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Abstract

As new laser facilities are developed with intensities on the scale of -–10 10 W cm22 24 2, it

becomes ever more important to understand the effect of strong field quantum electrodynamic

processes, such as quantum radiation reaction, which will play a dominant role in laser-plasma

interactions at these intensities. Recent all-optical experiments, where GeV electrons from a laser

wakefield accelerator encountered a counter-propagating laser pulse with a0>10, have
produced evidence of radiation reaction, but have not conclusively identified quantum effects nor

their most suitable theoretical description. Here we show the number of collisions and the

conditions required to accomplish this, based on a simulation campaign of radiation reaction

experiments under realistic conditions. We conclude that while the critical energy of the photon

spectrum distinguishes classical and quantum-corrected models, a better means of distinguishing

the stochastic and deterministic quantum models is the change in the electron energy spread.

This is robust against shot-to-shot fluctuations and the necessary laser intensity and electron

beam energies are already available. For example, we show that so long as the electron energy

spread is below 25%, collisions at a0=10 with electron energies of 500 MeV could

differentiate between different quantum models in under 30 shots, even with shot-to-shot

variations at the 50% level.

Keywords: radiation reaction, Monte-Carlo simulations, high field physics, laser-plasma

interactions

(Some figures may appear in colour only in the online journal)

1. Introduction

Experiments using new ultra-high-intensity multi-petawatt

laser facilities such as Apollon 10 PW [1] and ELI [2, 3] will

require a thorough experimental understanding of non-clas-

sical behaviour in laser-plasma interactions. In experiments

reaching laser intensities of -–10 10 W cm22 24 2 the effect of

strong field QED processes starts to strongly modify the laser-

plasma interaction [4–6], and better understanding the

fundamental physical processes at work will be crucial. One

of these processes, the radiation produced by charged parti-

cles when moving in an electro-magnetic field, and the sub-

sequent recoil experienced by the particles, is particularly

relevant to studies of inverse Compton scattering [7, 8] and

laser absorption in solid target interactions [9–12], both of

which are key targets of the ELI-NP facility.

Two recent experiments [13, 14] have aimed to study the

effect of radiation reaction in isolation, using existing peta-

watt laser facilities with peak intensities of ~ -I 10 W cm21 2.

In these all-optical set ups, highly energetic electrons

(γ=1000–2000) produced by a laser wakefield accelerator

[15–18] collide with a counter-propagating high intensity

laser pulse as shown in the schematic in figure 1. In the rest
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frame of the electron both the frequency and the intensity of

the radiation are dramatically increased, bringing the electric

field experienced by the electron to the scale of

g¢ » ~ -E E 10 V mL L
17 1, comparable to the Schwinger limit

= ´ -E 1.32 10 V ms
18 1 [19], as described by the dimen-

sionless and Lorentz invariant parameter c = ¢E Ee L s. At this
point the predictions from quantum and classical models of

radiation reaction strongly diverge; whereas using the clas-

sical synchrotron spectrum requires the production of photons

with energies εγ>εe, the quantum model limits the energy of

photons so as to conserve energy, significantly reducing the

synchrotron power at high field strengths, as described in

[20–23]. Both of the recent experiments demonstrate sig-

nificantly better agreement between their measurements and

quantum, non-perturbative, models than with classical models

such as described by Landau and Lifshitz [24].

However, the limited number of events measured in the

experiments has left significant uncertainty [25], with Poder

et al [14] concluding a slightly better agreement with a semi-

classical model, while the measurements made by Cole et al

[13] were not able to distinguish between the semi-classical

and stochastic models. In the semi-classical description, both

the rate of radiation emission and the subsequent change in

electron energy are adjusted to match the quantum model, but

the emission remains a continuous process, with the recoil a

frictional force that leads to cooler electrons with a narrower

energy distribution. In the quantum picture, on the other hand,

emission is a quantised, stochastic event; some electrons

travel much further through the laser pulse before emitting a

photon while others emit many, leading to substantial

broadening of the electron energy distribution [26–28]. In

modelling stochastic emission events, we assume that photon

emission is sufficiently fast that the laser field is constant

throughout the process, in the so-called constant-cross-field

approximation. This is accurate when the coherence time of

emission is much less than the laser period, which generally

gives a condition t w~ mc eE 1LCOH , for a laser fre-

quency ω [29], or in terms of the normalised vector potential

of the laser pulse, w= a eE m c 1L e0 . Even if this condi-

tion is met, however, the constant-crossed-field approx-

imation—and both the quantum and semi-classical models—

breaks down when the energy of the emitted photon energy is

very low [30, 31], although these photons do not contribute

significantly to the recoil [32].

Experiments currently underway seek to resolve the

seeming disparity between the two experiments to date and to

determine which, if either, model is most appropriate for high

intensity laser experiments; this paper attempts to both find

the best way of conducting these radiation reaction experi-

ments, and demonstrate the regimes where the choice of

model is important. By simulating the experiments under

different conditions we place constraints on the parameters

required, such as laser intensity and electron energy spread, as

well as the accuracy to which these parameters must be

controlled. Given different experimental parameters, we

estimate the number of measurements required to be confident

which model is more appropriate: the stochastic quantum

model, or the continuous and deterministic semi-classical

model. In doing so, we take account of the shot-to-shot var-

iation of both the energy of electrons from a laser wakefield

accelerator and the intensity of the colliding laser pulse.

