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Abstract  14 

For passenger rail operators worldwide a common concern is to 15 

better understand and improve passenger experience. Based on 16 

factors including train movement times and crowding, the 17 

Journey Time Metric and Disutility Metric can be used to 18 

quantitatively assess the journey experience of individual 19 

passengers. However an assessment of overall network 20 

performance is also desirable. This paper presents a whole-21 

network assessment metric that captures passenger experience 22 

by aggregating and normalizing individual journey 23 

assessments. The newly developed metric is validated against 24 

customer satisfaction data measured in passenger surveys of the 25 

London Underground Limited Victoria Line with a statistically 26 

significant correlation (P<0.005) between the predictions and 27 

the measurements. It is found that there is a high degree of 28 

correlation (ρ=1.00, P<0.005) between the network scores 29 

calculated using the new whole-network assessment metric 30 

with either the Journey Time Metric or Disutility Metric despite 31 

their different formulations and countries of origin. Through 32 

development of the new metric it is identified that many 33 

commonly used network assessment metrics (e.g. Public 34 

Performance Measure and the end-to-end journey time of 35 

passengers) are insensitive to crucial aspects of passenger 36 

experience. The newly developed metric could be used by rail 37 

operators to better select strategies for improving passenger 38 

experience. 39 

 40 

 41 
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Highlights 45 

• A new whole-network assessment metric is developed 46 

to capture passenger experience by aggregating and 47 

normalizing individual journey assessments. 48 

• Two different passenger journey assessment metrics of 49 

different international origin are compared. 50 

• The new whole-network assessment metric is validated 51 

against measured data from the London Underground 52 

Limited Victoria Line. 53 

1 Introduction 54 

With demand for rail travel having doubled in the last 20 years 55 

(Davis, 2018) and 40% more passengers predicted by 2040 56 

(Carne, 2018), rail travel has an increasingly important role to 57 

play in meeting the passenger journey needs of Great Britain 58 

(GB). To fulfil this role the rail industry Technical Leadership 59 

Group (2017) set targets for the GB network that included 60 

Nomenclature 𝜓 – individual passenger journey score* Ψ – distribution of passenger journey scores 𝜙 – network score* 

I – number of states in a passenger journey 

i – counter for enumerating sequence of states 𝑡% – time passenger spends in their ith state (seconds) Ω – Value of Time weighting function* 𝛼% – passenger journey stage of ith state*  𝛽% – vector describing conditions of passenger’s ith state* 𝜀 – number of passenger train changes 𝜔 – crowding penalty function* 𝛿 – number of passengers on train 𝛿,-. – train maximum capacity 𝛾 –train crush capacity 𝜇 – number of seats 𝜂 – crowding factor 𝑐3 to 𝑐4 – constants 𝑘3 to 𝑘6 – constants 𝑅 – number of passengers 𝑑9 – distance travelled by rth passenger 𝜏; – Kendall Rank Correlation Coefficient B* 

 

* Values specific to a metric are indicated with the superscript text: JTM or DM 
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“improving [the] customer experience” of passengers. The 61 

experience of passengers and their satisfaction is also a network 62 

performance indicator for other rail networks internationally, 63 

e.g. across Europe (TNS Political & Social, 2013) and in Japan 64 

(Kunimatsu et al., 2012). Traditionally, however, rail networks 65 

have been assessed with train-focussed metrics. For example, 66 

the GB industry standard Public Performance Measure (PPM) 67 

describes the percentage of services that arrive at their final 68 

destination within five minutes (ten for long distance trains) of 69 

the timetabled time, this metric having no sensitivity to the 70 

effect on passengers if the train arrives late at intermediate 71 

stations, or to the comfort of their journey. In this paper a new 72 

method is developed which combines assessments of individual 73 

passenger journeys, i.e. journey scores, for all passengers in a 74 

network to give a network score that quantifies the experience 75 

of passengers. In a case study relating to the Victoria Line of 76 

the London Underground Limited (LUL) network, the whole-77 

network assessment metric is validated against measured data 78 

from passenger surveys surmised by LUL (2018a). 79 

Furthermore, international comparison is made when the 80 

whole-network assessment metric is used with individual 81 

passenger journey assessment metrics from different countries 82 

of origin. The developed whole-network assessment metric will 83 

allow operators to provide a parameter summarising overall 84 

network performance from the passenger perspective, enabling 85 

this to be effectively optimised. 86 

2 Metrics to assess networks 87 

The aggregate of passenger end-to-end journey time has been 88 

used as a metric to assess network performance, for example by 89 

Vuchic and Newell (1968), Chang et al. (2000) and Cacchiani 90 

and Toth (2012). However, there is evidence that end-to-end 91 

journey time does not fully capture the passenger experience. 92 

For example, Susilo and Cats (2014) show that, for public 93 

transport travellers, factors such as station environment, ease of 94 

transfer, service frequency and safety are significant 95 

determinants of passenger satisfaction. Because Chen and Chen 96 

(2010) describe customer satisfaction as being affected by 97 

customer experience, in the current paper it is assumed that the 98 

satisfaction of a passenger is an indicator of their experience, 99 

and the effect of other factors such as ticket pricing is 100 

disregarded. Consequently, in the current paper, decreasing 101 

passenger dissatisfaction or disutility and increasing passenger 102 

satisfaction are considered to be equivalent to “improving 103 

passenger experience”. The disconnect between passenger 104 

journey time and passenger satisfaction is evident in the results 105 

of a rail passenger survey by Transport Focus (2016) which 106 

showed that journey time has a smaller influence upon 107 

passenger satisfaction than punctuality of the service or 108 

cleanliness. Therefore, to better capture passenger satisfaction 109 
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it is necessary to quantify a passenger journey in greater depth 110 

