solution v(xy,zs,t) is to be computed.
We sub-divide Q x (0,7) into My, My and N uniform intervals of lengths Ax;, Axs and
At, where Az = h/M;, Axy = 1/M,, and At = T/ N, respectively. At the node (i, j,n),
denote vj'; 1= v(w1, Taj, ), Where x1; = 1Axy, 195 = jAxg, t, = nlt, g, 1= g(t,), V; :=
\IJ(LUU), bi’,j = bl(x1i7$2jgn\lli7tn)7 bgi,j = bl(l‘li,l’gjgn\yi,tn), CZ]- = C(I‘li,l’gjgn\];’i,tn)
and fi%; = f(21, 2;9n Vi, 1) for i = 0,M;,j=0,M, and n =0, N.

3.1 Alternating direction explicit (ADE) method

In this subsection, alternating direction explicit (ADE) method, [3,4,25], which is uncondi-
tionally stable, will be described for solving numerically the nonlinear the two-dimensional
parabolic equation (27) with initial and boundary conditions (28)—(30).

Let 0'; and @; satisfy the following multilevel finite difference discretisations of equa-
tion (27)

~n+1 ~n ~n ~n o 1 n+1 ~n o 1 n+1
Uy — Oy _ Vi "% T Y 7 +”l+19+ L < R = By = By +”,J+1>
At (Axl) 92V} (A932)
~n+1 ~n ~n+1 n+1
S+ (UH-L] — Y —’_17]) + <b2 + ,nggn\];l > (,Ui,j-i—l - Uij_l) + . <—’J+ + Ui )
Hd 2(Axy) Vi 2(Axs) " 2

1 - - .
+§<7:ZJ+1+ ;}J)’ izlaMl_la j:17M2_17 TL:07N—1, (32>

ﬂ?vj—l B a?,] _ ﬂ?jllﬂ B UTZH U + U 1,5 + 1 <ﬂ?ji1 - un,j_l u + uz] 1>
At (Azy)? g2 v? (Axzy)?
—|—bn (u?j_ll,j - az 1,]> + <bgi,j + ijg;l\Iji) <1~L?;}1 z] 1) < n+1)
fa\ 2(Axy) Rz 2(A,)
1 o
+§(f;jj+1 + f;;), i=M, —1,1, j=M,—1,1, n=0,N_1. (33)

Furthermore, let the o7, and @7 also satisfy the initial and boundary conditions (28)-(30),
namely

Uy = Uy = (a1, 295), 1 =0,M, j=0,M, (34)
ﬁg,j = ag,j = Mll(mngn\P(O)v tn)» 65\141’]' = &7]:414' = N12($2jgn\1’(h), tn), =0,
=1, (35)

Uio = Upo = po1(T1i, ), Ofap, = Uing, = Mo2(T1i,tn), i=0,My, n=1,N. (36)

In expressions (32) and (33), the derivative of ¢ is approximated, for simplicity, using
forward finite differences as
g(tn) - 9(%-1) 9n — Gn-1 _N

Li=4(t,) = = =1
gn =3 (tn) Al N

, (37)



though, more accurate, central finite differences may also be employed. Equations (32)
and (33) are rearranged in order to obtain explicit expressions for U"H and u"Jrl They,
respectively, become

~le_1 A?j~?]+B ( H—l]_'_vzﬂ_ll])_'_cz?? (~ZTLJ+1+U?;_11)
+D7 (0 — ~’7+113) + B0 41 — ~?j_11) +G7 5,
izl,Ml—l, j—l,MQ—l, n—O,N—l, (38)
~n+1 A;L]~ZL]+BTL ( ?—illj—i_uz 1])+Cm( ?jj1+uz] 1)
+Dn ( :L—illj ~ZL 1])+En( :L;r—&l N;L] 1)+G:<]7
i=M —1,1, j=M,—1,1, n=0,N —1, (39)
where
S N R I HEE L (R TR
Dro— (AD)bY, En — At (05, + 229, Y
W20z (14 AR)T T 20w, U1+ X))

At 1 1 1 g
- - - n. o= A Y . 4
Gl = gy g (i + Fs)s M= ((A:cnz T R An)? 2 ) (40)

From (38), (39) and (34)—(36) for ¢ and 4, v"+1 and ﬂfjl can be explicitly computed, and
the simple arithmetic mean approximation