2. Simulated experiments

In a radiation reaction experiment of the type shown in

figure 1 it is important to achieve good overlap in both time

and space between the highest intensity region of the laser

pulse and the brightest part of the electron beam. However, if

the pulse collides with the electron beam close to the LWFA

gas target, the electron bunch will be under one micron in

diameter. If the collision point is slightly away from the focal

plane of the laser, as in [13], it is possible to ensure that the

beam profile is much larger than the electron bunch, max-

imising the overlap in space and the chances of a successful

collision. Under these conditions we can reduce the problem

to a single dimension, whereas if this is not the case then

accurate knowledge of the transverse electron and laser pro-

files at the collision point are required. Similarly, synchrotron

radiation is emitted within a forward-pointing cone with an

angle of 1/γ around the direction of motion of the electron;

for an electron bunch with an angular divergence on

the scale of q ~ 1 mrad the total cone angle will be

q g» + ~a 10 mrad0 in the plane of polarisation of the

laser. Under these conditions we will ignore the angular

distribution of radiation for energetic electrons. On the short

timescale after the creation of the electron beam we can also

neglect direct electron–electron interactions such as space-

charge, while the electron bunch duration is sufficiently short

that we can neglect the interactions of synchrotron photons

after they have been emitted. Likewise, as the number of

electrons in the bunch is small, we neglect effects of the

electron bunch on the laser beam, such as energy loss and

refraction. Finally, as we will be considering situations

achievable with existing laser facilities, with both EL/Es= 1

and χe  1, we can neglect pair production. We therefore

consider the interaction between each electron and the laser

pulse independently, allowing us to reduce a complicated

simulation to a sum of many single particle interactions,

where each electron has a single initial and final energy but

Figure 1. Schematic of an all-optical radiation reaction experiment.
An intense ultra-short laser pulse, the LWFA drive beam, is incident
upon a gas target, producing a high energy electron bunch. A second
intense laser pulse, the colliding beam, is brought to a tight focus just
outside the gas target, interacting with the electron bunch and
producing a beam of high energy light.
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may produce many photons over the course of the interaction

with the laser pulse.

First, look-up tables were assembled of the final electron

and photon spectra resulting when initially mono-energetic

electron beams encountered a laser pulse. One dimensional

particle-in-cell simulations with EPOCH [33], employing an

extended QED module [22] (see appendix A for details), were

conducted for laser peak intensities of 1�a0�25 and

electron energies of  e100 2 GeVi . These used each in

turn of a fully classical, Landau–Lifshitz, radiation reaction

model; a semi-classical model with corrected emission rates

and powers but with continuous, deterministic emission; and

a quantum model of radiation reaction with stochastic emis-

sion. By performing 1D simulations we ignored spatial var-

iations in the laser intensity across the electron beam at the

collision point. This is valid if the electron beam transverse

size is smaller than the laser transverse size at the collision

point, as described earlier. The laser pulse had a Gaussian

temporal profile with a duration of 40 fs FWHM, chosen to

reflect parameters of the recent radiation reaction experi-

ments. Shorter pulse durations would allow experiments to

reach higher laser intensities for the same input energy,

reaching higher c µ -
te FWHM

1
2 and exploring more non-classical

effects4. However, in practice, pulse duration is limited by

existing laser technology, with shorter pulses typically com-

ing at the expense of laser energy.

For each different reaction model, these look-up tables

gave final electron and photon energy distributions

e e( ∣ )N a,e f f i, 0 and e eg g( ∣ )N a,i 0 . The electron energy dis-

tributions were fitted to a Gaussian to give functions

e eá ñ( )a,f i 0 and s ee ( )a,i 0f
, whereas the photon energy dis-

tributions were fitted to an expression of the form:

e
e
e

µ -g g
g- ⎛

⎝
⎜

⎞

⎠
⎟ ( )N exp , 1

crit

2
3

giving the critical energy e e( )a,icrit 0 . For examples of the

fitted energy distributions, see appendix B. The resulting

parameters are plotted in figure 2 using contour plots to show

the differences between the three different models.

Firstly, figure 2 demonstrates that the simulations of

radiation reaction are working as expected. For a given initial

electron energy, increasing the laser intensity reduces the final

energy of the electrons, while increasing the initial electron

energy leads to the emission of higher energy photons. Both

of these correspond to a larger radiation reaction force, with

an electron beam losing more power, emitted as photons.

However, although at low values of a0 the photon critical

energy increases with laser intensity, for higher a0 it saturates

and for the highest values of εi actually begins to decrease.

This is because electrons lose so much energy during the

radiation reaction process that the peak field experienced by

the electrons in their rest frame, γEL, is actually reduced. In

this situation the radiated spectrum comprises a greater

number of lower energy photons. Similarly, in the quantum

model, electrons experience the greatest stochastic broad-

ening at moderate laser intensities, around a0≈10, while
above this the final energy spread is smaller. At moderate

laser intensities electrons emit fewer photons on average, with

greater variation between electrons due to shot noise.

The look-up tables also allow us to distinguish between

the different models for radiation reaction: as laser intensity

increases, the classical model predicts much lower final

electron energies than the quantum or semi-classical models.

Applying the quantum correction—limiting the photon

energy to εγ<εe—results in significantly higher final elec-

tron energies and slightly lower photon energies. The greatest

difference in final electron energy occurs at the highest laser

intensities and electron energies, whereas the greatest differ-

ence in critical energy is centred around a0≈10.
In both the mean final electron energy and photon

energy, it is very difficult to see any difference between the

predictions from the quantum and semi-classical models.

These models contain the same correction to the power

radiated, and on average the electrons encounter the same

radiation reaction. However, without the effect of stochastic

broadening, an initially mono-energetic electron beam

Figure 2. Contours of (a) the mean final electron energy eá ñf (b) the final electron energy spread sef and (c) the critical energy of emitted

photons εcrit, for each of the quantum (solid lines), semi-classical (dashed) and classical (dotted) models. Results are from mono-energetic
electron beams in EPOCH simulations. Each line shows the initial electron energy εi and the laser a0 required to obtain the given final state.
For the classical and semi-classical models s <e 1 MeV

f
and hence the contours are not visible.