than journey time or punctuality alone. 111 

 112 

2.1 Describing a passenger journey with stages 113 

A passenger journey can be modelled as the combination and 114 

repetition of specific activities, i.e. stages. For example, Wang 115 

et al. (2015) state that a passenger journey can be well 116 

represented with the stages: walking into and out of a station, 117 

waiting on the platform, riding on a train and transferring 118 

between platforms. However, they do not take into account the 119 

relative impact of time in each stage upon the whole passenger 120 

experience. Vansteenwegen and Van Oudheusden (2007) and 121 

Sels et al. (2016) describe a passenger journey using two stages 122 

(“In Station” and “On Train”) and capture the varying impact 123 

of time in different stages by weighting these times with a 124 

different Value of Time (VoT). The VoT concept has been 125 

developed in Transport Economics and describes, in monetary 126 

terms, the disutility experienced by a passenger over a time 127 

period. It can be thought of as the price a passenger would pay 128 

to reduce their travel time by one unit, hence a greater VoT 129 

indicates a worse experience for passengers. As well as being 130 

sensitive to the journey stage of a passenger, a VoT can be 131 

sensitive to the mode of transport, journey purpose and 132 

distance, for example having different values for travel by car, 133 

bus, train or other public transport (ARUP et al., 2015).  134 

Wardman (2004) showed that the VoT is sensitive to the 135 

activity of the passenger, and Vansteenwegen and Van 136 

Oudheusden provide values showing that passengers rate 1 137 

minute of waiting in a station to be equivalent to 2.5 minutes on 138 

a moving train. By modelling the amount of time passengers 139 

spend in both of these stages and weighting it by the VoT for 140 

each stage, Vansteenwegen and Van Oudheusden create a 141 

network assessment metric which can capture the relative effect 142 

on passengers of time savings in either stage. However, their 143 

metric does not capture the effect of crowding (i.e. the number 144 

of passengers on a train relative to the number of seats and 145 

standing space) which can reduce the personal space and 146 

comfort of passengers, causing additional disutility and hence 147 

increasing the VoT.  148 

Horowitz (1978) showed that, as well as the journey stage, the 149 

“environmental conditions” that a passenger experiences during 150 

a stage (referred to as conditions in the current paper) affect the 151 

VoT. Horowitz considered weather conditions, that are not 152 

considered here, but also standing vs seated travel and 153 

crowding levels. Models to quantify the effect that crowding 154 

has upon the VoT have been developed for example by 155 
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Wardman and Murphy (2015) and Qin (2014). Two metrics 156 

developed in different international systems to assess individual 157 

passenger journeys across journey stages and crowding levels 158 

are the Journey Time Metric (JTM) and the Disutility Metric 159 

(DM).  160 

 161 

The JTM has been developed by LUL and shared with the 162 

authors by private communication, the most informative 163 

accessible documentation being the investigations of Chan 164 

(2007) and Hickey (2011). It describes passenger journeys 165 

using five stages “Buying Ticket”, “Moving Through Station”, 166 

“On Platform”, “On Platform (Left Behind)” (where a 167 

passenger has not been able to board a suitable train because it 168 

is overly occupied) and “On Train”. The effect of crowding 169 

conditions are considered in the “On Train” stage by modifying 170 

the VoT with a crowding penalty that is dependent on the 171 

number of passengers, train capacity and seats. The DM has 172 

been developed in Japan and is documented in English by 173 

Kunimatsu et al. (2009, 2012). It takes a similar approach to the 174 

JTM, but resolves a journey using two stages (“On Train” and 175 

“In Station”) with weightings different to those used by the 176 

JTM. Similar to the JTM, the DM applies a crowding penalty 177 

for passengers in the “On Train” stage that is sensitive to the 178 

same factors as the JTM crowding penalty, however a different 179 

formula is used. The DM is used again by Kanai et al. (2011) to 180 

assess individual journeys as part of a network assessment 181 

metric used in a decision support tool for delay management. 182 

They discuss different methods of combining journey scores 183 

into a network score, however none of their methods normalize 184 

for the distance travelled by passengers, meaning that networks 185 

providing shorter journeys could compare favourably against 186 

networks providing longer journeys.  187 

 188 

Moving from individual journey to network metrics, Ali et al. 189 

(2017) predict network performance by combining journey 190 

scores calculated using an individual journey metric with 191 

similarities to the JTM and DM. The network metric is 192 

demonstrated to predict observed simple qualitative 193 

relationships between timetable features and network 194 

performance, e.g. fewer train services result in worse network 195 

performance as determined by their metric. 196 

 197 

The JTM, DM and the metric described by Ali et al. are the 198 

only metrics, found for this review, to capture the multi-stage 199 

nature of passenger journeys and weight the time spent in each 200 

stage including the effect of crowding. They therefore capture 201 

individual passenger journeys in more detail than the other 202 

metrics identified here which consider journey stages or 203 

crowding only. However, the parameter values used within the 204 

metric of Ali et al. could not be retrieved so this is excluded 205 
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from further analysis. To the best of the authors’ knowledge, no 206 

