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Performance Analysis of Shrinkage Linear

Complex-Valued LMS Algorithm
Long Shi, Student Member, IEEE, Haiquan Zhao, Senior Member, IEEE,

and Yuriy Zakharov, Senior Member, IEEE

Abstract—The shrinkage linear complex-valued least mean
squares (SL-CLMS) algorithm with a variable step-size (VSS)
overcomes the conflicting issue between fast convergence and
low steady-state misalignment. To the best of our knowledge,
the theoretical performance analysis of the SL-CLMS algorithm
has not been presented yet. This letter focuses on the theoretical
analysis of the excess mean square error (EMSE) transient and
steady-state performance of the SL-CLMS algorithm. Simulation
results obtained for identification scenarios show a good match
with the analytical results.

Index Terms—EMSE, Kronecker product, Rayleigh distribu-
tion, shrinkage.

I. INTRODUCTION

THE complex-valued least mean square (CLMS) adaptive

filtering algorithm is a well-known estimation technique,

which can be considered as an extension of the classical

least mean square (LMS) algorithm in the complex domain.

It has been successfully applied in the system identification,

beamforming and frequency estimation [1]–[5]. As reported

in [6], the CLMS algorithm provides good results in the case

of circular Gaussian input signals totally described by the co-

variance matrix, with its pseudo-covariance matrix being zero.

In practice, e.g., in communication applications, the complex

inputs often have a non-zero pseudo-covariance matrix [7].

To exploit the information of both the matrices, the widely

linear CLMS (WL-CLMS) algorithm was proposed [6], [8].

Both the algorithms with time-invariant step-size have been

recently analyzed in detail [9]–[12].

For an adaptive filtering algorithm with a fixed step-size,

the tradeoff between fast convergence and low steady-state

misalignment is unavoidable. To address this issue, the shrink-

age linear CLMS (SL-CLMS) algorithm was proposed [13], in

which the variable step-size (VSS) is derived by minimizing

the energy of the noise-free a posteriori error signal.

This letter provides the theoretical analysis of the SL-CLMS

algorithm proposed in [13]. By employing properties of the

Kronecker product, which is an approach different from the
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known analysis of complex-valued adaptive algorithms, we

arrive at a recursion for computation of the mean-squared

error transient and steady-state performance of the algorithm.

Simulations for system identification scenarios support the

theoretical results.

Notation: The boldface letters denote vectors and matrices.

The symbols (·)∗, (·)T , and (·)H are, respectively, the com-

plex conjugate, transpose, and Hermitian transpose operators.

Symbols ⊗, max(·), and | · | are the Kronecker product,

maximum and absolute operators, respectively. The operation

vec(·) stacks the matrix into a column. The symbols E(·) and

Tr(·) stand for the mathematical expectation and trace of a

matrix, respectively. The symbols exp(·) and erf(·) denote the

exponential and error functions, respectively. IL is an L× L
identify matrix.

II. REVIEW OF THE SL-CLMS ALGORITHM

Consider a desired signal d(k) at instant k originated from

the linear model

d(k) = wH
o x(k) + η(k), (1)

where wo denotes the unknown system vector of length L,

x(k) = [x1(k), x2(k), · · ·, xL(k)]
T is the input vector, and

η(k) accounts for the background noise with zero-mean and

variance σ2
η = E[|η(k)|2]. The error signal e(k) is defined as

e(k) = d(k)−wH(k)x(k), (2)

where w(k) is an estimate of wo at instant k.

In the SL-CLMS algorithm, the weight update is given by

w(k + 1) = w(k) + µke
∗(k)x(k), (3)

where µk denotes the VSS calculated as [13]

µk =
σ2
ea
(k)

E[‖x(k)‖2]σ2
e(k)

. (4)

The quantities σ2
e(k) and σ2

ea
(k) are calculated as

σ2
e(k) = λσ2

e(k − 1) + (1− λ) |e(k)|
2
, (5)

σ2
ea
(k) = λσ2

ea
(k − 1) + (1− λ) |êa(k)|

2
, (6)

where

êa(k) = sign[e(k)]max(|e(k)| − t, 0), (7)

λ is the forgetting factor (0 < λ . 1), sign[e(k)] = e(k)
|e(k)| and

t is a threshold: t =
√

θσ2
η/L with 1 ≤ θ ≤ 4 [13]. In [13],
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the quantities E[‖x(k)‖2] and σ2
η are assumed to be known.

Note that if the values of E[‖x(k)‖2] and σ2
η are unknown,

they can be estimated using estimators proposed in [14], [15].