4
It is possible to show (see appendix C) that for χe= 1, reducing the pulse

duration for a fixed laser energy only increases the total stochastic

broadening, improving the chances of distinguishing between models. For

χe  0.56, on the other hand, reducing the laser pulse duration is counter-

productive.
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remains mono-energetic in the semi-classical model. In con-

trast, in the quantum model the electron energy spectrum

becomes substantially broader.

Once the look-up tables e eá ñ( )a,f i 0 , s ee ( )a,i 0f
and

e e( )a,icrit 0 were assembled, Monte-Carlo simulated experi-

ments were conducted for more realistic (though still idea-

lised) initial electron energy distributions, which were not

mono-energetic, and where each of the laser intensity, the

mean electron energy, and the electron energy spread varied

shot-to-shot. This allowed us to estimate the underlying three-

dimensional probability distribution function e s eá ñ e( )f , ,f critf

for making measurements of the final mean electron energy

á ñEf , and energy spread sEf , and the final photon critical

energy εcrit. For parameter scans, the two-dimensional prob-

ability distribution functions e eá ñ( )f ,f1 crit and e sá ñ e( )f ,f2 f

were calculated instead. The details are described in

appendix B.

3. Distinguishing models

First, experimental parameters were chosen to match those in

[13], with the laser intensity estimated as = a 11 30 and the

electron energy estimated as eá ñ = ( )550 20 MeVi , with an

energy spread of s =e 250 MeV
i

. The three-dimensional dis-
tribution functions, shown in figure 3, demonstrate the cap-

ability of the simulated experiments. Points in the top right of

the image correspond to shots with low a0, with high final

energies, high energy spread, and lower photon energies. In this

regime, the three models predict very similar results. As a0
increases, the electron beam loses more energy and becomes

cooler with a lower energy spread, in the process producing

higher energy photons. At the largest values of a0, the different

rates of radiation reaction and of radiative cooling lead to the

three models predicting different results, with the classical

model leading to the lowest final energy spread and the highest

photon energy, while the quantum model predicts a sig-

nificantly higher energy spread than either of the two other

models. The shot-to-shot variation of eá ñi tends to blur out this

trend, broadening the distribution functions and making it more

difficult to distinguish between different models.

In order to show this more clearly, and to compare the

results with [13], the two-dimensional distribution functions

f1 and f2 were calculated for laser intensities pulled from

a uniform distribution between a0=4 and a0=20.
e eá ñ( )f ,f1 crit , shown in figure 3(b), agrees well with the

previous work, with the classical model predicting sub-

stantially higher critical energies as expected. The predictions

from the quantum and semi-classical models strongly overlap,

however, and hence using critical energy from the photon

spectra is a poor way of determining between stochastic and

semi-classical models of radiation reaction.

Figure 3(c), however, shows another possible measure-

ment using the same experimental parameters, comparing the

mean final electron energy with the final energy spread, as

described by e sá ñ e( )f ,f2 f
. Using these measurements the

semi-classical and classical models predict fairly similar

results, but the quantum model predicts a substantially higher

energy spread than both of the other models. This is because,

for an interaction where the electron beam is much smaller

than the focal spot, these deterministic models predict that

electron beams can only ever become cooled by emitting

synchrotron radiation in the electric field of the laser, as more

energetic electrons emit radiation more strongly. In the sto-

chastic model, however, the number and energy of photons

emitted by each electron is probabilistic and varies strongly.

In certain cases, the final energy spread of the electron may

increase over time (see for instance [27, 28, 34]). The lower

the energy spread, the more likely this becomes. Reference

[27] equation (3.8) predicts that for Gaussian energy spectra

the cross-over point, below which the stochastic broadening

dominates, can be approximated in the case s eá ñe  ii
by:

s
e

c
á ñ

» á ñe⎛

⎝
⎜

⎞

⎠
⎟

·
( )

55 3

8 24
, 2

i
e

2

i

s
e

c
á ñ

» á ñe
( )0.70 . 3

i
e

i

We can quantify the ease of distinguishing between

models by measuring the overlap between the joint dis-

tribution functions. The probability of making a measure-

ment of several parameters, denoted by the vector x, given

Figure 3. Results from simulated radiation reaction experiments for
an initial electron beam with a peak energy of ( )550 20 MeV and

an energy spread of 250 MeV, shown through (a) the three-
dimensional joint probability distribution function e e sá ñ e( )f , ,f crit f

,

and the 2D distribution functions (b) e eá ñ( )f ,f1 crit and

(c) e sá ñ e( )f ,f2 f
. The 1σ contours are shown, within which 68% of

simulated experiments measured these results, assuming each of the
classical (yellow), semi-classical (red), and quantum (blue) models.
In (a) the intensity of the colliding laser pulse is a0=11±3,
whereas for (b) and (c) the intensity was assumed uniformly
distributed between a0=4–20, for comparison with figure 9 of [13].

4
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that a model A is true, is denoted ( ∣ )P Ax . The chances of

incorrectly inferring model B from those measurements can

be related by Bayes’ theorem to the model probability as

=( ∣ ) ( ∣ ) ( ) ( )P B P B P B Px x x . If the prior assumption is that

the two models are equally likely, but not the only two

possible models, and that all measurements of x in the region

of interest are equally likely, with no bias in the measuring

equipment, we can show that the probability of incorrectly

inferring model B from a single measurement of x, if model

A is true (or vice versa) is proportional to the overlap Ω

between the models, as:

ò

ò ò
= = W º( ∣ ) ( ∣ )

( ∣ ) · ( ∣ )

( ∣ ) ( ∣ )

( )

P B A P A B
P A P B V

P A V P B V

x x

x x

d

d d
,

4

x

x x
2 2

where the integrations are performed over the domain of

possible measurements within which P(x) is constant. This

probability is normalised such that if =( ∣ ) ( ∣ )P A P Bx x then

Ω=1. Depending on the choice of measurements, ( ∣ )P Ax

and ( ∣ )P Bx are described by the joint distribution functions

e eá ñ( )f ,f1 crit and e sá ñ e( )f ,f2 f
for each model.