publicly available documents describe the validation or 207 

comparison of the JTM and DM, or network assessment 208 

metrics based upon them. This gap defines the targets of this 209 

paper, to make a comparison of the JTM and DM methods, and 210 

to develop a validated network metric based upon them.  211 

3 Network assessment metrics that capture 212 

the passenger perspective 213 

To assess a rail network we evaluate individual passenger 214 

journeys and examine the distribution of experiences. To 215 

evaluate modelled passenger journeys, we introduce the term 216 

state to describe a specific combination of journey stage and 217 

conditions. A passenger journey is decomposed into a sequence 218 

of states as shown in Figure 1, which illustrates an example 219 

four-state passenger journey. Shading is used to indicate which 220 

journey stage the passenger is in (“On Train” or “In Station”). 221 

Crowding is only considered in the “On Train” stage and text is 222 

used to indicate this. The markers t0 to t4 indicate the times at 223 

which the passenger changed state. At t0, the passenger enters 224 

the origin station, at t1 the passenger boards their train. At t2 the 225 

train stops at an intermediate station where more passengers 226 

board making it crowded. The passenger journey stage does not 227 

change, but the state does. At t3 the passenger reaches their 228 

destination station and exits at t4. The number of states in a 229 

passenger journey, I, is variable dependant on the journey and 230 

we use the counter, i, to enumerate the sequence of states, i = 1, 231 

2, … I. 232 

233 
  234 
Figure 1 – An example passenger journey decomposed into four states. The journey 235 
is described with two stages: On Train and In Station. The shading of the state 236 
indicates the stage. Text is used to describe the conditions of the state. The markers 237 
t0 to t4 relate to the times when the passenger changed state.  238 

The sum of VoT weightings across all states of a passenger 239 

journey can be used as an individual journey score. The 240 

following section describes how this is calculated when either 241 

the JTM or DM is used. The following section also compares 242 

how the JTM and DM calculate the crowding penalty. Section 243 

3.2 then describes how the distribution of journey scores is 244 

evaluated to give a network score.   245 

 246 
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3.1 Calculating an individual journey score 247 

A journey score calculated using the JTM is computed from the 248 

formula:	249 

𝜓=>? =	A𝑡%Ω=>?(𝛼%=>? , 𝛽%=>? , 𝜔=>?)%EF
%E3  250 

(1) 251 

Where 𝜓 denotes the journey score, 𝑡%, the time (in seconds) 252 

spent in the ith state, Ω, the VoT weighting function, 𝛼% and 𝛽𝒊, 253 

respectively the journey stage and conditions of the passenger’s 254 

ith state and 𝜔 the crowding penalty function. 𝜓H?  (given by 255 

(2)) is calculated similarly to 𝜓=>? , but has an additional term 256 

to capture the relative disutility experienced by passengers 257 

changing train with a parameter for the number of times a 258 

passenger must change trains, 𝜀, and a weighting factor, 𝑘3. A 259 

value of 600 is used by Kunimatsu et al. for 𝑘3, meaning that 260 

each train change has an associated disutility equivalent to 10 261 

minutes (600 seconds) travelling on an otherwise unoccupied 262 

train. Table 1 provides the other parameter values for each 263 

metric. 264 

𝜓H? = 	A𝑡%ΩH?(𝛼%H? , 𝛽%H? , 𝜔H?)%EF
%E3 + 𝑘3𝜀 265 

(2) 266 

𝜶𝒔𝑱𝑻𝑴 = 1 2 3 4 5 

Description On Train On 

Platform 

On 

Platform 

(Left 

Behind) 

Moving 

Through 

Station 

Buying 

Ticket 

𝛀𝑱𝑻𝑴 = 1 + 𝜔=>?(𝛽%=>?) 
 

2.5 3 2.7 2.5 

𝜶𝒊𝑫𝑴 = 1 2 

Description On Train In Station 𝛀𝑫𝑴 = 1 + 𝜔H?(𝛽%H?) 
 

3 

Table 1 – The VoT weighting, 𝛺, for both metrics dependent on the journey stage, 𝛼, 267 
of a passenger’s ith state. A description of the journey stage relating to 𝛼 is also 268 
shown. The VoT weighting for the On Train state is dependent on a crowding penalty 269 
function, 𝜔, calculated using the conditions of the state, 𝛽. For the JTM, these 270 
values have been shared with the authors by personal communication and for the 271 
DM they are taken from Kunimatsu et al. (2012). 272 

Table 1 shows the relative weighting both metrics put on each 273 

state (a lower value of Ω indicates a better passenger 274 

experience) and that the JTM describes a journey using five 275 

journey stages whereas the DM uses two. Both methods 276 
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consider crowding only when passengers are in the “On Train” 277 

journey stage. The JTM crowding penalty, 𝜔=>? , is determined 278 

with the formula given by (3) using values given in Table 2.  279 

𝜔=>? = S 0	,																																																						𝛿 ≤ 𝜇
𝑐3 + 𝑐V 𝛿 − 𝜇𝛾 − 𝑐4 𝛿𝜇 − 𝜇V𝛾V , 𝜇 < 𝛿 ≤ 𝛿,-. 280 

(3) 281 

Where 𝛿 denotes the number of passengers, 𝜇, the number of 282 

seats on the train, 𝛿,-., the maximum passenger capacity, 𝛾, 283 

the crush capacity and 𝑐3 to 𝑐4 constants. The crowding penalty 284 

formula given by (3) has been shared with the authors by 285 

personal communication from the Transport Planning 286 

department of LUL (Kelt, 2015). The second term of (3) 287 

captures the number of standing passengers relative to the crush 288 

capacity of the train and the third term captures the effect of 289 

seated passengers also. The value of 𝛾 describes the theoretical 290 

maximum number of people that can fit into the train assuming 291 

seven passengers per square meter of standing floor space. 292 

However, LUL have determined that the practical maximum 293 

capacity of a train is less than 𝛾 and under “normal operating 294 

conditions” the value of 𝛿,-. is defined as 71% of 𝛾. The DM 295 

crowding penalty, 𝜔H? , is determined with the formula given 296 

by (4) and requires computing the crowding factor, 𝜂, given by 297 

(5). The constants 𝑘V to k7 and 𝑐3 to 𝑐4	are shown by Table 2. 298 

𝜔H? =	 Y	𝑘V𝜂,																																		𝜂 < 1𝑘4𝜂 − 𝑘Z,													1 ≤ 𝜂 < 1.5𝑘]𝜂 − 𝑘^, 1.5 ≤ 𝜂 ≤ 2  299 

