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Abstract
Purpose  To characterize the pharmacokinetics (PK) of, and perform an exploratory exposure–response (E–R) analysis for, 
pertuzumab in patients with HER2-positive early breast cancer (EBC) within the APHINITY study (NCT01358877, BIG 
4–11/BO25126/TOC4939G).
Methods  A previously developed pertuzumab two-compartment linear population pharmacokinetic (popPK) model was sub-
jected to external validation to examine appropriateness for describing pertuzumab concentrations from the APHINITY study. 
Pharmacokinetic drug–drug interactions (DDIs) between pertuzumab, trastuzumab, and chemotherapy were assessed by 
comparing observed serum or plasma Cmax, Cmin, and AUC​last geometric mean ratios with 90% CIs. Predictions of pertuzumab 
Cmax,ss, Cmin,ss, and AUC​ss were derived from individual parameter estimates and used in an exploratory E–R analysis.
Results  Using data from 72 patients, based on goodness-of-fit, the popPK model was deemed appropriate for predictions 
of individual exposures for subsequent comparisons to historical data, assessment of DDIs, and E–R analyses. No evidence 
of DDIs for pertuzumab on trastuzumab, trastuzumab on pertuzumab, or pertuzumab on chemotherapy PK was observed. 
Analyses of differences in exposure between patients with and without invasive disease-free survival events did not indicate 
improved efficacy with increased exposure. Overall Grade ≥ 3 diarrhea prevalence was higher with pertuzumab versus pla-
cebo, but was not greater with increasing pertuzumab exposure. No apparent E–R relationship was suggested with respect 
to other grade ≥ 3 AEs.
Conclusion  Overall, the limited available data from this exploratory study suggest that no dose adjustments are needed for 
pertuzumab when administered in combination with trastuzumab and an EBC chemotherapy regimen.
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Introduction

Pertuzumab (PERJETA®, F. Hoffmann-La Roche Ltd, Basel, 
Switzerland) is a recombinant, humanized immunoglobulin 
G1κ monoclonal antibody that targets human epidermal 
growth factor receptor 2 (HER2), a transmembrane 

glycoprotein with intrinsic tyrosine kinase activity [1]. By 
binding to extracellular subdomain 2, pertuzumab prevents 
dimerization of HER2 with other HER family receptors 
[2, 3]. As a result, pertuzumab inhibits two major ligand-
initiated intracellular signaling pathways, mitogen-activated 
protein kinase and phosphoinositide 3-kinase, thereby 
inducing cell growth arrest and apoptosis [4].

Pertuzumab and trastuzumab (Herceptin®, F. Hoffmann-
La Roche Ltd) bind to different epitopes on the HER2 
receptor and have distinct mechanisms for disrupting HER2 
signaling. Due to their complementary modes of action, the 
combination of these two anti-HER2 antibodies provides 
more comprehensive HER2 pathway blockade than single 
agents [5, 6]. Pertuzumab was first approved for use in 
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combination with trastuzumab and docetaxel in patients with 
HER2-positive metastatic breast cancer (MBC), based on 
the pivotal phase III CLEOPATRA study (NCT00567190), 
which showed significant improvement in progression-free 
survival with the combination as compared with placebo 
plus trastuzumab and docetaxel [7].

Pertuzumab is also licensed as neoadjuvant treatment 
for patients with HER2-positive early breast cancer (EBC); 
approval was supported by two phase II studies, NeoSphere 
(NCT00545688) and TRYPHAENA (NCT00976989), 
in which the addition of pertuzumab to trastuzumab and 
chemotherapy significantly improved pathologic complete 
response rate (pCR), without increasing cardiac toxicities 
[8, 9].

The clinical pharmacokinetics (PK) of pertuzumab were 
first described in 481 patients with a variety of solid tumors 
from 11 phase I/II studies and CLEOPATRA [10]. A two-
compartment linear model with first-order elimination was 
used to characterize pertuzumab PK in the 2–25 mg/kg dose 
range, a range which includes the approved fixed-dose regi-
men of an 840 mg loading dose followed by a 420 mg main-
tenance dose, administered intravenously on an every-3-
week (q3w) schedule [10]. In the final model of this analysis, 
covariates explained 21.6% of the between-subject variability  
for clearance (CL) and 35.0% of the between-subject 
variability for volume of central compartment (Vc), with 
lean body weight (LBW) and serum albumin (ALBU) being 
identified as statistically significant covariates of pertuzumab 
PK [10]. LBW impacted pertuzumab PK: increased LBW 
correlated with increasing CL, Vc, and volume of peripheral 
compartment (Vp) [10]. Sensitivity analyses demonstrated 
that the magnitude of its effect on the pertuzumab exposure 
measures minimum concentration at steady state (Cmin,ss), 
maximum concentration at steady state (Cmax,ss), and area 
under the concentration–time curve at steady state (AUC​ss) 
was small relative to the overall between-subject variability 
in the population [10]. The authors concluded that, because 
of this, dose adjustment for LBW is not warranted [10].

