This is a repository copy of An introduction to the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/1484/

Article:
Østergaard, M., Edmonds, J., McQueen, F. et al. (7 more authors) (2005) An introduction to the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas. Annals of the Rheumatic Diseases, 64 (Suppl). i3-i7. ISSN 0003-4967

https://doi.org/10.1136/ard.2004.031773

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
An introduction to the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas

M Østergaard, J Edmonds, F McQueen, C Peterfy, M Lassere, B Ejbjerg, P Bird, P Emery, H Genant, P Conaghan

This article gives a short overview of the development and characteristics of the OMERACT rheumatoid arthritis MRI scoring system (RAMRIS), followed by an introduction to the use of the EULAR–OMERACT rheumatoid arthritis MRI reference image atlas. With this atlas, MRIs of wrist and metacarpophalangeal joints of patients with rheumatoid arthritis can be scored for synovitis, bone oedema, and bone erosion, guided by standard reference images.

The OMERACT and EULAR MRI in RA working groups

Since 1998, an international Outcome Measures in Rheumatology Clinical Trials (OMERACT) MRI in RA working group has aimed to develop MRI scoring systems to assess RA inflammation (activity) and damage, which would satisfy the elements of the OMERACT filter (truth, discrimination, and feasibility). The group’s work has mainly focused on semiquantitative assessments of RA wrist and metacarpophalangeal (MCP) joints. The wrist and MCP joints were prioritised because of their frequent involvement in RA, and the amount of MRI data on these joints. MRI definitions of important RA joint pathologies and a core set of basic MRI sequences to be used for imaging of the RA joint have been suggested by the group, in order to increase comparability between future studies. Furthermore, based on a series of studies performed by an European League Against Rheumatism (EULAR) MRI in RA working group, and particularly the OMERACT group, an RA MRI scoring system (OMERACT 2002 RAMRIS) for evaluation of inflammatory and destructive changes in RA hands and wrists was presented at OMERACT 6 in Brisbane, Australia, in April 2002. OMERACT 6 participants endorsed the OMERACT 2002 RAMRIS as a standard comparator for new/alternative MRI methods for RA assessment and encouraged its further testing in longitudinal studies. Recent data have documented good intraobserver and interobserver agreements among trained, calibrated readers and indicate an improved sensitivity to change for erosive joint damage by using this MRI score as compared with radiography. The evidence for the validity of MRI for assessment of joint inflammation and destruction in RA is reviewed elsewhere.

Our group felt that the performance and generalisability of RAMRIS scoring could be improved by availability of a set of standard reference images (atlas), as synovitis scores in particular may be difficult for new readers to conceptualise. Therefore, it was decided to focus the group’s efforts on developing the reference image atlas presented in this supplement for use as a guide to scoring of RA joint pathology, based on the OMERACT 2002 RAMRIS method.

Scoring using the EULAR–OMERACT RA MRI reference image atlas

The OMERACT MRI in RA definitions of important joint pathologies and scoring systems are summarised in table 1. Examples of score sheets, which can be used when scoring MCP and wrist joints, are provided in fig 1. The methodology of the development of the atlas is described in detail in the following paper by Bird et al. Next, the atlas itself is presented:

- a complete series of all grades of synovitis in the MCP joints and in each of the wrist joint areas (distal radioulnar joint, radiocarpal joint and intercarpal-carpometacarpal joints); and
- a selection of grades of bone erosions and bone oedema in the two MCP joint bones (metacarpal head and phalangeal base) and five selected wrist joint bones (distal radius, scaphoid, lunate, capitale, metacarpal base).

Abbreviations: EULAR, European League Against Rheumatism; MCP, metacarpophalangeal; MRI, magnetic resonance imaging; OMERACT, Outcome Measures in Rheumatology Clinical Trials; RA, rheumatoid arthritis.
Score sheet for the OMERACT RAMRIS using the EULAR-OMERACT RA MRI reference image atlas

MCP JOINTS

MRI ID: ____________________________ Scorer’s name: ________

Centre where MRI was performed: _______________

Image set (e.g. baseline or follow-up): _______________

Sequences scored: ________________________________

Scoring of synovitis

<table>
<thead>
<tr>
<th>Synovitis (0-3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCP-joints</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Scoring of bone erosion and bone oedema

Bone erosion is scored 0-10, according to the proportion (in increments of 10%) of bone involved:

0: 0%, 1: 1-10%, 2: 11-20 %,, 10: 91-100%

Bone oedema is scored 0-3, according to the proportion (in increments of 33%) of bone involved:

0: 0%, 1: 1-33%, 2: 34-66 %, 3: 67-100%

Score from the articular surface (or its best estimated position if absent) to a depth of 1 cm.