If N independent and identically distributed measure-

ments are taken, one for each successful laser-beam collision,

the probability of incorrectly inferring model B, given that A

is in fact true, becomes = W( ∣ )P B A N . Conversely, if we

require better than a certain degree of accuracy to be sure we

will not incorrectly infer model B, such that <( ∣ )P B A p,

we can show that we require > WN plog log . If the overlap

between the joint distribution functions is very high, W  1,

W ∣ ∣log 0 and it becomes increasingly difficult to confirm

which model is correct, requiring an ever larger number of

shots.

This is shown in table 1 for the parameters described in

[13] and joint distribution functions shown in figure 3. The

classical model predicts significantly different results to the

quantum and semi-classical models and hence the overlap and

number of shots required are both small. The work in [13]

was therefore able to show that the quantum model agreed

better with the data than the classical model, despite only

definitely measuring four successful collisions. In general,

measurements of εcrit and eá ñf are successful at determining

between classical and quantum/semi-classical models of

radiation reaction. With those measurements, however, it

would be more difficult to distinguish between the quantum

and semi-classical models, with at least 70 shots required to

obtain the same level of certainty.

An alternative approach is to measure sef , therefore sig-

nificantly reducing both the overlap between the models and

the number of shots required. Although an accurate mea-

surement of sef is difficult, requiring a clean electron energy

spectrum, the difference in the predictions from quantum and

semi-classical models is significant. For certain experimental

parameters, using this measurement could reduce by more

than an order of magnitude the number of shots required to

confidently determine which model is more appropriate.

4. Optimal parameters

The overlap between the joint distribution functions assuming

quantum and semi-classical models of radiation reaction was

tabulated over a wide range of different initial electron

energies and laser intensities in order to determine the number

of shots required to distinguish at the p=0.3% level between

the two models given certain experimental parameters.

Similar values as before for the uncertainties in a0 and eá ñi
were used, at±3% and±10% respectively, with a very large

energy spread of s eá ñ =e 50%ii
as before. In order to

describe realistic experiments, shot-to-shot variation on sei has
also been introduced, at ±25% of sei, such that the laser
intensity, mean electron energy, and electron energy spread

all vary shot-to-shot. The results are shown in figure 4.

Figure 4(a) shows the number of shots required when

using measurements of eá ñf and εcrit; this demonstrates that

when operating at realistic experimental parameters, many

shots must be taken to distinguish between quantum and

semi-classical models of radiation reaction. For low a0 and

eá ñi , hundreds of shots are required to conclude that one of the

models is correct and not the other. In contrast to the situation

for mono-energetic electron beams, increasing the laser

intensity above a0=10 increases the difference between the

predictions from the two models. If it is possible to increase

the electron energy to eá ñ 1 GeVi and the laser intensity to

a0�15, the number of shots required is reduced to below 25.

Under these conditions, a practical radiation reaction experi-

ment could determine with significant (>3σ) confidence

which model is more appropriate in this regime.

If we cannot determine between quantum and semi-

classical models of radiation reaction using measurements of

eá ñf and εcrit, it is possible to use a measurement of the final

electron energy spread sef . As shown in figure 4(b), this does

not reduce the number of shots required at low laser inten-

sities, but is substantially more successful at lower electron

energies, with fewer than 25 shots required if eá ñ 500 MeVi

and a0�15. For sufficiently high electron energies and laser

intensities (for instance eá ñ 1 GeVi and a0�20, the pre-

dictions from the quantum and semi-classical models for

radiation reaction are substantially different; under these

conditions, it is vital to understand which model of radiation

Table 1. Overlap Ω of joint distribution functions f1 and f2 and
corresponding minimum number of shots required to obtain 3σ
confidence in determining between models for radiation reaction,
using different sets of measurements.

Ω

Nmin

for p=0.3%

Models e eá ñ( )f ,f1 crit e sá ñ e( )f ,f2 f f1 f2

Quantum /
classical

0.235 0.134 4 3

Quantum /
semi-classical

0.920 0.241 70 4

Classical /
semi-classical

0.180 0.446 4 7

5
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reaction is more accurate, and only a single shot may be

sufficient to discriminate between quantum and semi-classical

models.

It is clear that the energy spread of the electron spectrum

is the key distinguishing feature of a stochastic model as

opposed to a deterministic model, and we can study the effect

of decreasing the initial energy spread in the electron spec-

trum. This will reduce the cooling experienced by the electron

beam, increasing the relative contribution of stochasticity.

Simulated experiments were run as before, but with the

relative energy spread reduced to 20% and 10%. Again,

the relative variation of the energy spread was±25%,

giving energy spreads of s e=  á ñe ( )0.2 0.05 ii
and

e á ñ( )0.1 0.025 i , respectively. As shown in figure 5, redu-

cing the initial energy spread significantly changes the final

energy spread and reduces the number of shots required to

determine which model is more suitable. If no more than one

hundred shots are possible and the relative energy spread is

20%, distinguishing between the models requires just

eá ñ 500 MeVi or a0�12. Under most conditions simu-

lated, fewer than 10 shots would be required. For an energy

spread of 10%, however, the models can easily be dis-

tinguished even for the lowest laser intensities and electron

energies. Only at eá ñ = 200 MeVi and a0=5 do the models

predict very similar outcomes; under these conditions the

accuracy of the constant-cross-field approximation is doubtful

and it is likely that both models will break down. In most of

the simulated experiments, however, only a single shot would

be sufficient to determine which model is more correct.