(4) 300 

𝜂 = 	 𝑘6𝛿𝛿,-. 301 

(5) 302 

 303 

Name c1 c2 c3 k2 k3 k4 k5 k6 k7 

Value 0.85 1.915 1.03 0.027 0.0828 0.0558 0.179 0.2 2 
Table 2 - Constant values used to calculate the crowding penalty, ωJTM and ωDM , in 304 
(3) and (4). For the JTM, these values have been shared with the authors by 305 
personal communication and the DM constants 𝑘Vto k6 are taken from Kunimatsu et 306 
al. (2012). The value of k7 is informed by Nippon (2018). 307 

The values of 𝑐3 to 𝑐4 have been derived by LUL and shared 308 

with the authors by personal communication (Kelt, 2015). The 309 

values of 𝑘V	to 𝑘^ are listed by Kunimatsu et al. (2012). 310 

Although Kunimatsu et al. do not explicitly define 𝜂, they 311 

describe it as the “congestion rate of the train”, therefore it can 312 

be inferred as being proportional to 𝛿/𝛿,-.. However because 313 

Nippon (2018) report the largest crowding factor (𝜂) observed 314 

in Japan during 2017 as 2 (relating to when “bodies come into 315 

contact with each other and one feels considerable pressure”), 316 

the scaling factor 𝑘6 is introduced into (5) and given a value of 317 
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2. The values of 𝜇, 𝛿,-. 	and 𝛾 are rolling stock specific and are 318 

defined by LUL for each fleet. For the LUL 2009 rolling stock 319 

(used on the Victoria Line and the subject of this investigation) 320 

their values are 288, 730 and 1028 respectively (Kelt, 2015) 321 

 322 

Figure 2 compares 𝜔=>?  and 𝜔H?  on the y-axis for varying 323 

number of passengers (δ). The number of seats on the train is 324 

shown by a vertical dashed line and reflects that when 𝛿 ≤ 𝜇, 325 

the JTM does not apply a crowding penalty. A crowding 326 

penalty is applied by the DM even at this level of occupancy, 327 

but it is small in comparison to the minimum VoT weighting 328 

for passengers in the “On Train” journey stage (the dash-dot 329 

horizontal line). When 𝛿 > 𝜇, the JTM applies a crowding 330 

penalty that is 4 to 8 times greater than the DM crowding 331 

penalty. For both metrics, the crowding penalty is always less 332 

than the minimum VoT weighting for the “On Train” stage. 333 

Both the JTM and DM models of crowding assume that 334 

passengers are homogenously distributed throughout the train 335 

and that passengers will always find and occupy a seat if one is 336 

available. Although this may not be realistic, it is the same for 337 

both models so the comparison is like-for-like.  338 

 339 

The VoT weightings (in Table 1) and crowding penalty 340 

function for the JTM and the DM have been derived for the 341 

LUL network and Japanese railway respectively. It is therefore 342 

expected for these values to capture local preferences and 343 

expectations. 344 

 345 

Figure 2 - The crowding penalty, ω, applied by the JTM and the DM for different 346 
numbers of passengers, δ, in LUL 2009 rolling stock up to its maximum capacity. 347 
The number of seats, µ, is shown by a vertical dash line. The minimum VoT 348 
weighting applied by both metrics to passengers that are in the “On Train” stage is 349 
shown by a horizontal dash-dot line.  350 
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3.2 Calculating a network score from journey scores 351 

Networks provide journeys for multiple passengers so there is a 352 

distribution of journey scores. To improve the network 353 

assessment metric and ensure that journey scores only capture 354 

the quality of the service provided to the passenger by the 355 

network (and not the distance of the passenger journey which is 356 

a passenger choice), we normalize journey scores by the 357 

distance travelled. This allows like-for-like comparison of 358 

journey scores within the distance-normalized journey score 359 

distribution, Ψ, given by: 360 Ψ = [𝜓3𝑑3 , 𝜓V𝑑V , … . , 𝜓d𝑑d ] 361 

(6) 362 

Where 𝜓9 and 𝑑9 respectively denote the journey score and 363 

distance travelled relating to the rth passenger and 𝑅 the number 364 

of passengers. Different features of Ψ can be used to provide 365 

the network score, 𝜙, for all 𝑅 passengers conveyed. Although 366 

we wish to capture the effect of passenger numbers upon 367 

crowding, we also wish the network score to be independent of 368 

the number of journey scores within Ψ. Consequently, an 369 

additional passenger-number normalization step is included so 370 𝜙=>?  and 𝜙H?  are defined by: 371 