The maximum tolerated dose for pertuzumab was not 
reached in clinical studies; therefore, the selected dose for 
CLEOPATRA and NeoSphere was based on achievement of 
a trough concentration at steady state (Ctrough,ss) of ≥ 20 μg/mL  
in 90% of patients (i.e., clinical target concentration) [11]. 
Non-clinical xenograft dose–response studies showed maxi-
mal suppression of tumor growth when the Ctrough was main-
tained above this threshold [12]. Over 90% of patients achieved 
the target serum pertuzumab concentration in the NeoSphere 
study, and the exposure–response analysis suggested that there 
was no association between pCR rate and pertuzumab concen-
trations within the observed concentration range of 20–100 μg/
mL [11]. This analysis further supported the appropriateness 
of the fixed, non-weight-based pertuzumab dose of 840 mg 

followed by 420 mg q3w in the neoadjuvant treatment of 
patients with early breast cancer [11].

More recently, pertuzumab was approved for the adjuvant 
treatment of patients with HER2-positive EBC based on the 
APHINITY study (NCT01358877, BIG 4–11/BO25126/
TOC4939G). APHINITY was a prospective, randomized, 
multicenter, multinational, double-blind, placebo-controlled, 
phase III study that compared intravenous pertuzumab (18 
cycles), trastuzumab (18 cycles), and chemotherapy (3–4 
cycles of anthracycline-containing chemotherapy followed 
by 3–4 cycles of taxane-containing chemotherapy or 6 cycles 
of docetaxel plus carboplatin) with placebo, trastuzumab, and 
chemotherapy as adjuvant therapy in patients with operable 
HER2-positive early breast cancer (EBC) [13]. APHINITY 
met its primary objective, showing significantly improved 
rates of invasive disease-free survival (IDFS) with the addi-
tion of pertuzumab to trastuzumab and chemotherapy. A 
disease recurrence event occurred in 7.1% of patients treated 
with pertuzumab and in 8.7% of patients who received pla-
cebo (a difference of 1.6%; hazard ratio 0.81; 95% confidence 
interval [CI] 0.66–1.00; p = 0.045). In terms of safety, diarrhea  
(a common adverse event with pertuzumab) of Grade 3 or 
higher occurred more frequently with pertuzumab than with 
placebo, and was mostly experienced during chemotherapy 
[13].

Data described herein were collected as part of an optional 
APHINITY Global PK sub-study; designed to characterize 
pertuzumab steady-state pharmacokinetics in patients with 
HER2-positive EBC and to support the current pertuzumab 
dosing regimen in this population. The key objectives for 
this PK analysis were to: (1) characterize the steady-state 
PK of pertuzumab in patients with HER2-positive EBC; (2) 
characterize the potential PK drug–drug interactions (DDIs) 
between the therapeutic proteins trastuzumab and pertuzumab, 
and between pertuzumab and paclitaxel and carboplatin. In 
addition, three exploratory objectives addressed by this PK 
analysis were to: (1) compare the steady-state concentrations 
of pertuzumab, when administered as adjuvant treatment to 
patients with EBC, with data obtained previously in women 
with MBC (CLEOPATRA); (2) compare the steady-state 
concentrations of trastuzumab when administered as adjuvant 
treatment to patients with EBC, with data obtained previously 
in women with EBC receiving adjuvant treatment (HERA 
[NCT00045032]); (3) perform an exploratory analysis of expo-
sure–response relationships, including IDFS and diarrhea as 
the key efficacy and safety endpoints, respectively.
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Materials and methods

APHINITY Global PK sub‑study design

The design of the APHINITY study has been reported 
previously [13]. APHINITY included an optional Global 
PK sub-study with a separate protocol from the main trial.

PK sampling

PK samples were collected only in the PK sub-study. 
A sparse PK sampling approach was adopted. The PK 
sampling times for pertuzumab and trastuzumab were 
pre- and post-dose on cycles 1, 10, and 15 (and Cycle 2 
pre-dose). PK sampling times for chemotherapy included 3, 
5, and 24 h post-dose for paclitaxel, 3 and 5 h post-dose for 
the metabolite 6-alpha-hydroxy paclitaxel, and 1, 2, 4, and 
5 h post-dose for carboplatin.

Bioanalytical methods

Validated assays were used to measure pertuzumab, 
trastuzumab, paclitaxel and 6-alpha-hydroxy paclitaxel, and 
carboplatin from blood samples.