Reducing the energy spread of the initial electron beam is

therefore one of the best ways of ensuring an experiment will

be able to distinguish between deterministic and stochastic

models of radiation reaction.

We can study the maximum allowable energy spread at a

certain laser intensity and initial electron energy, if stochastic

effects are to be measured. First, we ran simulated experiments

for a0=10±3 and eá ñ = ( )500 50 MeVi , which corre-

sponds to a quantum parameter c gá ñ = á ñ »E E 0.03e e L s .

These parameters are achievable in many existing PW scale

laser facilities, and are on the same scale as achieved previously

in [13]. The results, plotted in figure 6(a), show the number of

shots required for a range of energy spreads sei and errors on the

Figure 4. The estimated number of shots required to distinguish between the quantum and semi-classical models at the =p 0.3% significance

level using measurement of (a) eá ñf and εcrit and (b) eá ñf and sef , plotted against the laser intensity a0 and the electron energy εi. The variation

on a0 was taken to be ±3, and the shot-to-shot variation on eá ñi was ±10%. The initial energy spread was s e=  á ñe ( )0.5 0.125 ii
. The colour

scale is the same for both plots.

Figure 5.Using an initial energy spread of (a) s eá ñ = e 20% 5%ii
and (b) s eá ñ = e 10% 2.5%ii

, the estimated number of shots required

to distinguish between quantum and semi-classical models of radiation reaction at a confidence level of p=0.3%. All values are using
measurements of eá ñf and sef and are plotted against the laser intensity a0 and the electron energy εi. The shot-to-shot variation on a0 was

taken to be ±3, and the variation of εi was ±10%. The colour scale is the same for both plots.

6

Plasma Phys. Control. Fusion 61 (2019) 074009 C Arran et al



energy spread. The number of shots required increases with

both the energy spread and the variation in the energy spread,

and is sufficient to make experiments impractical when either of

these are high. For an experiment to be practical, requiring only

10s of shots to successfully distinguish between models, the

energy spread must generally be kept below around

s eá ñe 25%ii
. If the relative error on the energy spread can

be greatly reduced, however, experiments with these parameters

can be successful while s eá ñe 50%ii
. For cá ñ » 0.03e in

equation (3), the energy spread required for the electron spec-

trum to broaden is s eá ñe 12%ii
, below which simulated

experiments measure a clear difference between quantum and

semi-classical models. However, the simulated experiments

show that a significant difference arises between the two models

well before stochastic broadening dominates, so long as the

variation on the energy spread is limited to a few tens of percent

or lower.

We also ran simulated experiments for a0=15±3 and

eá ñ = ( )1.0 0.1 GeVi , or cá ñ » 0.1e , parameters which are
around the limit of what is achievable with some of the

existing petawatt laser facilities (e.g. [14]). Figure 6(b) shows

the results, demonstrating that the number of shots required is

greatly reduced at these parameters. Under these conditions, it

is relatively straightforward to distinguish between the

quantum and semi-classical models, with the predicted energy

spread significantly different even when the energy spread is

on the level of s eá ñ »e 50%ii
and varies widely shot-to-shot.

Again, we can calculate where stochastic broadening dom-

inates analytically using equation (3), giving a condition on

the energy spread of s eá ñe 20%ii
. With this increased laser

intensity and electron energy, the simulations show that the

predictions of the two models diverge even well above this

threshold, with the stochastic model predicting a large

reduction in the cooling rate and a significantly different final

energy spread.

Finally, we explored the effect of shot-to-shot variation

of the laser intensity and mean initial electron energy

under the same two sets of conditions: a0=10 and

eá ñ = 500 MeV;i and a0=15 and eá ñ = 1 GeVi . The energy

spread was set as s e= á ñe 0.25 ii
, with the shot-to-shot varia-

tion on the energy spread se0.25
i
. Figure 7 shows the number

of shots required at a range of errors on both a0 and eá ñi .
Interestingly, the effect is small, with no drastic change in the

overlap between predictions from the two different models.

At a higher laser intensity and electron energy the number of

shots required increases slowly with an increasing shot-to-

shot variation, as expected. At the lower intensity and electron

energy, however, large variation actually results in more

significant radiation reaction effects in the high energy and

high intensity tails, causing a slight reduction in the number

of shots required. Experiments will remain able to distinguish

between stochastic and deterministic models of radiation

reaction even if the shot-to-shot variation in the laser intensity

and electron energy are high, so long as the shot-to-shot

variation in electron energy spread is limited.

In the course of these simulated experiments we have

considered a wide range of experimental errors, but the laser

pulse profile and the electron energy distribution have

remained idealised. In practice, electron bunches from LWFA

often contain a significant lower energy or thermal comp-

onent, particularly when operating in the so-called ‘bubble’

regime [35], where electrons are continuously injected into

the wakefield. This work has neglected that background,

which would have to be carefully removed from the energy

spectrum before measuring the final energy spread of the

beam. Spatial variation in both the electron beam and the laser

pulse can also result in significant changes to the final electron

energy spread; if one region of the electron beam experiences

a much higher laser intensity and a greater radiation reaction

force, the final energy spread of the beam can be significantly

higher than expected. Practical experiments must work to

limit the spatial variation, which can be achieved by moving

the focal plane of the laser pulse further away from the point

of collision with the electron beam, at the cost of reducing the

effective laser intensity. Future simulated experiments, on the

Figure 6. Using initial conditions of (a) a0=10±3 and eá ñ = ( )500 50 MeVi , and (b) a0=15±3 and eá ñ = ( )1.0 0.1 GeVi , the

number of shots required for Monte-Carlo simulated experiments to determine with 3σ confidence between the quantum and semi-classical
models. All values are using measurements of eá ñf and sef and are plotted against the electron energy spread, relative to the mean electron

energy, and the shot-to-shot variation of the electron energy spread, relative to the energy spread. The colour scale is the same for both plots.
The analytic prediction to measure stochastic broadening in the ideal case is also shown (white dotted line).
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other hand, could include variation of the laser intensity

within a single shot, as well as shot-to-shot [36].