<table>
<thead>
<tr>
<th>Bone erosion 0-10</th>
<th>Proximal</th>
<th>MCP joints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone oedema 0-3</th>
<th>Proximal</th>
<th>MCP joints</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 3 4 5</td>
<td></td>
</tr>
</tbody>
</table>
Score sheet for the OMERACT RAMRIS using the EULAR-OMERACT RA MRI reference image atlas

WRIST JOINTS

MRI ID: ___________________________ Scorer’s name: ___________________________

Centre where MRI was performed: ___________________________

Image set (e.g. baseline or follow-up): ___________________________

Sequences scored: ___________________________

Scoring of synovitis

<table>
<thead>
<tr>
<th>Synovitis (0-3)</th>
<th>Distal radio-ulnar joint</th>
<th>Radio-carpal joint</th>
<th>Intercarpal-CMCJ</th>
</tr>
</thead>
</table>

Scoring of bone erosion and bone oedema

Bone erosion is scored 0-10, according to the proportion (in increments of 10%) of bone involved:
0: 0%, 1: 1-10%, 2: 11-20%,, 10: 91-100%

Bone oedema is scored 0-3, according to the proportion (in increments of 33%) of bone involved:
0: 0%, 1: 1-33%, 2: 34-66%, 3: 67-100%

For carpal bones, score the whole bone. For long bones, score from the articular surface (or its best estimated position if absent) to a depth of 1 cm.

<table>
<thead>
<tr>
<th>Base of metacarpal</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone erosion (0-10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone oedema (0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone erosion (0-10)</th>
<th>Trapezium</th>
<th>Trapezoid</th>
<th>Capitate</th>
<th>Hamate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone oedema (0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone erosion (0-10)</th>
<th>Scaphoid</th>
<th>Lunate</th>
<th>Triquetrum</th>
<th>Pisiform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone oedema (0-3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bone erosion (0-10)</th>
<th>Distal radius</th>
<th>Distal ulna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone oedema (0-3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Examples of score sheets that can be used for scoring (A) metacarpophalangeal and (B) wrist joints using the OMERACT 2002 rheumatoid arthritis magnetic resonance imaging scoring system (RAMRIS). The layout of the score sheet can be modified—for example, according to the features and joints that are to be examined in a specific patient material.
The final paper by McQueen et al describes the common and important pitfalls involved in scoring MR images of RA wrist and MCP joints. To use the atlas adequately, the reader is obviously required to have a detailed understanding of the relevant joint anatomy, the RA disease process, the MRI appearance of RA joints, and the main pitfalls when assessing them. Furthermore, the “requirements” of the OMERACT RAMRIS should be known. Calibration with a trained reader is recommended. Given these requirements, scoring of hard copy or digital MR image sets of wrist and MCP joints can be performed guided by the standard reference images of MCP joints and wrist joints provided in this supplement.

We suggest that when using this atlas, the reader compares the relevant images with the images in this atlas. Synovitis is scored from 0 to 3 in each area to be evaluated (see table 1). The MIRI set to be assessed should be compared with the axial precontrast and postcontrast T1 weighted reference images and the joint assigned the score of the best possible match.

This is similar to the Larsen method for scoring radiographs. In the atlas, examples of both the “low” and the “high” end of the spectrum of the individual grade are provided to illustrate the range of the grade (see Bird et al for details).

Bone erosion is graded by percentage volume (0–10, by 10% volume increments) of the assessed bone as described in the OMERACT RAMRIS (see table 1). All coronal slices covering the bone must be assessed to estimate the percentage of the total volume occupied by the erosion. Even though only a subset of bones are illustrated in the atlas, we recommend that all bones in the wrist and MCP joints should be scored. The reference images in the atlas can be used for guidance and calibration.

Bone oedema is graded by percentage volume (0–3, by 33% volume increments) of the assessed bone as described in the OMERACT RAMRIS (table 1). As for erosion, all slices covering the bone need to be taken into account. It should be emphasised that oedema, in case erosion and oedema are concurrently present, is scored as a proportion of the estimated original bone volume, not of the remaining bone.
All bones of the wrist and second to fifth MCP joints should be scored, not just the subset illustrated. The atlas reference images can be used for guidance and calibration. Sum scores of synovitis, erosion, and oedema can be calculated by summation of individual joint scores, as a total sum or separately in the evaluated wrist and second to fifth MCP joints, respectively. For synovitis, the possible range of sum scores of unilateral second to fifth MCP joints, wrist joint, and both are 0–12, 0–9, and 0–21, respectively. The corresponding values for bone erosion are 0–80, 0–150, and 0–230 and for bone oedema 0–24, 0–45, and 0–69, respectively.

In conclusion, we hope we have provided a user friendly tool for teaching new readers and improving calibration for all who use MRI outcomes in RA clinical trials.

ACKNOWLEDGEMENT

The European League Against Rheumatism (EULAR) is acknowledged for financial support of the publication of this atlas.

Authors’ affiliations

M Østergaard, Departments of Rheumatology, Copenhagen University Hospitals at Herlev and Hvidovre, Copenhagen, Denmark
J Edmonds, Department of Rheumatology, St George Hospital, University of NSW, Sydney, Australia
F McQueen, Department of Molecular Medicine and Pathology, Faculty of Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
C Peterfy, Synarc Inc, San Francisco, CA, USA
M Lassere, Department of Rheumatology, St George Hospital, University of NSW, Sydney, Australia
B Ejbjerg, Departments of Rheumatology, Radiology and MRI, Copenhagen University Hospital at Hvidovre, Copenhagen, Denmark
P Bird, Department of Rheumatology, St George Hospital, University of NSW, Sydney, Australia
P Emery, Academic Unit of Musculoskeletal Disease, University of Leeds, Leeds, UK
H Genant, Department of Radiology, University of California at San Francisco, San Francisco, CA, USA
P Conaghan, Academic Unit of Musculoskeletal Disease, University of Leeds, Leeds, UK

REFERENCES

www.annrheumdis.com

Downloaded from ard.bmjournals.com on 10 August 2006