The serum concentrations of pertuzumab were deter-
mined by an enzyme-linked immunosorbent assay described 
previously [14]. The assay used a monoclonal anti-idio-
type antibody against pertuzumab to capture pertuzumab 
from serum samples. Bound pertuzumab was detected 
with a biotinylated monoclonal antibody (10C4; Antibody 
Engineering, Genentech, Inc., South San Francisco, CA, 
USA) against a Genentech, Inc. immunoglobulin G frame-
work and horseradish peroxidase-Avidin D conjugate. A 
peroxidase substrate (tetramethyl benzidine) was used for 
color development to quantify serum pertuzumab against a 
standard curve. The lower limit of quantification in human 
serum was 150 ng/mL with a standard curve reporting range 
of 150–4000 ng/mL (limit of detection was 62.5 ng/mL). 
The inter-assay accuracy (percentage difference) ranged 
from − 8.75 to 3.84% while the inter-assay precision  
(percentage coefficient of variation) ranged from 3.89 to 
15.3%. The presence of trastuzumab did not interfere with 
the accurate quantification of pertuzumab in this assay.

Trastuzumab serum concentrations were determined 
by a validated high-performance liquid chromatog-
raphy with tandem mass spectrometry (LC–MS/MS) 
detection described previously [15]. An affinity capture 
approach using streptavidin magnetic beads coupled 
with biotinylated recombinant human HER2 extracellu-
lar domain was used to enrich trastuzumab from human 
serum. The bound trastuzumab protein was subjected to 

‘on-bead’ proteolysis with trypsin, following standard 
protein denaturation, reduction, and alkylation process-
ing steps. Prior to digestion completion, working internal 
standard solution was added. The characteristic peptide 
fragments produced by this procedure were then quantified 
as surrogates of the total antibody concentration originat-
ing from trastuzumab by LC–MS/MS (i.e., multiple reac-
tion monitoring [MRM]). The lower limit of quantification 
in human serum was 100 ng/mL with a standard curve 
reporting range of 100 ng/mL to 2500 ng/mL. The inter-
assay accuracy (percentage difference) ranged from − 8.08 
to − 1.47%, while the inter-assay precision (percentage 
coefficient of variation) ranged from 3.07 to 8.44%. The 
presence of pertuzumab did not interfere with the accurate 
quantification of trastuzumab in this assay.

Plasma concentrations of paclitaxel and its metabolite 
6-alpha-hydroxy paclitaxel were determined by a validated 
liquid chromatography tandem mass spectrometry method. 
An aliquot of 50 μL of human plasma (K2EDTA) sam-
ple containing paclitaxel and 6-alpha-hydroxy paclitaxel 
was extracted using supported-liquid extraction. The API 
5000 Triple Quad™ (Applied Biosystems, Foster City, 
CA, USA) was operated in MRM mode under optimized 
conditions for the detection of paclitaxel and 6-alpha-
hydroxy paclitaxel positive ions formed by electrospray 
ionization. Paclitaxel-d5 was used as an internal standard. 
Paclitaxel concentrations were calculated with the use of 
a standard curve with a 1/x2 linear regression over a con-
centration range of 2.00–2500 ng/mL. Concentrations of 
6-alpha-hydroxy paclitaxel were calculated using a sepa-
rate standard curve with a 1/x2 linear regression over the 
same concentration range of 2.00–2500 ng/mL. The inter-
assay relative standard deviation ranged from 1.5 to 9.6% 
for paclitaxel and from 2.2 to 8.9% for 6-alpha-hydroxy 
paclitaxel. The inter-assay accuracy ranged from 86.0 to 
96.6% of nominal for paclitaxel and from 96.5 to 103.2% 
of nominal for 6-alpha-hydroxy paclitaxel. Stability of 
paclitaxel and 6-alpha-hydroxy paclitaxel was established 
in human plasma for 449 days at − 20 °C and 1280 days 
at – 70 °C.

Carboplatin plasma concentrations were determined 
by a validated inductively coupled plasma tandem mass 
spectrometry method. Human plasma (K2EDTA) samples 
(50 μL) containing carboplatin were analyzed on a Perkin-
Elmer ELAN DRC II mass spectrometer optimized for the 
detection of platinum from carboplatin. Terbium was used 
as an internal standard. Platinum concentrations were cal-
culated with the use of a standard curve with a 1/x2 linear 
regression over a concentration range of 2.00–1000 ng/mL.  
The inter-assay relative standard deviation ranged from 
0.68 to 4.06%, while the inter-assay accuracy ranged 
from 97.6 to 100.8% of nominal. Stability of platinum 
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was established in human plasma for 195 days at − 20 °C 
and − 70 °C.

Data handling

Patients were defined as evaluable for pharmacokinetic (PK) 
analysis if they had at least one documented pertuzumab 
administration and a corresponding post-dose pertuzumab 
PK sample collection. Records were excluded if the time of 
drug administration or sample collection was missing. No 
imputation of PK values was performed. Observations with 
missing PK or time values, or those below the minimum 
quantifiable concentration, were omitted from the analysis.

Outliers were identified by visual inspection of each 
individual’s concentration versus time profile. Typically, a 
data point was deemed an outlier if a trough concentration 
was greater than the peak concentration, or if the absolute 
residual variability was five times larger than the expected 
residual standard deviation.