5. Conclusions

We have used a series of particle-in-cell simulations and

Monte-Carlo simulated experiments to make predictions for

radiation reaction from each of the quantum, classical, and

semi-classical models using realistic parameters. In doing so,

we have shown that while measurements correlating the cri-

tical energy of the resulting photon spectra with the mean

final electron energy give a way of clearly distinguishing the

classical model from the quantum and semi-classical models,

this is a poor way of determining which of the quantum and

semi-classical models to use. For laser intensities a0<15 and
electron energies e < 1 GeVi , these two models predict

almost the same final average energy of electrons and pho-

tons, for both mono-energetic electron beams and more rea-

listic broad electron distributions.

Instead, we have shown that measuring the energy spread

of the electron spectrum after the interaction gives a clearer

distinction between the stochastic and deterministic models.

Although the energy spread will only increase over the course

of the interaction when the initial energy spread is very low

(around s eá ñe 12%ii
for a0=10 and e = 500 MeVi ), the

effect of stochasticity substantially reduces the rate of cool-

ing, leading to different predictions from the quantum and

semi-classical models even at much higher energy spreads.

We have used the simulated experiments to determine

how many shots would be required when operating at certain

conditions, and used this to build up a picture of the optimal

experimental parameters. Crucially electron energy spread

should be reduced to below 25%, if possible, to maximise the

chances of conclusively determining which model is more

accurate, while shot-to-shot variation on the energy spread

should be minimised. At this energy spread, it should be

possible to distinguish the quantum and semi-classical models

in a few shots even with relatively unambitious experimental

parameters, such as eá ñ = 500 MeVi and a0=10. Under

these conditions, the measurement is robust to significant

shot-to-shot variation in electron energy and laser intensity,

even on the scale of 50%.

Alternatively, if it is difficult to reduce the electron

energy spread, increasing the electron energy or laser inten-

sity will separate the predictions from the two models. Even

with an energy spread of s =e 50%
i

, it is possible to distin-
guish between the models fairly clearly if a0>10 and

eá ñ > 1 GeVi , or if a0>15 and eá ñ > 500 MeVi . By an

electron energy of eá ñ = 1 GeVi and a laser intensity of

a0=15, the models can be fairly easily distinguished

regardless of a large energy spread or shot-to-shot variation.

These requirements are certainly achievable using current

laser systems, and upcoming experiments should be able to

clearly determine which model of radiation reaction is most

suitable for describing interactions of energetic electrons with

high intensity lasers.
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Appendix A. EPOCH revisions

The quantum electro-dynamics model in EPOCH described in

detail in [22] is a Monte-Carlo stochastic model which takes

Figure 7. For (a) a0=10 and eá ñ = 500 MeVi , and (b) a0=15 and eá ñ = 1 GeVi , the estimated number of shots required to distinguish at

the p=0.3% significance level between the quantum and semi-classical models. All values are using measurements of eá ñf and sef and are

plotted against the relative shot-to-shot variation on the initial electron energy and the variation on the laser intensity. The colour scale is the
same for both plots.
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into account both the changes to the synchrotron spectrum

and emission rate as the effective electric field rises, and also

the random nature of the photon emissions. A charged macro-

particle is initialised with a random optical depth τ0. Its

optical depth is then reduced at every timestep by:

t t d= - g
- · ( )

N

t
t

d

d
, A1n n 1

where tn is the optical depth at the nth timestep and δt is the

duration of the timestep. When the optical depth falls below

zero, the macro-particle emits a single macro-photon, with a

particle weight equal to that of the original macro-particle and

an energy chosen at random from the relevant synchrotron

spectrum, as:

e g
c

c
=g

g
( )m c2 , A2e e

e

2

=g ( )w w , A3e

where χγ is chosen from the synchrotron spectrum

c cc gg
( ∣ )P e , where c g= E Ee e L s, where g e= + m c1e e e

2 is

the usual relativistic factor, and » ´ -E 1.32 10 V ms
18 1 is

the Schwinger limit.

We wish, however, to explore two alternative determi-

nistic models: the fully classical model, which possesses

neither the random nature of emission nor the changes to the

synchrotron spectrum and emission rate; and the so-called

semi-classical model, which contains the changes to the

synchrotron spectrum and rate, but not the random emission.

In these two models, each macro-electron now emits a macro-

photon at every timestep, ignoring the optical depth. The

energy is chosen at random from the relevant synchrotron

spectrum as before (with the classical model using the limit of

the synchrotron spectrum as c  0e ), but the particle weight
of this macro-photon is now proportional to the instantaneous

emission rate and the timestep duration as:

d=g
g

· · ( )w w
N

t
t

d

d
A4e

In this way, the semi-classical model will predict the

same photon energy spectrum and rate of emission as the

quantum model, but the semi-classical model is deterministic,

with no element of randomness. In this model, charged par-

ticles continually emit photons.

For vanishing small E 0L both the particle weight and

energy of the macro-photon should vanish to zero and

emission under these conditions will contribute negligibly to

the final photon spectrum. There is, however, an additional

complexity due to the implementation of c cc gg
( ∣ )P e in

EPOCH. This is tabulated, and has a lower limit as χe van-

ishes to zero with E 0L , at a value ce,min. This implies that

as χe vanishes to zero, χγ does not, and so e  ¥g , which is

clearly unphysical.