𝜙 =	 1𝑅A𝜓9𝑑9
9Ed
9E3  372 

(7) 373 

Beyond this network score the characteristics of the distribution 374 

of Ψ can offer additional insight. For example, an operator 375 

wishing to examine the consistency of their service to 376 

passengers taking different journeys may evaluate the range of 377 Ψ in addition to 𝜙. In the current paper we focus primarily on 378 𝜙 to study quality of service provided to all passengers within 379 

the network. 380 

4 Validation and comparison 381 

To validate the network assessment metric, 𝜙 values are 382 

calculated using either the JTM or DM (𝜙=>?  or 𝜙H?) for the 383 

Victoria Line of the LUL network. For the same network, a 384 

network score is determined from measured Customer 385 

Satisfaction Survey (CSS) data, 𝜙fgg . The predictive values of 386 𝜙=>?  and 𝜙H?  are compared against the measured 𝜙fgg  values 387 

and the correlation between their changes relative to a baseline 388 

year is quantified. The predictive values are then compared to 389 

each other to determine a relationship between the network 390 

assessment metric when either journey score metric is used. To 391 

calculate 𝜙=>?  and 𝜙H?  data describing the network operation 392 

was combined with data describing the passenger load and 393 

captures the effect of varying timetables and passenger loads 394 
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over ten years. For the Victoria Line in the period investigated, 395 

the formation, length and interior layout of rolling stock remain 396 

constant, therefore the frequency of trains (determined by the 397 

timetable) has the greatest effect upon the passenger carrying 398 

capacity of the network. Decreasing the speed of trains on a 399 

line slows travel but also reduces headway with potential to 400 

decrease intervals between trains, so typically there is a trade-401 

off between journey times and frequency. To meet increasing 402 

demand for travel, minimise crowding and generate more 403 

revenue, whilst maintaining competitive journey times against 404 

other transport modes, there is a pressure on LUL to balance 405 

this trade-off when updating their timetable.   406 

4.1 Data sources 407 

The data sources used in this investigation are: Victoria Line 408 

Working Timetable (WTT) numbers 31 to 41 (London 409 

Underground Limited, 2007, 2009, 2011, 2012a, 2012b, 2014, 410 

2015a, 2015b, 2016b, 2016c, 2017), Access, Egress and 411 

Interchange (AEI) data provided by LUL (2016a), the 412 

Performance Data Almanac (PDA) (London Underground 413 

Limited, 2018a) and the Rolling Origin Destination Survey 414 

database (RODS) (London Underground Limited, 2018b). In 415 

the following section, the data is described in more detail. 416 

 417 

4.2 Input data 418 

The network operation data is taken from the WTTs and the 419 

AEI data. For each day, the WTTs provide the average train 420 

frequency and interstation run times for the three weekday 421 

operational periods on which our investigation concentrates: 422 

Morning Peak, Midday Off Peak and Evening Peak. Later 423 

operational periods are excluded because their timings are not 424 

consistent between the WTTs. The effect of this exclusion is 425 

unlikely to be significant because observing the RODS 426 

database indicates that this period is when the fewest 427 

passengers travel and so it has the least weighting on the 428 

network score. Weekends and holidays are not considered 429 

because they are more likely to be affected by events (e.g. 430 

sporting events or planned line closures for maintenance works) 431 

that affect passenger experience but are not captured in all the 432 

input data sources. The operational pattern described in the 433 

WTT is applied for every day the timetable was in effect (LUL 434 

update their timetable irregularly, but the date of introduction is 435 

provided be each WTT). The WTTs also provide the distance 436 

between adjacent station pairs. The AEI data describes the 437 

passenger travel time from station door to platform and vice 438 

versa, and platform to platform. The AEI data available relates 439 

to every four week period of the year beginning 2011 (the LUL 440 

reporting year begins on 1st April), over which the year mean is 441 

2.23 minutes. Because data is only available for one year, this 442 
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is applied for all years of the investigation, implicitly assuming 443 

that personal mobility within the station remains constant over 444 

this period.  445 

 446 

The passenger load data is a combination of two data sources: 447 

the PDA and RODS. RODS provides the proportion of 448 

passengers included within the database that travel between 449 

adjacent station pairs in an operational period, i.e. line section 450 

loadings.  However, this data does not describe whole 451 

passenger journeys (i.e. an origin and destination with any 452 

transfer stations). The PDA provides the total number of 453 

passengers travelling on the Victoria Line each year, and the 454 

quarterly CSS data. To collect the CSS data, LUL use 455 

questionnaires to ask approximately 2,500 passengers per 456 

quarter to rate, on a scale of 1 to 10, their satisfaction with their 457 

travel on the line of the last leg of their journey. The mean of 458 

the ratings is then multiplied by 10 and reported for each line 459 

by LUL.  460 

 461 

4.3 Methodology 462 

To calculate 𝜙=>?  and 𝜙H? , the line section loading data was 463 

scaled by the yearly passenger numbers data and used to 464 

disaggregate the journeys of passengers who travelled further 465 

than the station adjacent to their origin, into a series of journeys 466 

between adjacent station pairs. For each operational period 467 

(Morning Peak, Midday Off Peak and Evening Peak) and line 468 

section, the number of passengers per train was calculated by 469 

dividing the number of passenger journeys in that period by the 470 

number of trains. Where demand for travel exceeded provision, 471 

the excess passengers were modelled as being “left behind” by 472 

one train before catching the next. The frequency of trains was 473 

used to determine the total passenger time spent in the “On 474 

Train”, “On Platform” and “On Platform (Left Behind)” stages. 475 

The journey score metrics were used to calculate the VoT 476 

weighting for these states. To avoid over-counting, the AEI 477 

time and weighting was only applied twice for each whole 478 

passenger journey defined by the PDA data rather than the 479 

RODS data. The “Buying Ticket” journey stage was 480 

disregarded because the use of pre-paid travel cards (“Oyster” 481 

cards) and contactless payment at ticket gates is common for 482 

this network. For example, in 2012 Oyster cards were used for 483 

over 80% of public transport travel in London (Transport for 484 

London, 2012). The inter-station distances were multiplied by 485 

the line section loadings so that the aggregate of the VoT 486 

weightings could be normalized by the total passenger distance 487 

travelled. This analysis was conducted for the Morning Peak, 488 

Midday Off Peak and Evening Peak operational periods of 489 

every weekday and was dependent on the daily timetable and 490 

yearly number of passenger journeys. To calculate the network 491 

score for that day, the values from the three operational periods 492 
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of the day were summed. The year value was calculated as the 493 