PK analysis

Pertuzumab concentrations from the APHINITY Global PK 
sub-study were compared with predictions based on a pre-
viously developed pertuzumab population PK model [10]. 
This model was built on data collected from patients with 
solid tumors, including MBC, during five phase I/Ib studies, 
six phase II studies, and one pivotal phase III study [10]. 
Most of the data ( > 95%) used for population PK devel-
opment were based on pertuzumab without concomitant 
trastuzumab treatment; seven of the 12 studies included 
investigated pertuzumab as a monotherapy. In the previ-
ously developed model, pertuzumab PK were described by 
a two-compartment linear model with a CL, central volume 
of distribution, and terminal elimination half-life of 0.235 
L/day, 3.11 L, and 18 days, respectively. The covariates 
identified as significantly influencing pertuzumab CL were 
baseline serum albumin and LBW, with 15.5% and 4.1% of 
the between-subject variability in CL explained by serum 
albumin and LBW, respectively.

Comparisons of pertuzumab concentrations from the 
APHINITY Global PK sub-study to the previously devel-
oped model predictions were performed using NONMEM 
version 7.3 software (ICON Development Solutions, Ellicott 
City, MD, USA). Post-processing of NONMEM analysis 
results was carried out in R version 3.2.2 (R Development 
Core Team, R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, 
Austria; ISBN 3-900051-07-0; URL https​://www.R-proje​
ct.org/). Individual PK parameters were estimated using 
first-order conditional estimation with interaction.

To evaluate the agreement of the observed PK data in 
the APHINITY Global PK sub-study with the historical PK 

data based on the population PK model, a visual predictive 
check was performed. Pertuzumab serum concentrations 
for 10 000 subjects were simulated using LBW resampled 
from the observed LBW in the pertuzumab arm as well as 
nominal dose times and amounts for each patient. Albumin 
levels were not measured in APHINITY. Therefore, the 
median observed baseline albumin level of 4.3 g/dL (range 
3.3–5.7 g/dL, N = 258) in HannaH (NCT00950300), a study 
of subcutaneous or intravenous trastuzumab for EBC [16], 
was added as the value for those in the APHINITY Global 
PK sub-study. In the NeoSphere study, the median observed 
baseline albumin level was 4.4 g/dL (range 3.1–5.3 g/dL, 
N = 180), indicating that the selected median baseline 
albumin value of 4.3 g/dL is appropriate for an EBC patient 
population and can be used to describe pertuzumab PK in 
the APHINITY study. Median predicted pertuzumab con-
centrations and a 95% prediction interval were compared 
with the observed data.

For the purpose of the exploratory exposure–response 
analysis, individually predicted pertuzumab serum con-
centrations based on each patient’s observed serum con-
centrations and covariates were obtained. The predictions 
were derived by fixing the parameters in the structural and 
variance model to the parameter estimates in the historical 
validated population PK model and generating the individual 
empirical Bayes estimates with NONMEM by setting 
MAXEVAL = 0. Individual exposure estimates (AUC, Cmin, 
and Cmax) were subsequently obtained for use in the expo-
sure–response analysis (detailed below). Diagnostic plots of 
observed data versus population prediction and individual 
prediction were examined for adequate fit. Plots of condi-
tional weighted residual versus population prediction and 
versus time (after first and last doses) were inspected for 
evidence of systematic lack of fit, and to confirm the absence 
of bias in the error distributions.

DDIs

The DDI analysis was carried out using R version 3.2.2.
The potential effect of pertuzumab on the steady-state 

PK of trastuzumab was assessed by comparing the arithme-
tic means of serum trastuzumab concentrations at pre-dose 
(Cmin,ss) and post-infusion (Cmax,ss) in cycles 10 and 15 in the 
pertuzumab and placebo arms. In addition, the 90% CIs in the 
ratio of the geometric means (calculated by standard methods) 
were constructed. Similarly, the potential effect of pertuzumab 
on the PK of paclitaxel (and 6-alpha-hydroxy paclitaxel) and 
carboplatin was assessed by comparing the arithmetic means 
of Cmax and area under the concentration–time curve over 
all concentration measurements (AUC​last) in Cycle 1 in the 
pertuzumab and placebo arms.

For paclitaxel and carboplatin, collection of multiple 
blood samples on Cycle 1 Day 1 allowed characterization 
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of the post-infusion concentration–time curves using non-
compartmental methods. Cmax was defined as the maximum 
observed concentration and AUC​last was calculated using 
the linear trapezoidal rule and nominal observation times. 
The 90% CIs in the ratio of the geometric means were also 
constructed. All observations for 6-alpha-hydroxy paclitaxel 
at 24 h post-dose were reported as below the quantification 
limit. Thus, AUC​last was not calculated.