As c  0e , c cc gg
( ∣ )P e should instead tend towards the

classical limit, where the synchrotron spectrum is a function

of a single variable only: c c c cc g gg
( ∣ ) ( )P Pe e

2 . For

c c<e e,min, we instead calculate the photon energy using:

c c
c

c
= ¢g g

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( ), A5e

e,min

2

where c¢g is chosen at random from c c¢c gg
( ∣ )P e,min . In this

way, even though c¢g cannot vanish to zero, both χγ and

e c cµg g e will safely vanish to zero as c  0e .

This step is not generally necessary in the stochastic case,

as the probability of emitting a macro-photon vanishes to zero

as E 0L , so photons with un-physically high energies are

never created. When emitting a macro-photon at every timestep,

however, this step is important to avoid a large population of

extremely high energy macro-photons, even though the particle

weights of these macro-photons safely vanish to zero.

Appendix B. Monte-Carlo simulated experiments

For each simulated shot, values for the laser intensity, para-

meterised by ( )a n
0 , the mean initial electron energy eá ñ( )

i
n , and the

initial energy spread se
( )n
i
were randomly chosen from Gaussian

distributions with a chosen mean and standard deviation.

Nelectron=10 000 electrons were then simulated, each with an

initial energy e( )
i
s sampled from another Gaussian distribution,

with mean eá ñ( )
i
n and standard deviation se

( )n
i
. For each simulated

electron, the final energy distribution was characterised by a

Gaussian with mean e eá ñ( )( ) ( )a,f i
s n

0 and standard deviation

s ee ( )( ) ( )a,i
s n

0f
drawn from the look-up table, and the final elec-

tron energy was then estimated by drawing a random sample e( )
f
s

from this distribution. Example electron energy spectra from the

mono-energetic simulations are shown in figure B1(a) alongside

the Gaussian fits. When the electron energy and laser intensity

are very high, the final electron spectra are strongly skewed and

the Gaussian distribution becomes a worse approximation, but at

the laser intensities and electron energies considered in this paper

the divergence is small.

A histogram was assembled for each shot, using the

Nelectron different values of e( )
f
s , and this was fitted to a Gaussian

to estimate eá ñ( )
f

n and se
( )n
f
. At the same time, for each electron

the photon distribution e eg g( ∣ )( ) ( )N a,i
s n

0 was calculated from

the look-up table and added to a total distribution

eg g( ∣ )( ) ( ) ( )N N a,n
e i
n n
, 0 . This was then fitted to equation (1) to give

an estimate e( )n
crit. Examples of photon spectra from the mono-

energetic simulations are shown in figure B1(b) alongside fits to

equation (1). Summing the photon spectra means that, as in real

experiments, the much higher number of photons emitted by the

highest energy electrons tend to dominate the spectrum and

using e( )n
crit remains a reasonable way of parameterising the

measured spectrum.

In total, Nshots=10 000 shots were simulated, and the

different estimates of eá ñ( )
f

n , se
( )n
f

and e( )n
crit were combined

using a Gaussian kernel-density estimate to form the joint

distribution function e e sá ñ e( )f , ,fcrit f
. The process was

repeated for each of the classical, semi-classical and quantum

models of radiation reaction, using the appropriate look-up

tables, giving three different joint distribution functions f (Q),

9

Plasma Phys. Control. Fusion 61 (2019) 074009 C Arran et al



f (S), and f (C). For parameter scans, however, it is computa-

tionally expensive to calculate the three-dimensional dis-

tribution function, and so the two-dimensional distribution

functions e eá ñ( )f ,f1 crit and e sá ñ e( )f ,f2 f
were used. These are

effectively integrations of e e sá ñ e( )f , ,fcrit f
, integrated over

sef or εcrit respectively, and require just Nshots=1000 shots to
accurately sample the underlying distribution. Convergence

testing, varying Nshots, allowed us to estimate the error on the

probability under these conditions as approximately 5%.

Appendix C. Optimal pulse duration

In order to study the optimal pulse duration we can consider

the stochastic contribution to broadening of the electron

energy distribution. This is described by the second moment

of the synchrotron emission distribution function (or the first

moment of the synchrotron energy spectrum) [27]:

ò

ò
c

c c c c

c c c c
º

c
g g g

g g g
¥( )

( )

( )
( )g

F

F

, d

4 3 d
, C1e

e

e

2
0

2

0
cl

2

e

where F(χe, χγ) and c cg( )F 4 3
ecl
2 are the quantum

and classical synchrotron functions respectively, which

describe the energy spectra [21]. The function c( )g e2

can be approximated by c c» + +( ) [ ( )g 1 1 4.528e e2

c+( )ln 1 12.29 e c+ -]4.632
e
2 7 6.

Stochastic broadening results in a rate of increase in the
variance s g gº á ñ - á ñ2 2 2, described by:

s
=

á ñ

+

⎛

⎝
⎜

⎞

⎠
⎟ ( )

t

S

m c

d

d
, C2

e

2

2 4

where

c
a
t

gc c=( )
¯

( ) ( )S m c g
55

24 3
, C3e

c
e e e
2 4 3

2

and the average á ñS is taken over the electron population.

For a laser pulse with a duration τ and a total energy E,

c g g tµ µ -a Ee 0
1
2

1
2 and the total increase in the energy spread

due to this stochastic emission is therefore described by:

s gc c t

g c c

D µ

µ

( )

( ) ( )

g

E g . C4

e e

e e

2 3
2

3
2

At low χe= 1, c »( )g 1e2 , and for a fixed laser energy,
broadening only increases as the pulse duration falls, as

s g tD µ -E2 43
2

1
2 . However, for χe ? 1, c( )g e2 falls towards

zero as c cµ -( )g e e2

7
3 and the increase in energy spread also

falls towards zero as s g c g tD µ µ-E E
e

2 3
4
3

1
3

5
3

2
3 .