III. PERFORMANCE ANALYSIS OF THE SL-CLMS

ALGORITHM

We make the following assumptions, which are widely used

for analyzing VSS adaptive algorithms.

A1: The background noise η(k) is zero-mean circular white

Gaussian and statistically independent of the noise-free a

priori error signal ea(k) = w̃H(k)x(k) and input vector x(k),
where w̃ = w(k)−wo is the weight error vector.

A2: The step-size µk is statistically independent of the input

and weight vectors.

A3: The noise-free a priori error signal ea(k) obeys the zero-

mean Gaussian distribution.

Assumption A1 is one of the most common assumptions in

the adaptive filtering theory [1], [16]. Assumption A2 is widely

used for the analysis of VSS adaptive filtering algorithms

by considering that the step-size varies slowly, see [17]–

[21] and references therein. This assumption might not be

very accurate for fast varying step-size, see simulation results

below. Assumption A3 is approximately true when the filter

length is large [22], [23].

We define the input covariance matrix R and pseudo-

covariance matrix P as

R = E[x(k)xH(k)], P = E[x(k)xT (k)]. (8)

For the weight error vector w̃(k), from (3) we obtain

w̃(k+1) =
[

IL − µkx(k)x
H(k)

]

w̃(k)+µkη
∗(k)x(k). (9)

Post-multiplying (9) by its Hermitian transpose, we arrive at

w̃(k + 1)w̃H(k + 1) = w̃(k)w̃H(k)

− µkw̃(k)w̃H(k)x(k)xH(k)

− µkx(k)x
H(k)w̃(k)w̃H(k)

+ µ2
kx(k)x

H(k)w̃(k)w̃H(k)x(k)xH(k)

+ µ2
kx(k)x

H(k) |η(k)|
2
+ µkw̃(k)xH(k)η(k)

− µ2
kx(k)x

H(k)w̃(k)xH(k)η(k) + µkη
∗(k)x(k)w̃H(k)

− µ2
kη

∗(k)x(k)w̃H(k)x(k)xH(k).
(10)

Taking the expectation of (10) and applying assumptions A1

and A2 leads to

Q(k + 1) = Q(k)− E(µk)[RQ(k) +Q(k)R] + E(µ2
k)σ

2
ηR

+ E(µ2
k)(RQ(k)R+ PQ∗(k)P ∗ +RTr[RQ(k)]),

(11)

where Q(k) = E[w̃(k)w̃H(k)], and the fourth order moment

in (10) is decomposed by employing the Gaussian moment

factorizing theorem [24]

E[x(k)xH(k)w̃(k)w̃H(k)x(k)xH(k)]

= RQ(k)R+ PQ∗(k)P ∗ +RTr[RQ(k)].
(12)

Before further proceeding, we make the following approx-

imation [25], [26]:

E(µ2
k) ≈ [E(µk)]

2. (13)

This approximation is valid due to the averaging in (5) and (6)

for estimates σ2
ea
(k) and σ2

e(k). Our numerical analysis (not

presented here), for scenarios in Section IV, has shown that

this approximation is very accurate. Using (13) in (11), we

obtain

Q(k + 1) = Q(k)− E(µk)[RQ(k) +Q(k)R] + [E(µk)]
2
σ
2

ηR

+ [E(µk)]
2(RQ(k)R+ PQ

∗(k)P ∗ +RTr[RQ(k)]).
(14)

A. Mean Square Transient Behavior

For arbitrary matrices {X, Y , Z} of compatible dimen-

sions, vec(XY Z) = (ZT ⊗ X)vec(Y ) and Tr(XY ) =
(vec(XT ))T vec(Y ) [27]. By applying these operations to

(14), we arrive at

vec(Q(k + 1)) = vec(Q(k))− E(µk)[(I ⊗R)vec(Q(k))

+ (RT ⊗ I)vec(Q(k))] + E(µ2
k)σ

2
ηvec(R)

+ E(µ2
k)[(R

T ⊗R)vec(Q(k)) + (PH ⊗ P )vec(Q∗(k))

+ vec(R)(vec(RT ))T vec(Q(k))].
(15)

The recursion in (15) can be computed as long as the mean

step-size E(µk) is available.