The potential effect of trastuzumab on the PK of 
pertuzumab was assessed by comparing pertuzumab Cmax 
and Cmin observed in the APHINITY Global PK sub-study 
with the predictions based on the population PK model. An 
adequate prediction of the observed PK by the historical 
model would suggest that there was no impact of trastu-
zumab on the PK of pertuzumab.

Exploratory exposure–response analysis

To generate individual pertuzumab exposure for patients in 
the pertuzumab arm, a simulation dataset was constructed 
based on estimated individual parameters for the popula-
tion PK model, corresponding LBW and median albumin 
incorporated as described previously. For all patients with at 
least one available valid post-treatment concentration meas-
urement of pertuzumab, predictions of Cmax,ss, Cmin,ss, and 
AUC at steady state (AUC​ss) were derived. The simulation 
dataset consisted of a loading dose and three maintenance 
doses. The loading dose and infusion duration were taken 
from the NONMEM dataset for each patient in the pertu-
zumab arm; thereafter, three doses of 420 mg pertuzumab 
were administered using a 30-min infusion with 3 weeks’ 
dosing interval. Pertuzumab approximate steady state is 
achieved following the first maintenance dose, and there-
fore three maintenance doses were selected to ensure steady 
state across patients. Individual predictions of concentration 
at the end of infusion (Cmax,ss) and before next dose (Cmin,ss) 
were generated following the third maintenance dose for all 
patients. AUC​ss was calculated by dividing the maintenance 
dose by individual clearance values.

The efficacy endpoint in the exposure–efficacy analysis 
was the primary study endpoint, IDFS [13]. IDFS is the time 
from randomization to recurrence of ipsilateral invasive 
breast tumor, recurrence of ipsilateral locoregional invasive 
disease, a distant disease recurrence, contralateral invasive 
breast cancer, or death from any cause. Patients who had not 
had an event at the time of data analysis were censored at 
the date they were last known to be event-free. The primary 
exposure metrics used in the exposure–efficacy analysis 
were individual predicted Cmin,ss and AUC​ss. Box plots were 
created to compare exposure (Cmin,ss and AUC​ss) in the sub-
set of patients with PK data who had an IDFS event (N = 4) 
versus the patients with PK data who did not (N = 31).

Adverse events (AEs) were considered for the analysis if 
there was a difference of ≥ 5% in the incidence of Grade ≥ 3 
AEs between the pertuzumab and placebo arms in the pri-
mary analysis [13]. Furthermore, to be considered for the 
analysis, pertuzumab PK data were required for ≥ 5 patients 
experiencing the AE; “any grade ≥ 3 AE” (incidence 64.2% 
in the pertuzumab arm and 57.3% in the placebo arm in the 
overall population [13]) and Grade ≥ 3 diarrhea (incidence 
9.8% in the pertuzumab arm and 3.7% in the placebo arm in 
the overall population [13]) met these criteria. These safety 
endpoints were assessed as binary variables. Results were 
deemed exploratory and did not reflect formal statistical 
hypothesis testing.

Results

Patients and samples

Seventy-two patients consented to the optional APHIN-
ITY PK Global sub-study. Of these, 38 patients received 
pertuzumab, and 35 contributed at least one pertuzumab PK 
sample. The total number of pertuzumab PK observations 
was 163. In addition, 36 patients in the pertuzumab arm and 
34 in the placebo arm contributed at least one trastuzumab 
PK sample. The total number of trastuzumab PK observa-
tions was 339 (179 from the pertuzumab arm and 160 from 
the placebo arm).

Patient demographics are summarized in Online Resource 
1. In the APHINITY Global PK sub-study, all 38 patients 
who received pertuzumab were female, with a median age 
of 51.5 years and a median LBW of 44.7 kg. These demo-
graphic characteristics, as well as nodal status and hormone 
receptor status, were comparable between the APHINITY 
Global PK sub-study and APHINITY intention-to-treat 
populations [13].

Pertuzumab PK

The visual predictive check of the population PK model for 
the Global PK sub-study data is shown in Fig. 1. Overall, 
the population PK model predicted the serum concentrations 
reasonably well across cycles. Cmin appeared to increase in 
later cycles, although the majority of the observed pertu-
zumab concentrations were within the 95% prediction inter-
val. Graphical assessment of the match between observed 
and model-predicted pertuzumab concentrations (Fig. 2), as 
well as of conditional weighted residuals (Online Resource 
2), suggested that the previous model could predict the 
observed data reasonably well. However, the observed 
trough concentrations at later cycles were slightly higher 
than predicted by the model. Based on goodness of fit, the 
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model was deemed appropriate for predictions of individ-
ual exposures for subsequent comparisons with historical 
data, assessment of potential DDIs, and exposure–response 
analyses.