The increase in energy spread is maximal in between

these two regimes, where:

s
c

c c
c
c

¶D
¶

= = +
¶
¶

( )
( )

( )g
g

0 . C5
e

e e
e

e

2

2
2

Solving this numerically gives χe≈0.56, which for a

»2 GeV electron bunch corresponds to a0≈50. This is

beyond the regime explored by the radiation reaction experi-

ments considered in this paper, but well within the capabilities

of 10 PW laser facilities. The results of this paper, considering

only a0�25, suggest increasing the laser intensity in order to

better distinguish between models of radiation reaction, but

experiments using 10 PW laser facilities could consider using

laser pulses which are not fully compressed, with lower inten-

sities than the maximum possible laser intensity, in order to

increase the broadening of the electron energy distribution in

future radiation reaction experiments.

ORCID iDs

C Arran https://orcid.org/0000-0002-8644-8118
E Gerstmayr https://orcid.org/0000-0003-1164-8593
T G Blackburn https://orcid.org/0000-0002-3681-356X

References

[1] Zou J et al 2015 High Power Laser Sci. Eng. 3 2
[2] Weber S et al 2017 Matter Radiat. Extremes 2 149

Figure B1. Example spectra for (a) electrons and (b) photons resulting from simulations of mono-energetic electron beams interacting with
laser pulses. Electron spectra were fitted to Gaussian distributions (dashed black lines), whereas photon spectra were fitted to equation (1).
Conditions were (I) a low laser intensity and electron energy (a0=10, =E 500 MeVi , (II) a moderate intensity and energy (a0=15,

=E 1000 MeVi ), and (III) a high intensity and energy (a0=20, =E 1500 MeVi ).

10

Plasma Phys. Control. Fusion 61 (2019) 074009 C Arran et al



[3] Gales S et al 2018 Rep. Prog. Phys. 81 094301
[4] Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
[5] Di Piazza A, Müller C, Hatsagortsyan K Z and Keitel C H

2012 Rev. Mod. Phys. 84 1177
[6] Mourou G A, Tajima T and Bulanov S V 2006 Rev. Mod.

Phys. 78 309
[7] Powers N D, Ghebregziabher I, Golovin G, Liu C, Chen S,

Banerjee S, Zhang J and Umstadter D P 2013 Nat. Photon.

8 28
[8] Tsai H E et al 2016 Phys. Plasmas 22 023106
[9] Duff M J, Capdessus R, Sorbo D D, Ridgers C P, King M and

McKenna P 2018 Plasma Phys. Control. Fusion 60

064006
[10] Tamburini M, Pegoraro F, Piazza A D, Keitel C H and

Macchi A 2010 New J. Phys. 12 123005
[11] Zhang P, Ridgers C P and Thomas A G R 2015 New J. Phys.

17 043051
[12] Wang W-M, Gibbon P, Sheng Z-M, Li Y-T and Zhang J 2017

Phys. Rev. E 96 013201
[13] Cole J M et al 2018 Phys. Rev. X 8 011020
[14] Poder K et al 2018 Phys. Rev. X 8 031004
[15] Tajima T and Dawson J 1979 Phys. Rev. Lett. 43 267
[16] Mangles S P D, Murphy C D and Najmudin Z 2004 Nature

431 535
[17] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S,

Lefebvre E, Rousseau J-P, Burgy F and Malka V 2004
Nature 431 541

[18] Geddes C G R, Toth C S, Van Tilborg J, Esarey E,
Schroeder C B, Bruhwiler D, Nieter C, Cary J and
Leemans W P 2004 Nature 431 538

[19] Schwinger J 1951 Phys. Rev. 82 664
[20] Erber T 1966 Rev. Mod. Phys. 38 626
[21] Sokolov I V, Nees J A, Yanovsky V P, Naumova N M and

Mourou G A 2010 Phys. Rev. E 81 036412
[22] Ridgers C, Kirk J, Duclous R, Blackburn T, Brady C, Bennett K,

Arber T and Bell A 2014 J. Comput. Phys. 260 273
[23] Blackburn T G, Ridgers C P, Kirk J G and Bell A R 2014 Phys.

Rev. Lett. 112 015001
[24] Landau L D and Lifshitz E M 1971 The Classical Theory of

Fields, vol 2 3rd edn (Oxford: Pergamon)
[25] Macchi A 2018 APS Phys. 11 13
[26] Neitz N and Piazza A Di 2013 Phys. Rev. Lett. 111 054802
[27] Ridgers C P et al 2017 J. Plasma Phys. 83 715830502
[28] Niel F, Riconda C, Amiranoff F, Duclous R and Grech M 2018

Phys. Rev. E 97 043209
[29] Ritus V I 1985 J. Russ. Laser Res. 6 497
[30] Harvey C N, Ilderton A and King B 2015 Phys. Rev. A 91

013822
[31] Di Piazza A, Tamburini M, Meuren S and Keitel C H 2018

Phys. Rev. A 98 012134
[32] Blackburn T G, Seipt D, Bulanov S S and Marklund M 2018

Phys. Plasmas 25 083108
[33] Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001
[34] Vranic M, Grismayer T, Fonseca R A and Silva L O 2016 New

J. Phys. 18 073035
[35] Pukhov A M, Gordienko S, Kiselev S and Kostyukov I 2004

Plasma Phys. Control. Fusion 46 B179
[36] Baird C D, Murphy C D, Blackburn T G, Ilderton A,

Mangles S P D, Marklund M and Ridgers C P 2019 New J.
Phys 21 053030

11

Plasma Phys. Control. Fusion 61 (2019) 074009 C Arran et al


	1. Introduction
	2. Simulated experiments
	3. Distinguishing models
	4. Optimal parameters
	5. Conclusions
	Acknowledgments
	Appendix A.EPOCH revisions
	Appendix B.Monte-Carlo simulated experiments
	Appendix C.Optimal pulse duration
	References