Taking the expectation of (4) and applying A1, we obtain

E(µk) =
E[σ2

ea
(k)]

E[‖x(k)‖2]E[σ2
e(k)]

, (16)

where

E[σ2
e(k)] = λE[σ2

e(k − 1)] + (1− λ)E[|e(k)|
2
], (17)

E[σ2
ea
(k)] = λE[σ2

ea
(k − 1)] + (1− λ)E[|êa(k)|

2
]. (18)

Here, we have also used the first-order approximation:

E
{

σ2

ea
(k)

σ2
e
(k)

}

≈
E[σ2

ea
(k)]

E[σ2
e
(k)] . Note that a more accurate second-

order approximation E
{

σ2

ea
(k)

σ2
e
(k)

}

≈ γ
E[σ2

ea
(k)]

E[σ2
e
(k)] requires com-

puting the factor γ = 1−ǫ = 1−
cov(σ2

ea
(k),σ2

e
(k))

E[σ2
ea

(k)]E[σ2
e
(k)]+

var(σ2

e
(k))

E[σ2
e
(k)]2 ,

where cov(·) denotes the covariance, and var(·) is the variance

[28], [29]. However, our numerical analysis (not presented

here), has shown that, for all simulation scenarios in Section

IV, ǫ << 1. Therefore, the first-order approximation is used.

Note that this approximation is often used for analysis of

adaptive filtering algorithms [20], [25], [26].

In (16), the quantity E[‖x(k)‖2] is available since we have

assumed that the input power is known. The recursion for

E[σ2
e(k)] is based on E[|e(k)|

2
] which is given by

E[|e(k)|
2
] = σ2

η +Tr(RQ(k)). (19)

The difficulty is the calculation of E[|êa(k)|
2
] in (18). By

using (7), E[|êa(k)|
2
] is expressed as

E[|êa(k)|
2
] = E{[max(|e(k)| − t, 0)]2}. (20)

Since e(k) = ea(k) + η(k), with assumptions A1 and A3,

we obtain that the error e(k) obeys the zero-mean Gaussian

distribution. We further assume that the variance of the real

and imaginary parts of e(k) have the same variance; this

approximation is verified in our simulation in Section IV.
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Then, z = |e(k)| obeys the Rayleigh distribution [30] with

the probability density function

f(z) =
z

σ2(k)
exp

(

−
z2

2σ2(k)

)

, z ≥ 0, (21)

where σ2(k) is the variance of the real (imaginary) part of

e(k) [30], i.e.,

σ2(k) =
E[|e(k)|

2
]

2
=

σ2
η +Tr(RQ(k))

2
. (22)

From (20) and (21), we have

E[|êa(k)|
2
] =

1

σ2(k)

∫ ∞

t

(z − t)2z exp

(

−
z2

2σ2(k)

)

dz.

(23)

By taking the integral in (23), we arrive at

E[|êa(k)|
2
] = Ω1 − Ω2 +Ω3, (24)

where

Ω1 =
1

σ2(k)

∫

∞

t

z
3 exp

(

−
z2

2σ2(k)

)

dz

= t
2 exp

(

−
t2

2σ2(k)

)

+ 2σ2(k) exp

(

−
t2

2σ2(k)

) (25)

Ω2 =
1

σ2(k)
2t

∫

∞

t

z
2 exp

(

−
z2

2σ2(k)

)

dz =

2t

[

t exp

(

−
t2

2σ2(k)

)

−

√

πσ2(k)
√

2

[

erf

(

t
√

2σ2(k)

)

− 1

]] (26)

and

Ω3 =
1

σ2(k)
t2
∫ ∞

t

z exp

(

−
z2

2σ2(k)

)

dz

= t2 exp

(

−
t2

2σ2(k)

)

.

(27)

Based on the above derivation, using (16) – (27), the mean

step-size E(µk) is calculated, which is then used in the

recursive update (15) to compute the excess mean square error

(EMSE) according to

EMSE(k) = (vec(RT ))T vec(Q(k)). (28)

B. Mean Square Steady-state Behavior

As k → ∞ from (15), we obtain the steady-state equation

E(µ∞)[(I ⊗R)vec(Q(∞)) + (RT ⊗ I)vec(Q(∞))]

− [E(µ∞)]2[(RT ⊗R)vec(Q(∞))

+ vec(R)(vec(RT ))T vec(Q(∞))]

= [E(µ∞)]2σ2
ηvec(R) + [E(µ∞)]2(PH ⊗ P )vec(Q∗(∞)).

(29)

Rearranging (29) results in

vec(Q∗(∞)) =

Ψ
−1
1 E(µ2

∞)[σ2
ηvec(R

∗) + (P T ⊗ P ∗)vec(Q(∞))],
(30)
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Fig. 1. Evolutions of σ2
er

and σ2
ei

for different σ2
η , λ = 0.95 and θ = 3.

(a) independent Gaussian input; (b) correlated input.

where

Ψ1 = E(µ∞)[I ⊗R∗ +RH ⊗ I]

− E(µ2
∞)[RH ⊗R∗ + vec(R∗)(vec(RT ))H ].