DDIs

The Cmin and Cmax of trastuzumab with pertuzumab or pla-
cebo across cycles are shown and summarized in Fig. 3 and 
Online Resource 3, respectively. Trastuzumab geometric 
mean ratios were approximately 0.8–1.0 and the 90% CIs 
all overlapped 1.0, indicating no impact of pertuzumab on 
trastuzumab serum Cmin or Cmax when administered in com-
bination with an EBC chemotherapy regimen. There was 
also no evidence to suggest an impact of pertuzumab (in 
combination with trastuzumab) on PK of paclitaxel (Cmax 
and AUC), 6-alpha-hydroxy paclitaxel (Cmax only, as the 

observations at 24 h after dose were below the quantification 
limit) or carboplatin (Cmax and AUC). The data are shown 
in Online Resources 4, 5, and 6, respectively. It should be 
noted that carboplatin PK data were derived from only six 
patients in the pertuzumab arm and 12 patients in the pla-
cebo arm. An adequate prediction of observed pertuzumab 
PK in APHINITY by the historical model as described 
above suggested that there was no impact of trastuzumab on 
the PK of pertuzumab.

Pertuzumab and trastuzumab exposure in EBC 
and MBC studies

Serum pertuzumab Cmin and Cmax data in the APHINITY 
Global PK sub-study (cycles 1, 10, and 15) were comparable 
to PK data from the CLEOPATRA study in MBC (cycles 3, 
9, and 15) as shown in Table 1.
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Serum trastuzumab Cmin and Cmax data at later cycles in 
the APHINITY Global PK sub-study (cycles 10 and 15) 
were comparable to observed trastuzumab PK data from 
the experimental arm of the HERA study in EBC (cycles 
10 and 12), as demonstrated in Table 1. It should be noted 
that the observed trastuzumab data from APHINITY were 
pooled from pertuzumab and placebo arms, after confirm-
ing no PK DDI between pertuzumab and trastuzumab in the 
APHINITY Global PK sub-study.

Exposure–efficacy analysis

Thirty-five patients in the pertuzumab arm with predicted 
AUC​ss and Cmin,ss were included in the exploratory 
exposure–efficacy analysis. There was no indication of 
improved efficacy, as defined by IDFS, with higher exposure 
to pertuzumab (AUC​ss and Cmin,ss; Fig. 4a). However, it 
should be noted that only four IDFS events occurred in the 
PK sub-study population, so there were limited data avail-
able for the analysis.

Fig. 3   Trastuzumab Cmax and 
Cmin with or without pertu-
zumab. The closed circles 
represent trastuzumab in the 
treatment arm (pertuzumab, 
trastuzumab, and chemother-
apy). The open circles represent 
trastuzumab in the control arm 
(placebo, trastuzumab, and 
chemotherapy). The solid green 
line represents arithmetic mean 
for each timepoint and treatment 
arm. The shaded area is arith-
metic mean ± 1 standard devia-
tion. Cmax is maximum serum 
concentration. Cmin is minimum 
serum concentration Tr
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Table 1   Summary of Cmin and Cmax of pertuzumab in the presence of trastuzumab with and without chemotherapy (upper panel), and trastu-
zumab (lower panel) in patients with early breast cancer or metastatic breast cancer

Arithmetic means (SD)
Cmax is maximum serum concentration, Cmin is minimum serum concentration, EBC is early breast cancer, MBC is metastatic breast cancer, SD 
is standard deviation
a Roche data on file; cycles 10 and 15 of APHINITY were chemotherapy-free

Pertuzumab

APHINITY (EBC) CLEOPATRA (MBC)a

Cycle n Cmin (µg/mL) n Cmax (µg/mL) Cycle n Cmin (µg/mL) n Cmax (µg/mL)

1 30 65.9 (12) 30 291.2 (99) 3 18 63.4 (48) 18 183.4 (34)
10 30 91.0 (31) 28 229.8 (83) 9 16 75.5 (22) 14 196.3 (66)
15 24 98.4 (40) 21 232.8 (65) 15 11 94.1 (31) 9 221.1 (32)

Trastuzumab

APHINITY (EBC) HERA (EBC)a

Cycle n Cmin (µg/mL) n Cmax (µg/mL) Cycle n Cmin (µg/mL) n Cmax (µg/mL)

10 58 67.7 (32) 59 225.5 (80) 10 3 66.0 (39) 3 203 (7)
15 48 73.6 (38) 45 213.0 (83) 12 15 72.3 (46) 15 237 (12)
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Exposure–safety analysis

In the safety dataset, 35 patients treated with pertuzumab 
had PK exposure predictions, and 34 patients in the placebo 

arm were used as a reference group to compare the poten-
tial exposure–response of pertuzumab. Table 2 summarizes 
the occurrence of Grade ≥ 3 AEs for patients by treatment 
arm, as well as the patients treated with pertuzumab with 