mean of the year’s day values.  This process is illustrated by 494 

Figure 3 which shows 𝜙=>? , 𝜙H?and 𝜙fgg  being calculated for 495 

corresponding years so that comparison is like-for-like. 496 

Because the CSS data is already normalized for passenger 497 

numbers and distance travelled, it is not relevant to normalize 498 𝜙fgg  using (7).  499 

 500 

 501 
Figure 3 - The method for calculating the measured network score, 𝜙fgg, and 502 
predicted network score using the Journey Time Metric or Disutility Metric, 𝜙=>? 503 
and 𝜙H? respectively, from the Working Timetable (WTT), Access Egress and 504 
Interchange (AEI) data, passenger load data and Customer Satisfaction Survey 505 
(CSS) data. 506 

4.4 Results 507 

Figure 4 enables comparison of 𝜙fgg  with 𝜙=>?  and 𝜙H? , and 508 

also presents data where no distance or passenger normalization 509 

• Working timetable  

• Access Egress Interchange data  

• Passenger load 

• Passenger seconds in each state 

• Mean number of passengers on each train 

Network assessment metric 

Operational period 𝜙=>?  and 𝜙H? 

∑𝜙=>?  and ∑𝜙H? over all 
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• Mean of day values 
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Compare 

Performance Data 

Almanac 
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is applied, 𝜙=>?	(ij) and 𝜙H?	(ij), for the years 2008 to 2017. 510 

The number of passengers, 𝑅, is also included in the plot. 511 

Upward-pointing bars with values displayed on the left ordinate 512 

are used for 𝜙fgg, while 𝜙=>?	(ij), 𝜙H?	(ij),  𝜙=>?  and 𝜙H?  513 

are represented by downward-pointing bars with values 514 

displayed on the right ordinate. Because the prediction metrics 515 

measure dissatisfaction and 𝜙fgg measures satisfaction, the 516 

right ordinate is inverted. A positive change in the vertical 517 

position of a bar-top for 𝜙fgg  indicates a “better” performing 518 

network. 𝑅 is also represented by markers with values 519 

displayed on the right ordinate. To allow comparison of relative 520 

changes on different scales and using different units, all series 521 

have been normalized against their 2008 value.  522 

 523 

It can be seen that over time, in general, the measured network 524 

scores (𝜙fgg) indicate improving network performance, with 525 

rising values relative to 2008. In general, this behaviour is 526 

successfully predicted by 𝜙=>?  and 𝜙H? . However, 𝜙=>?	(ij) 527 

and 𝜙H?	(ij) predict deteriorating network performance and 528 

correlate with the increasing passenger numbers. It should be 529 

noted that, whilst the prediction metrics appear to give equal 530 

scores in 2008, this is because of the series normalization 531 

process. The importance of normalizing the predictive values 532 

by passenger numbers and distance travelled is clear if the 533 

metrics are to be compared over time. 534 

Figure 4 - Bar chart to compare predicted and measured network scores for 535 
different years and different prediction methods. Measured customer satisfaction 536 
scores,	𝜙fgg, are shown by the left ordinate. Predictions using the Journey Time 537 
Metric, 𝜙=>?, Journey Time Metric with no distance or passenger normalization, 538 𝜙=>?	(ij), Disutility Metric, 𝜙H?, and Disutility Metric with no distance or 539 
passenger normalization, 𝜙H?	(ij), are shown by the right ordinate which has been 540 
inverted. The right ordinate also displays the number of passengers, R. All values 541 
have been normalized against the corresponding 2008 value.  542 

To investigate the importance of applying VoT weightings to 543 

different passenger states, Figure 5 enables comparison of 544 𝜙fgg , 𝜙=>? , 𝜙H?  and a simple end-to-end journey time, 𝜙kk . 545 

To ensure like-for-like comparison, 𝜙kk  has been normalized 546 
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for passenger numbers and distance. The ordinates are similar 547 

to Figure 4 with the right ordinate now displaying 𝜙kk  548 

normalized against the 2008 value. To quantify the level of 549 

agreement between predicted and measured performance, 550 

Kendall’s rank correlation coefficient B, 𝜏;, is calculated 551 

between the series of 𝜙fgg  with each series of: 𝜙=>? , 𝜙H?  and 552 𝜙kk . For the series of 𝜙fgg  with 𝜙=>?  and 𝜙fgg  with 𝜙H?  a 553 

value of -0.82 (P<0.005) is found (-1.0 indicates perfect 554 

(negative) correlation between prediction and measurement and 555 

0 indicates no correlation). For the series of 𝜙fgg with 𝜙kk  a 556 

value of -0.73 (P<0.005) is found, indicating worse correlation 557 

and that network assessment metric is improved by 558 

representing a passenger journey as a series of states and 559 

applying weighting to these.  560 

Figure 5 - Bar chart to compare predicted and measured network scores for 561 
different years and different prediction methods. Measured customer satisfaction 562 
scores,	𝜙fgg, are shown by the left ordinate. Predictions using the Journey Time 563 
Metric, 𝜙=>?, Disutility Metric, 𝜙H?, and end-to-end journey time, 𝜙kk, are shown 564 
by the right ordinate which has been inverted. All year scores have normalized 565 
against the 2008 value for the corresponding metric. 566 