(31)

Substituting (30) into (29), after some algebra, we arrive at

vec(Q(∞)) =

E(µ2
∞)Ψ−1

2 [σ2
ηvec(R) + E(µ2

∞)(PH ⊗ P )Ψ−1
1 σ2

ηvec(R
∗)],
(32)

where

Ψ2 = E(µ∞)[I ⊗R+RT ⊗ I]

− E(µ2
∞)[RT ⊗R+ vec(R)(vec(RT ))T ]

− (E(µ2
∞))2(PH ⊗ P )Ψ−1

1 (P T ⊗ P ∗).

(33)

In the steady-state, we can assume that in (19)

Tr(RQ(k)) << σ2
η , and thus E[|e(k)|

2
] ≈ σ2

η [31]. The

steady-state step-size E(µ∞) is calculated using (16)-(18)

and (24)-(27). Finally, the steady-state EMSE can be deduced

from (28).

IV. SIMULATION RESULTS

To evaluate our theoretical analysis, we consider system

identification scenarios with the 16 × 1 system vector wo =
[ω, ω, ω, ω]T , where ω = [0.25+0.1i, 0.5+0.75i, 0.75+
0.5i, 0.1 + 0.25i]. The independent Gaussian input is zero-

mean non-circular with variance E[|x(k)|2] = 1 and com-

plementary variance E[x2(k)] = 0.5 [11]. The correlated

inputs are generated by filtering the independent Gaussian

sequence through a first-order auto-regressive model H(z) =
1/(1 − 0.3z−1). The background noise is zero-mean circular

white Gaussian. The normalized EMSE (NEMSE) |ea(k)|
2/σ2

η

is used to evaluate the algorithm performance in Fig. 3 and

Fig. 4, while in Fig.5, the EMSE |ea(k)|
2 is shown; all results

are obtained by averaging over 1000 simulation trials.

We first present in Fig. 1 variances of real σ2
er

and imaginary

σ2
ei

parts of e(k). As can be seen, σ2
er

≈ σ2
ei

for all values

of the noise variance σ2
η . This justifies the assumption that
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Fig. 2. Evolutions of the step-size for different λ and θ, and σ2
η = 0.01. The

correlated signal is used as the input. Solid lines: simulation results; dashed
lines: theoretical results.
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Fig. 3. Normalized EMSE for different values of λ and θ, and σ2
η = 0.001.

The independent Gaussian signal is used as the input. Lines without marks:
simulation results; lines with marks: theoretical results.

|e(k)| has the Rayleigh distribution, as used in our theoretical

analysis.

Fig. 2 shows the evolution of the step-size with iterations

for different values of the forgetting factor λ and threshold

parameter θ. It is seen that the theoretical prediction is accurate

in all the cases, apart from the transient period when the step-

size varies very quickly.

Fig. 3 shows the NEMSE for the case of the independent

Gaussian input, obtained for different values of λ and θ in

the simulation and theoretically predicted. It can be seen

that the theoretical prediction is very accurate for all sets

of the parameters at all iterations. There is, however, some

discrepancy in the transient period due to the fast variation of

the step-size.

Fig. 4 presents similar results for the case of the correlated

Gaussian input, and again the theoretical prediction is very

accurate.

Fig. 5 compares the simulated and theoretical EMSE for
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Fig. 4. Normalized EMSE for different values of λ and θ, and σ2
η = 0.01.

The correlated signal is used as the input. Lines without marks: simulation
results; lines with marks: theoretical results.
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Fig. 5. EMSE for different noise variances; λ = 0.95 and θ = 3. The
correlated signal is used as the input. Red lines: simulation results; blue lines:
theoretical transient results; black lines: theoretical steady-state results.

different noise variances. For all the noise variances, the

theoretical analysis provides good prediction of the steady-

state EMSE. When σ2
η = 0.1 and σ2

η = 0.01, the transient

behaviour is also accurately approximated by the theoretical

curve. Only for a low noise variance (σ2
η = 0.001), there is

some deviation between the simulated and theoretical transient

EMSE. This deviation is due to the limited accuracy of the

approximation in (16).

V. CONCLUSION

In this letter, we have presented the theoretical analysis of

the transient and steady-state EMSE performance of the SL-

CLMS adaptive algorithm for the case of non-circular input

signal and circular Gaussian noise. Comparison of simulation

and theoretical results for identification scenarios with dif-

ferent parameters have shown that the theoretical prediction

provided by our analysis is very accurate.
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