Fig. 4   The relationships 
between pertuzumab exposure 
and efficacy or safety. Pertu-
zumab AUC​ss, Cmin,ss, or Cmax,ss 
for patients in the pertuzumab 
arm with or without invasive 
disease-free survival (IDFS) 
event (a), any grade ≥ 3 adverse 
event (AE) (b) or any grade ≥ 3 
diarrhea (c). The solid green 
line represents arithmetic mean 
for each group. The shaded area 
represents arithmetic mean ± 1 
standard deviation. AUC​ss 
is area under the concentra-
tion–time curve at steady state. 
Cmax,ss is maximum serum con-
centration at steady state. Cmin,ss 
is minimum serum concentra-
tion at steady state
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exposure (AUC​ss or Cmax,ss) below or above median. The 
possible relationships between AUC​ss or Cmax,ss and occur-
rence of any grade ≥ 3 AEs are shown in Fig. 4b; the inci-
dence of any grade ≥ 3 AEs was similar in the pertuzumab 
and placebo arms, and the incidence of Grade ≥ 3 AEs was 
similar in the high and low pertuzumab exposure groups 
(approximately 10% difference but a difference of only one 
patient in the two groups).

The incidence of Grade ≥ 3 diarrhea was more frequent in 
pertuzumab-treated patients than in placebo-treated patients, 
but the occurrence of Grade ≥ 3 diarrhea did not increase 
with increasing pertuzumab exposure (Fig. 4c). It should be 
noted that grouping of patients based on AUC​ss or Cmax,ss 
was identical, i.e., all patients with AUC​ss above the median 
also had a Cmax,ss above the median. Hence, results were 
identical for Cmax,ss and AUC​ss.

Discussion

The previously developed population PK model for pertu-
zumab, built on a large database of patients with MBC and 
other solid tumors [10], was used in the analyses of data 
collected from the APHINITY Global PK sub-study to char-
acterize the PK of pertuzumab at steady state in the APHIN-
ITY patient population (EBC) and the potential interactions 
between pertuzumab and trastuzumab and chemotherapy. In 
addition, the steady-state concentrations of pertuzumab and 
trastuzumab were compared with historical data in patients 
with EBC or MBC, and the exposure–response relationships 
were also explored.

The previously developed and validated popula-
tion PK model adequately predicted pertuzumab serum 
concentrations across cycles in APHINITY. Although 
Cmin appeared to increase in later cycles, an increase of 

similar magnitude in pertuzumab Cmin over time was also 
observed in CLEOPATRA and may be indicative of time-
dependent PK or treatment effect [14]. A definitive conclu-
sion regarding time-dependency in pertuzumab PK cannot 
be made due to the small sample size in APHINITY. Also, 
it should be noted that clinical efficacy is expected if the 
target Ctrough for pertuzumab is maintained at or above 
20 μg/mL, and the increase in Cmin had no apparent impact 
on safety [11]. While the observed Cmin at later cycles 
tended to be slightly higher than predicted by the model, 
there was a large overlap and overall the data suggested no 
clinically meaningful difference among patients with EBC 
and other tumor types, including MBC (CLEOPATRA). 
This was further supported by the comparable observed 
PK of pertuzumab in the APHINITY and CLEOPATRA 
studies. Given that a population with EBC treated in the 
adjuvant setting has had surgical removal of tumor, when 
PK is found to be comparable to MBC and other solid 
tumor types, it suggests that tumor burden has no apparent 
impact on pertuzumab PK. Overall, the data demonstrated 
that this population PK model can be used for predictions 
of pertuzumab exposure in patients with HER2-positive 
EBC, in addition to other solid tumors included when the 
original model was developed.

Although most of the data used to build the population 
PK model were based on pertuzumab without concomitant 
trastuzumab, Cmin and Cmax of pertuzumab from patients 
in the APHINITY Global PK sub-study were adequately 
described by the model. In addition, the general agreement 
between observed pertuzumab concentrations and the values 
predicted by the population PK model suggested that tras-
tuzumab had no clinically significant impact on the PK of 
pertuzumab in APHINITY.

Observed serum pertuzumab Cmin and Cmax data in 
APHINITY were comparable to pertuzumab Cmin and Cmax 

Table 2   Grade ≥ 3 AEs by PK 
group

Data are patients, n or patients, n (%)
AE is adverse event, AUC​ is area under the concentration–time curve, Cmax is maximum serum concentra-
tion, PK is pharmacokinetic
a The most common Grade ≥ 3 AEs were neutropenia, febrile neutropenia, neutrophil count decreased, diar-
rhea, and anemia [10]

Group n Any grade ≥ 3 AEa Grade ≥ 3 diarrhea

Overall
 Placebo + trastuzumab + chemotherapy 34 25 (73.5) 2 (5.9)
 Pertuzumab + trastuzumab + chemotherapy 35 27 (77.1) 7 (20.0)

AUC​ss

 Pertuzumab below the median 18 13 (72.2) 4 (22.2)
 Pertuzumab above the median 17 14 (82.4) 3 (17.6)

Cmax,ss

 Pertuzumab below the median 18 13 (72.2) 4 (22.2)
 Pertuzumab above the median 17 14 (82.4) 3 (17.6)
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from the CLEOPATRA study in MBC at similar cycles. 
Additionally, serum trastuzumab Cmin and Cmax data in 
APHINITY were comparable to observed trastuzumab 
PK data from the experimental arm of the HERA study 
in EBC at similar cycles. These comparisons showed that 
pertuzumab PK data were comparable across different 
indications and chemotherapy combination partners and 
therefore indicates no impact of disease and chemotherapy 
on pertuzumab PK.