To explore the importance of the crowding penalty Figure 6 567 

enables comparison of 𝜙=>?  and 𝜙H?  against the case where 568 

no crowding penalty has been applied in the calculation, 569 𝜙=>?	(jf) and 𝜙H?	(jf). The y-axis displays the raw values of 570 𝜙, i.e. they are not normalized against the 2008 value. To 571 

determine what proportion of the network score is contributed 572 

by factors other than the crowding penalty, the value of 573 𝜙(jf)/𝜙 is calculated. For the JTM and DM series 574 

respectively, a mean value of 0.91and 0.99 is found both with a 575 

standard deviation less than or equal to 0.002. This behaviour is 576 

discussed in Section 5.  577 

 578 

 579 
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Figure 6 – Bar chart to compare the predicted network scores, 𝜙, for different years 580 
and different prediction methods. Predictions using the Journey Time Metric, 𝜙=>?, 581 
and the Disutility Metric, 𝜙H?, are compared against the case where no crowding 582 
penalty is applied, 𝜙=>?	(jf) and 𝜙H?	(jf) respectively.  583 

Figure 7 plots 𝜙H?  against  𝜙=>?  for the data from the years 584 

2008 to 2017. The strong linear relationship of the data 585 

(ρ=1.00, P<0.005) suggests that, in general, similar changes in 586 

network performance are predicted by the JTM and the DM. A 587 

linear fit to this data shows a gradient of 1.013 (95% 588 

confidence bounds of 1.012 and 1.015). The intercept has been 589 

forced to the origin because both metrics are zero under the 590 

same condition: when no passenger time is spent in the 591 

network. The gradient implies that 𝜙=>? 	is consistently 592 

approximately 1.3% greater than 𝜙H? , but both are reacting 593 

consistently to external change over the period investigated.  594 

 595 

 596 

Figure 7- The relationship between the ten network score predictions for the 597 
Victoria Line from 2008 to 2017. The fit has an intercept forced to the origin and a 598 
gradient of 1.013. 599 
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5 Discussion 600 

The results in Figure 4 indicate that, to successfully predict 601 

behaviour of 𝜙fgg , it is necessary to normalize the network 602 

assessment metric by the number of passengers and the 603 

distance they travel. In this investigation, the ratio between 604 

different line section loadings remains constant for all years 605 

therefore the value of 𝑅 plotted in Figure 4 represents changes 606 

to passenger numbers and distance travelled. Consequently, the 607 

results in Figure 4 show that without passenger numbers and 608 

distance normalization, the predicted network scores become 609 

sensitive to both. This effect is unwanted therefore including 610 

passenger number and distance normalization within our 611 

network assessment metric is supported. 612 

 613 

Choosing a typical significance level of 0.005, the results 614 

shown in Figure 5 are statistically significant evidence that the 615 

null hypothesis (that predicted and measured data are 616 

uncorrelated) can be rejected. Although the choice of 617 

significance level is arbitrary (Wasserstein and Lazar, 2016), 618 

considering the JTM and DM have been developed from 619 

empirical studies of passenger preferences and there is evidence 620 

that end-to-end journey time influences passenger experience 621 

(Transport Focus, 2016), we choose to accept the alternate 622 

hypothesis that there is correlation between CSS data and 623 

predictions with our network assessment metric when using the 624 

JTM, DM or end-to-end journey time. Because 𝜏;=>?  and 𝜏;H? 625 

are closer to -1 than 𝜏;kk, these results suggest that using our 626 

network performance metric with the JTM or DM better 627 

predicts relative changes to the CSS data than using end-to-end 628 

journey time. However, observing tables calculated by Walker 629 

(2016) indicate that even the 80% confidence intervals of  630 𝜏;=>? , 𝜏;H? and 𝜏;kk are too large to determine a statistically 631 

significant difference between the values of 𝜏;=>? , 𝜏;H? and 𝜏;kk. 632 

To determine a statistically significant difference by reducing 633 

the confidence interval without altering the significance level, 634 

more years of data for comparison are needed in the series of 𝜙. 635 

It is unsurprising that 𝜏;=>?  and 𝜏;H? do not equal -1.0 because, 636 

in this study, 𝜙=>?  and 𝜙H?  do not capture the effect of some 637 

factors, beyond the timetable and passenger load, which may 638 

affect 𝜙fgg, e.g. delayed trains. Our network assessment metric 639 

using the JTM or DM can capture the effect of some of these 640 

other factors, but the limitation of data available to this study 641 

means that they are not well captured by the model of network 642 

operation used. Similarly, because of factors such as survey 643 

design and implementation, the CSS data may not fully capture 644 

influencers to passenger experience that distinguish 𝜙=>? , 𝜙H?  645 

and 𝜙kk , e.g. if the surveys were not conducted during times of 646 

high travel demand the effect of crowding will not be well 647 

captured. Consequently, not being able to determine a 648 
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statistically significant difference in the accuracy of 𝜙=>? , 𝜙H?  649 

and 𝜙kk  might also be a limitation of the measured CSS data. 650 

 651 

Section 3.1 describes that for low passenger numbers, 𝜙=>? is 652 

insensitive to crowding (because no crowding penalty is 653 

applied), whereas 𝜙H?  is. However when some passengers are 654 

standing (the normal operating regime for many GB services, 655 

e.g. 70% of services into London St. Pancras during the 656 

morning peak (Peluffo, 2018)), 𝜙=>?  will be more sensitive to 657 

crowding than 𝜙H?  because it applies a crowding penalty four 658 

to eight times greater. This is confirmed by the results of Figure 659 

6 which demonstrate that the contribution of the crowding 660 

penalty to the network score is on average 9% and 1% for the 661 𝜙=>?  and 𝜙H?   respectively. Section 3.1 also describes that the 662 