~n+1 ~n+1
Un+1 — /Ui:j + uivj (41)
Z7j 2

finally yields the solution v}/,

The double integral in (31) is approximated using the trapezoidal rule [11,13], as
follows:

hoopl
1
W (xq)v(zy, 9, t)drodr; =
/0/0 (@)oo, 0, )y = o
Mi—1

+W(0)U(O’ 17tn) + \I](h) hv 17t + 2 Z xlz xlw 0 t )

T(0)0(0,0,t,) + U(h)v(h,0,t,)

M;—1 Mso—1 M2 1
+2 ) W()o(wn, Lt,) +2 ) W(0)v(0, 25, ) + 2 Z v(h, Taj, )
i=1 j=1
Mo—1 M1—1
+4 Z Z \Ij(-rli)v(xliaijatn)la n=1N. (42)
j=1 i=1

4 Inverse numerical solution

For the inverse problem solution of (27)—(31) we minimize

Flo =0 [ [ wetenanto)trada — st

2

(43)

L2[0,7)



or, in discretizations form,

P =Y [o [ [ et gantn - wie)] (14)

n=1

where g = (gn),—1x and v(x1, 22, t; g) solves (27)-(30) for given g. This minimization is
accomplished using the lsqgnonlin MATLAB toolbox routine, [10,22].

5 Results and discussion

We define the root mean square errors (rmse) as

N , 1/2
% > (gn - gE‘”““(tn)> ] : (45)

rmse(g) =

n=1

We take h = T = 1, for simplicity. The lower and upper bounds for the coefficient g(t)
are taken as 107 and 102, respectively. The initial guesses for g(t) is taken as the value
of ¢(0), which is obtainable from (31).

The inverse problem given by equations (27)—(31) is solved subject to the noisy data
(31)

ps(tn) = ps(tn) + €0, n=1,N, (46)

where € = (€,),,_7x, = normrnd(0,0, N), o = px maxc(o,1|¢45(t)| and p is the percentage
of noise.

Let us solve the inverse problem (1)—(4) with the input data:

1 1
U(y) =1, bi(va,92,t) = 5(3/1 +ya+1t), ba(yr,ye,t) = §(y1 +ya + 1),

c(yr, Y2, t) = %(yl +ye 1),y ) =3 — (=14 2y1)" = (=1 +12)%
iy, t) =2+t — (=1 +u2)?  pa(yo,t) =24+t — (=1 +12)°
ps(yn,t) =2+t — (=1+2y1)%  pa(yr,t) = %(14 + 13t — t? + 36y; — 36y7)
—(=142y1)%  f(1,92,1) = 11+ 2(=1+ 251)(t + 31 + %2)

(=14 y)(t+y +12) — %(t + 1+ ) (L4t + 4y — 4yi + 2y, — 43), (47)

%@):§ﬂ1+w@3+3u—¢%. (48)

Conditions of Theorem 2 hold and hence, the solution’s uniqueness is guaranteed. In fact,
the exact solution of (27)-(30) is

1
v(xy, T2, t) = u(wy, x2g(t)V(21),t) =3+t — (1 — 2:v1)2 — §(—3 + 29 + tx2)2, (49)

and
o) = %(1 +1). (50)
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Also,
u(yr, ya,t) = 3+t — (=1 +2y1)* = (=1 +2)*. (51)

First, we assess the accuracy of the direct problem given by (1)—(3) (or (27)—(30)) with
the input data (47) when ¢(t) is known and given by (50). Table 1 illustrates that the
analytical and numerical solutions for the data (4) (or (31)), which analytically is given
by (48), obtained with various numbers of space grids M; = M, € {5,10,20} and with
various numbers of time steps N € {20, 40,80} are in excellent agreement.

Table 1: The numerical and exact (48) solutions for us(t), with various M; = M, €
{5,10,20} and N € {20, 40,80}, for the direct problem.

My=M, | N |t=01[t=02|t=03]..[t=0.9]rmse(us)
20 | 0.7554 | 0.8741 | 1.0006 | ... | 1.9232 | 0.0148
5 40 | 0.7556 | 0.8741 | 1.0007 | ... | 1.9233 | 0.0147
80 | 0.7556 | 0.8742 | 1.0007 | ... | 1.9234 | 0.0146
20 | 0.7629 | 0.8823 | 1.0096 | ... | 1.9369 | 0.0039
10 40 | 0.7631 | 0.8825 | 1.0098 | ... | 1.9372 | 0.0038
80 | 0.7632 | 0.8825 | 1.0098 | ... | 1.9373 | 0.0037
20 | 0.7648 | 0.8841 | 1.0116 | ... | 1.9398 | 0.0015
20 40 | 0.7649 | 0.8845 | 1.0120 | ... | 1.9405 | 0.0011
80 | 0.7651 | 0.8846 | 1.0121 | ... | 1.9408 | 0.0009
exact 0.7658 | 0.8853 | 1.0129 | ... | 1.9420 | O

Next, we investigate the inverse problem. We fix M; = Ms; = 10 and N = 40, which
was found sufficiently dense to ensure that any finer mesh (such as M; = My = 20 and
N = 80) did not influence the stability and accuracy of the numerical solution.