DDIs were not expected in this study, based on prior data 
[11, 14] and the distinct clearance mechanisms between 
monoclonal antibodies and the cytotoxic agents evaluated 
[17–19]. As expected, PK parameters Cmax and AUC​last for 
paclitaxel and carboplatin were found to be similar in both 
treatment arms, indicating no impact of pertuzumab on the 
PK of these chemotherapeutic agents. The 90% CIs of the 
ratios of the PK parameters were wide and were most prob-
ably affected by the variability in PK parameters and the 
low statistical power associated with the small sample sizes 
between the treatment groups.

Similarly, no difference in trastuzumab PK parameters 
were observed in the presence of pertuzumab. PK expo-
sure ratios (pertuzumab arm vs. placebo arm) were close 
to 1 at every time point, indicating no alteration in these 
values (Online Resource 3). No DDI between pertuzumab 
and trastuzumab was expected in this study as pertuzumab 
and trastuzumab bind to distinct epitopes of HER2 simul-
taneously without steric hindrance [20]. The 90% CIs for 
the ratios were large because of variability in PK param-
eters and the relatively small sample size. Collectively, the 
results demonstrate that the exposure of trastuzumab was 
not affected by pertuzumab administration in the presence 
of chemotherapy, confirming what was shown previously in 
the small CLEOPATRA DDI sub-study [14]). Overall, the 
data suggested that pertuzumab did not alter the PK of tras-
tuzumab, paclitaxel, or carboplatin, and that pertuzumab PK 
was not altered by concurrent trastuzumab administration. 
DDIs between pertuzumab and trastuzumab and between 
pertuzumab and docetaxel were previously assessed in a 
small sub-study of the CLEOPATRA trial [14]; however, the 
sample size was relatively small (n = 17 in the placebo arm 
and n = 20 in the pertuzumab arm) and the current analysis 
helps to confirm the previous results.

Efficacy (based on IDFS) and safety (based on any 
grade ≥ 3 AE and Grade ≥ 3 diarrhea) were compared 
between high and low pertuzumab exposure groups. Only 
four IDFS events occurred in 35 patients with PK data. 
Analyses of differences in exposure (AUC​ss and Cmin,ss) 
between patients with and without IDFS events did not 
indicate improved efficacy with higher pertuzumab expo-
sure. While there was no indication of improved efficacy 
with higher pertuzumab exposure, the analysis is based 
on graphical assessment only and not a formal statistical 

test. Furthermore, the data were too limited to draw robust 
conclusions.

A difference in incidence of Grade ≥ 3 AEs was observed 
between treatment arms in the overall APHINITY study 
(64.2% in pertuzumab arm vs. 57.3% in placebo arm) [13]. 
This was also reflected in the APHINITY Global PK sub-
study populations in which 27 events were observed in 35 
patients treated with pertuzumab, compared with 25 events 
in 34 patients treated with placebo. Analyses of differences 
in pertuzumab exposure (below or above median Cmax,ss 
and AUC​ss) in patients with any grade ≥ 3 AEs showed a 
small difference between the exposure groups. Therefore, the 
available data did not suggest any exposure–safety relation-
ship. It should, however, be noted that there was a limited 
number of patients in the pertuzumab-treated arm for robust 
statistical analyses.

A comparatively large difference in incidence of 
Grade ≥ 3 diarrhea was observed between the two treat-
ment groups (20% in pertuzumab arm vs. 5.9% in placebo 
arm). The difference was similar to that seen in the overall 
APHINITY study (9.8% in pertuzumab arm vs. 3.7% in pla-
cebo arm). Analyses of differences in pertuzumab exposure 
(below or above median Cmax,ss and AUC​ss) did not indicate 
a higher incidence of Grade ≥ 3 diarrhea with higher expo-
sure to pertuzumab.

In this exploratory APHINITY Global PK sub-study, the 
PK of pertuzumab in patients with HER2-positive EBC were 
in line with predictions from a previously developed and 
validated population PK model [10]. These analyses demon-
strate that no dose adjustments are necessary for pertuzumab 
and trastuzumab when the two monoclonal antibodies are 
administered together with chemotherapy (anthracycline- 
or non-anthracycline-containing) in patients with EBC. It 
should, however, be noted that data were limited due to 
small sample sizes, and by the fact that only four patients 
had an IDFS event. Overall, the limited available data from 
this exploratory study suggest that no dose adjustments are 
needed for pertuzumab when administered in combination 
with trastuzumab and an EBC chemotherapy regimen.
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