DM applies a greater VoT weighting than the JTM to 663 

passengers who are “In Station”. Because the VoT weightings 664 

of the JTM and DM have been derived from surveying 665 

passengers, this may reflect local differences in passenger 666 

expectations where the metric was developed. For example, 667 

when used in our network assessment metric the JTM 668 

(developed in London) penalises crowding more and delay on 669 

the platform, less, than the DM (developed in Japan). This 670 

suggests that when considering a specific network, it is 671 

important to ensure the use of VoT weightings relevant to the 672 

passengers of that network. However, the similarity of the 673 𝜙=>?  and 𝜙H?  values in the results indicate that the difference 674 

in weightings placed on different passenger journey states 675 

approximately cancel out (for the study network in the years 676 

investigated). The results in Figure 7 show a high degree of 677 

correlation (ρ=1.00, P<0.005) between network scores 678 

calculated using the JTM and network scores calculated using 679 

the DM, despite their different formulations and countries of 680 

origin. 681 

 682 

Considering all the results together suggests that using our 683 

newly developed network performance metric with the JTM or 684 

DM can be used to predict network performance from the 685 

passenger perspective, and successfully aggregates across 686 

passenger states to capture effects such as crowding and 687 

different journey stages. There is evidence that the network 688 

assessment metric, using either the JTM or DM, better predicts 689 

changes to customer satisfaction than end-to-end journey time. 690 

Because the JTM, CSS data and network operation data are all 691 

related to LUL, this result might be considered special to this 692 

case where there is a “closed-loop” between metric and 693 

validation. However, the DM has no connection to the LUL 694 

data but is demonstrated here to achieve similar outcomes. This 695 

indicates the result is not special to the “closed-loop” case. 696 
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6 Conclusions 697 

Passenger journeys are multi-stage and the conditions of a 698 

journey stage, e.g. crowding when on a train, can vary. We 699 

have introduced the term “state” to describe a specific 700 

combination of stage and conditions. A passenger journey can 701 

be described as a series of states and the literature has shown 702 

that the relative time spent in each of these will have different 703 

effect on the overall experience of the passenger. Measuring the 704 

passenger end-to-end journey time alone, or the train 705 

punctuality at final destination (as used in the common UK 706 

performance measure, PPM) will not capture this. The JTM and 707 

DM are journey assessment metrics that can capture individual 708 

journey experience by applying a VoT weighting to time spent 709 

in each state. Both metrics sum the weighted time spent in each 710 

state, but they use different weightings, journey stages and the 711 

DM applies an additional penalty for train changes. Both apply 712 

a crowding penalty to capture the additional disutility caused to 713 

a passenger when traveling on a train with other passengers. 714 

For networks operating in the regime where some passengers 715 

cannot find a seat, the crowding penalty applied by the JTM is 716 

four to eight times greater than the DM. In this regime, the 717 

assessment of network performance using the JTM is more 718 

sensitive to crowding than when using the DM. Both the JTM 719 

and the DM can be used as part of a network assessment metric 720 

we introduce where the network score is taken to be the 721 

aggregate of journey scores normalized by the distance 722 

travelled and the number of passengers. It is found that, for the 723 

Victoria Line of the LUL network from 2008 to 2017, there is a 724 

high degree of correlation (ρ=1.00, P<0.005) between the 725 

network scores calculated with the JTM and network scores 726 

calculated with the DM, despite their different formulations and 727 

countries of origin. Extending the number of different networks 728 

in this comparison is an area for future work, to determine if 729 

this result is network-specific or general.  730 

 731 

When comparing network scores against measured values of 732 

customer satisfaction for the same network (obtained from 733 

surveys) there is statistically significant evidence (P<0.005) to 734 

reject the null hypothesis that predicted and measured changes 735 

do not correlate. Considering other evidence from the literature, 736 

we therefore accept the hypothesis that predicted and measured 737 

changes are correlated which means our network assessment 738 

metric can be applied to predict the relative performance of 739 

different networks from the passenger perspective. For the data 740 

available, our network assessment metric using the JTM or the 741 

DM better predicted relative changes to customer satisfaction 742 

than end-to-end journey time. However, to determine a 743 

statistically significant difference more data for comparison is 744 

required. Therefore future work is to investigate networks 745 

where more than ten measurements of network performance 746 
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can be collected and corresponding predictions computed (in 747 

the case of our experiment each measurement corresponds to a 748 

year over which passenger satisfaction data is available 749 

corresponding to the timetable operated that year, but any 750 

timescale in which a system change and its effect can be 751 

measured may be considered in future experiments). This might 752 

be achieved by re-investigating the Victoria Line in the future 753 

as additional years of customer satisfaction data become 754 

available. Further future work is to investigate networks where 755 

a more detailed description of the passenger route is available 756 

so that the effect of train transfer on passenger experience can 757 

be captured. The network assessment metric could then be 758 

validated for journeys which include this activity and might 759 

also allow a statistically significant difference with end-to-end 760 

journey time to be discerned. Updating the network assessment 761 

metric with new VoT weightings to capture other factors which 762 

influence passenger experience (e.g. cleanliness and journey 763 

purpose) is also an area for future work. 764 
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