Figure 1 illustrates the absolute error between the exact solution (49) and the nu-
merical solutions for v(xy,x9,t). It can be observed that the accuracy of the numerical
solution improves, as the noise level p decreases.

The results for g(¢) are illustrated in Figure 2. The rmse(g) obtained values (45) are
0.0014,0.0127,0.0250 and 0.0373 for p € {0, 1,2, 3}% noise, respectively. As expected, for
noise free data, i.e. p = 0, the unique solution (50), which is guaranteed from Theorem 2,
is retrieved very accurately. As noise p is included in the data (46), Figure 2 illustrates
that the numerical recoveries are reasonably accurate but start to build up oscillations as
the amount of noise p increases. To restore stability we penalise the least-squares function
(43) by adding a first-order smoothing term A||¢'(¢)|]3. o.7] to it since the theory provides
g € C'0,T], where A > 0 is the Tikhonov’s regularization parameter to be selected.
Then, in discretised form this first-order Tikhonov functional recasts as

Fi(g) = Flg) + 2 (%) . (52)

For p = 5% noise, Figure 3 illustrates the analytical solution (50) and the numer-
ical solutions obtained by minimizing the objective functional (52) for various regu-
larization parameters. The rmse(g) values are 0.0618, 0.0440, 0.0292 and 0.0322 for
A€ {0,1073,1072, 1071}, respectively. It can be noted that the numerical unregularized
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solution obtained with A = 0 manifests instability, however, inclusion of regularization
with A = 1072 to 107! provides a stable solution which is consistent in accuracy with
the p = 5% noise contaminating the input data (46). The last remaining thing to do is
to provide some reasoning on how to choose the regularization parameter A > 0 in the
functional (52). One possible argument for this choice is given by the L-curve shown in
Figure 4. For several parameters A for the obtained minimizer g, of (52), we plot the

derivative norm ||g [|= \/ S (%)2 versus the residual norm /F(g,). The "cor-

ner’ of the obtained L-curve around A = 1072, illustrated in Figure 4, is taken as a good
selection for A compromising/balancing the fit of measured data (residual comparable to
the amount of noise included) with the stability of solution (bounded derivative solution

norm).

p=0 p=1% ,

0.01

x
o
<
S

A

0.005

Absolute error
Absolute error

—- o

0.02

0.01

Absolute error

Absolute error

Figure 1: The absolute error between the numerical and analytical (49) solutions for the trans-
formed temperature v(z1, z2,1), for p € {0,1,2,3}% noise, without regularization.
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Figure 2: The numerical and analytical (50) solutions for the intensity g(t) of the free boundary,
for p € {0,1,2,3}% noise, without regularization.
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Figure 3: The numerical and analytical (50) solutions for the intensity g(¢) of the free boundary,
for p = 5% noise, with various A € {0,1073,1072, 1071},
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Figure 4: The derivative norm ||g}|| versus the residual norm ,/F(g,) for the L-curve, for
p = 5% noise.
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6 Conclusion

The retrieval of the transient intensity of a free boundary and the temperature in a
two-dimensional parabolic problem from mass (energy) measurement has been studied.
This nonlinear inverse problem has been shown to be (locally) well-posed and a stability
theorem has been proven. The free boundary formulation has been changed to a fixed
domain, and the direct solver based on a ADE-FDM has been utilized. The inverse
solution has been obtained based on the lsqnonlin MATLAB optimisation procedure
for minimizing the least-squares function further penalised with first-order regularization
for noisy data. Numerical illustrations show that accurate and stable solutions have
been attained. Extension to three-dimensions is in principle straightforward. Future
work will consider recovering the intensity g(¢) of the free boundary together with the
minor coefficient ¢ (depending on the time ¢ only) form the mass specification (4) and an
additional Stefan-type condition [24].
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